Skip to main content

Advertisement

Log in

CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The paradigm of cancer development and metastasis is a comprehensive, complex series of events that ultimately reflects a coordinated interaction between the tumor cell and the microenvironment within which the tumor cell resides. Despite the realization that this relationship has changed the current paradigm of cancer research, the struggle continues to more completely understand the pathogenesis of the disease and the ability to appropriately identify and design novel targets for therapy. A particular area of research that has added a significant understanding to cancer metastasis is the role of chemokines and chemokine receptors. Here we review the current concepts of CCL2 (monoctye chemoattractant protein 1) and its role in tumor metastasis with particular interest to its role in the development of bone metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Paget, S. (1989). The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Reviews, 8(2), 98–101.

    PubMed  CAS  Google Scholar 

  2. Loberg, R. D., Gayed, B. A., Olson, K. B., & Pienta, K. J. (2005). A paradigm for the treatment of prostate cancer bone metastases based on an understanding of tumor cell–microenvironment interactions. Journal of Cellular Biochemistry, 96(3), 439–446.

    Article  PubMed  CAS  Google Scholar 

  3. Shah, R. B., Mehra, R., Chinnaiyan, A. M., Shen, R., Ghosh, D., Zhou, M., et al. (2004). Androgen-independent prostate cancer is a heterogeneous group of diseases: Lessons from a rapid autopsy program. Cancer Research, 64(24), 9209–9216.

    Article  PubMed  CAS  Google Scholar 

  4. Posner, L. J., Miligkos, T., Gilles, J. A., Carnes, D. L., Taddeo, D. R., & Graves, D. T. (1997). Monocyte chemoattractant protein-1 induces monocyte recruitment that is associated with an increase in numbers of osteoblasts. Bone, 21(4):321–327.

    Article  PubMed  CAS  Google Scholar 

  5. Zheng, M. H., Fan, Y., Smith, A., Wysocki, S., Papadimitriou, J. M., & Wood, D. J. (1998). Gene expression of monocyte chemoattractant protein-1 in giant cell tumors of bone osteoclastoma: Possible involvement in CD68+ macrophage-like cell migration. Journal of Cellular Biochemistry, 70(1), 121–129.

    Article  PubMed  CAS  Google Scholar 

  6. Uguccioni, M., Loetscher, P., Forssmann, U., Dewald, B., Li, H., Lima, S. H., et al. (1996). Monocyte chemotactic protein 4 (MCP-4), a novel structural and functional analogue of MCP-3 and eotaxin. Journal of Experimental Medicine, 183(5):2379–2384.

    Article  PubMed  CAS  Google Scholar 

  7. Schall, T. J. (1991). Biology of the RANTES/SIS cytokine family. Cytokine, 3(3):165–183.

    Article  PubMed  CAS  Google Scholar 

  8. Sarafi, M. N., Garcia-Zepeda, E. A., MacLean, J. A., Charo, I. F., & Luster, A. D. (1997). Murine monocyte chemoattractant protein (MCP)-5: A novel CC chemokine that is a structural and functional homologue of human MCP-1. Journal of Experimental Medicine, 185(1), 99–109.

    Article  PubMed  CAS  Google Scholar 

  9. Van Damme, J., Proost, P., Lenaerts, J. P., & Opdenakker, G. (1992). Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. Journal of Experimental Medicine, 176(1), 59–65.

    Article  PubMed  Google Scholar 

  10. Vanderkerken, K., Vande Broek, I., Eizirik, D. L., Van Valckenborgh, E., Asosingh, K., Van Riet, I., et al. (2002). Monocyte chemoattractant protein-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of 5T multiple myeloma cells. Clinical & Experimental Metastasis, 19(1), 87–90.

    Article  CAS  Google Scholar 

  11. Silvestris, F., Cafforio, P., Calvani, N., & Dammacco, F. (2004). Impaired osteoblastogenesis in myeloma bone disease: Role of upregulated apoptosis by cytokines and malignant plasma cells. British Journal of Haematology, 126(4), 475–486.

    Article  PubMed  Google Scholar 

  12. Leonard, E. J. (1997). Biological aspects of macrophage-stimulating protein (MSP) and its receptor. Ciba Foundation Symposium, 212, 183–191 (discussion 92–97).

    Google Scholar 

  13. Charo, I. F., Myers, S. J., Herman, A., Franci, C., Connolly, A. J., & Coughlin, S. R. (1994). Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proceedings of the National Academy of Science U.S.A., 91(7), 2752–2756.

    Article  CAS  Google Scholar 

  14. Graves, D. T., Jiang, Y., &. Valente, A. J. (1999). The expression of monocyte chemoattractant protein-1 and other chemokines by osteoblasts. Frontier in Bioscience, 4, D571–D580.

    Article  CAS  Google Scholar 

  15. Graves, D. T., Jiang, Y., & Valente, A. J. (1999). Regulated expression of MCP-1 by osteoblastic cells in vitro and in vivo. Histology and Histopathology, 14(4), 1347–1354.

    PubMed  CAS  Google Scholar 

  16. Wong, L. M., Myers, S. J., Tsou, C. L., Gosling, J., Arai, H., & Charo, I. F. (1997). Organization and differential expression of the human monocyte chemoattractant protein 1 receptor gene. Evidence for the role of the carboxyl-terminal tail in receptor trafficking. Journal of Biological Chemistry, 272(2), 1038–1045.

    Article  CAS  Google Scholar 

  17. Rollins, B. J. (1997). Chemokines. Blood, 90(3), 909–928.

    PubMed  CAS  Google Scholar 

  18. Baggiolini, M., Dewald, B., & Moser, B. (1997). Human chemokines: An update. Annual Review of Immunology, 15, 675–705.

    Article  PubMed  CAS  Google Scholar 

  19. Loberg, R. D., Day, L. L., Harwood, J., Ying, C., St John, L. N., Giles, R., et al. (2006). CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia, 8(7), 578–586.

    Article  PubMed  CAS  Google Scholar 

  20. Silvestris, F., Cafforio, P., Tucci, M., Grinello, D., & Dammacco, F. (2003) Upregulation of osteoblast apoptosis by malignant plasma cells: A role in myeloma bone disease. Britist Journal of Haematology, 122(1), 39–52.

    Article  PubMed  CAS  Google Scholar 

  21. Arendt, B. K., Velazquez-Dones, A., Tschumper, R. C., Howell, K. G., Ansell, S. M., Witzig, T. E., & Jelinek, D. F. (2002). Interleukin 6 induces monocyte chemoattractant protein-1 expression in myeloma cells. Leukemia, 16(10), 2142–2147.

    Article  PubMed  CAS  Google Scholar 

  22. Vande Broek, I., Asosingh, K., Vanderkerken, K., Straetmans, N., Van Camp, B., & Van Riet, I. (2003). Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. British Journal of Cancer, 88(6), 855–862.

    Article  CAS  Google Scholar 

  23. Johrer, K., Janke, K., Krugmann, J., Fiegl, M., & Greil, R. (2004). Transendothelial migration of myeloma cells is increased by tumor necrosis factor (TNF)-alpha via TNF receptor 2 and autocrine up-regulation of MCP-1. Clinical Cancer Research, 10(6), 1901–1910.

    Article  PubMed  Google Scholar 

  24. Pellegrino, A., Ria, R., Di Pietro, G., Cirulli, T., Surico, G., Pennisi, A., Morabito, F., Ribatti, D., Vacca, A. (2005). Bone marrow endothelial cells in multiple myeloma secrete CXC-chemokines that mediate interactions with plasma cells. British Journal of Haematology, 129(2), 248–256.

    Article  CAS  Google Scholar 

  25. Soule, H. D., Vazguez, J., Long, A., Albert, S., & Brennan, M. (1973). A human cell line from a pleural effusion derived from a breast carcinoma. Journal of the National Cancer Institute, 51(5), 1409–1416.

    PubMed  CAS  Google Scholar 

  26. Engel, L. W., Young, N. A., Tralka, T. S., Lippman, M. E., O’Brien, S. J., & Joyce, M. J. (1978). Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Research 38(10), 3352–3364.

    PubMed  CAS  Google Scholar 

  27. Youngs, S. J., Ali, S. A., Taub, D. D., & Rees, R. C. (1997). Chemokines induce migrational responses in human breast carcinoma cell lines. International Journal of Cancer, 71(2):257–266.

    Article  CAS  Google Scholar 

  28. Keydar, I., Chen, L., Karby, S., Weiss, F. R., Delarea, J., Radu, M., et al. (1975). Establishment and characterization of a cell line of human breast carcinoma origin. European Journal of Cancer, 15(5), 659–670.

    Google Scholar 

  29. Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., et al. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research, 6(8), 3282–3289.

    PubMed  CAS  Google Scholar 

  30. Saji, H., Koike, M., Yamori, T., Saji, S., Seiki, M., Matsushima, K., et al. (2001). Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer, 92(5), 1085–1091.

    Article  PubMed  CAS  Google Scholar 

  31. Lebrecht, A., Grimm, C., Lantzsch, T., Ludwig, E., Hefler, L., Ulbrich, E., et al. (2004). Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumour Biology, 25(1–2), 14–17.

    Article  PubMed  CAS  Google Scholar 

  32. Ferrero, E., Fabbri, M., Poggi, A., Galati, G., Bernasconi, S., & Zocchi, M. R. (1998). Tumor-driven matrix invasion by infiltrating lymphocytes: Involvement of the alpha1 integrin I-domain. European Journal of Immunology, 28(8), 2530–2536.

    Article  PubMed  CAS  Google Scholar 

  33. Amann, B., Perabo, F. G., Wirger, A., Hugenschmidt, H., & Schultze-Seemann, W. (1998). Urinary levels of monocyte chemo-attractant protein-1 correlate with tumour stage and grade in patients with bladder cancer. British Journal of Urology, 82(1), 118–121.

    PubMed  CAS  Google Scholar 

  34. Luciani, M. G., Stoppacciaro, A., Peri, G., Mantovani, A., & Ruco, L. P. (1998). The monocyte chemotactic protein a (MCP-1) and interleukin 8 (IL-8) in Hodgkin’s disease and in solid tumours. Molecular Pathology, 51(5):273–276.

    Article  PubMed  CAS  Google Scholar 

  35. Baier, P. K., Eggstein, S., Wolff-Vorbeck, G., Baumgartner, U., & Hopt, U. T. (2005). Chemokines in human colorectal carcinoma. Anticancer Research, 25(5), 3581–3584.

    PubMed  CAS  Google Scholar 

  36. Lu, Y., Cai, Z., Galson, D. L., Xiao, G., Liu, Y., George, D. E., et al. (2006). Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate, 66(12), 1311–1318.

    Article  PubMed  CAS  Google Scholar 

  37. Kim, M. S., Day, C. J., & Morrison, N. A. (2005). MCP-1 is induced by receptor activator of nuclear factor-{kappa}B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. Journal of Biology Chemistry, 280(16), 16163–16169.

    Article  CAS  Google Scholar 

  38. Kim, M. S., Day, C. J., Selinger, C. I., Magno, C. L., Stephens, S. R., & Morrison, N. A. (2006). MCP-1-induced human osteoclast-like cells are tartrate-resistant acid phosphatase, NFATc1, and calcitonin receptor-positive but require receptor activator of NFkappaB ligand for bone resorption. Journal of Biology Chemistry, 281(2), 1274–1285.

    Article  CAS  Google Scholar 

  39. Kim, M. S., Magno, C. L., Day, C. J., & Morrison, N. A. (2006). Induction of chemokines and chemokine receptors CCR2b and CCR4 in authentic human osteoclasts differentiated with RANKL and osteoclast like cells differentiated by MCP-1 and RANTES. Journal of Cellular Biochemistry, 97(3), 512–518.

    Article  PubMed  CAS  Google Scholar 

  40. Muta, M., Matsumoto, G., Nakashima, E., & Toi, M. (2006). Mechanical analysis of tumor growth regression by the cyclooxygenase-2 inhibitor, DFU, in a Walker256 rat tumor model: importance of monocyte chemoattractant protein-1 modulation. Clinical Cancer Research, 12(1), 264–272.

    Article  PubMed  CAS  Google Scholar 

  41. Broxmeyer, H. E., Pelus, L. M., Kim, C. H., Hangoc, G., Cooper, S., & Hromas, R. (2006). Synergistic inhibition in vivo of bone marrow myeloid progenitors by myelosuppressive chemokines and chemokine-accelerated recovery of progenitors after treatment of mice with ara-C. Experimental Hematology, 34(8), 1069–1077.

    Article  PubMed  CAS  Google Scholar 

  42. Broxmeyer, H. E., Cooper, S., Hangoc, G., & Kim, C. H. (2005). Stromal cell-derived factor-1/CXCL12 selectively counteracts inhibitory effects of myelosuppressive chemokines on hematopoietic progenitor cell proliferation in vitro. Stem Cells and Development, 14(2), 199–203.

    Article  PubMed  CAS  Google Scholar 

  43. Cashman, J. D., Eaves, C. J., Sarris, A. H., & Eaves, A. C. (1998). MCP-1, not MIP-1alpha, is the endogenous chemokine that cooperates with TGF-beta to inhibit the cycling of primitive normal but not leukemic (CML) progenitors in long-term human marrow cultures. Blood, 92(7), 2338–2344.

    PubMed  CAS  Google Scholar 

  44. Xu, Y. X., Talati, B. R., Janakiraman, N., Chapman, R. A., & Gautam, S. C. (1999). Growth factors: Production of monocyte chemotactic protein-1 (MCP-1/JE) by bone marrow stromal cells: Effect on the migration and proliferation of hematopoietic progenitor cells. Hematology, 4(4), 345–356.

    PubMed  CAS  Google Scholar 

  45. Kurihara, T., Warr, G., Loy, J., & Bravo, R. (1997). Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. Journal of Experimental Medicine, 186(10), 1757–1762.

    Article  PubMed  CAS  Google Scholar 

  46. Dzenko, K. A., Song, L., Ge, S., Kuziel, W. A., & Pachter, J. S. (2005). CCR2 expression by brain microvascular endothelial cells is critical for macrophage transendothelial migration in response to CCL2. Microvascular Research, 70(1–2), 53–64.

    Article  PubMed  CAS  Google Scholar 

  47. Yang, X., Lu, P., Ishida, Y., Kuziel, W. A., Fujii, C., & Mukaida, N. (2006). Attenuated liver tumor formation in the absence of CCR2 with a concomitant reduction in the accumulation of hepatic stellate cells, macrophages and neovascularization. International Journal Cancer, 118(2), 335–345.

    Article  CAS  Google Scholar 

  48. Huang, S., Singh, R. K., Xie, K., Gutman, M., Berry, K. K., Bucana, C. D., et al. (1994). Expression of the JE/MCP-1 gene suppresses metastatic potential in murine colon carcinoma cells. Cancer Immunology Immunotherapy, 39(4), 231–238.

    Article  CAS  Google Scholar 

  49. Huang, S., Xie, K., Singh, R. K., Gutman, M., & Bar-Eli, M. (1995). Suppression of tumor growth and metastasis of murine renal adenocarcinoma by syngeneic fibroblasts genetically engineered to secrete the JE/MCP-1 cytokine. Journal of Interferon Cytokine Research, 15(7), 655–665.

    Article  PubMed  CAS  Google Scholar 

  50. Monti, P., Leone, B. E., Marchesi, F., Balzano, G., Zerbi, A., Scaltrini, F., et al. (2003). The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: Regulation of expression and potential mechanisms of antimalignant activity. Cancer Research, 63(21), 7451–7461.

    PubMed  CAS  Google Scholar 

  51. Kozlow, W., & Guise, T. A. (2005). Breast cancer metastasis to bone: Mechanisms of osteolysis and implications for therapy. Journal of Mammary Gland Biology Neoplasia, 10(2), 169–180.

    Article  Google Scholar 

  52. Ishikawa, M., Toki, H., Fujii, M., Yamamoto, H., Yumoto, Y., Awazu, R., et al. (1983). Clinical significance of the bone marrow examination in small cell carcinoma of the lung. Gan No Rinsho, 29(5), 399–402.

    PubMed  CAS  Google Scholar 

  53. Iguchi, H., Yasuda, M., Matsuo, T., Sumii, T., & Funakoshi, A. (2004). Clinical features and management of pancreatic cancer with bone metastases. Nippon Shokakibyo Gakkai Zasshi, 101(8):872–878.

    PubMed  Google Scholar 

  54. Rowland, G. N., Capen, C. C., Black, H. E., & Young, D. M. (1971). Microradiographic evaluation of bone and ultrastructure of C-cells and parathyroid glands of cows receiving parathyroid extract. Beitrage zur Pathologie, 144(4), 360–376.

    PubMed  CAS  Google Scholar 

  55. Junker, K., Romics, I., Szendroi, A., Riesz, P., Moravek, P., Hindermann, W., et al. (2004). Genetic profile of bone metastases in renal cell carcinoma. European Urology, 45(3), 320–324.

    Article  PubMed  CAS  Google Scholar 

  56. Natsuizaka, M., Omura, T., Akaike, T., Kuwata, Y., Yamazaki, K., Sato, T., et al. (2005). Clinical features of hepatocellular carcinoma with extrahepatic metastases. Journal of Gastroenterology and Hepatology, 20(11), 1781–1787.

    Article  PubMed  Google Scholar 

  57. Mado, K., Ishii, Y., Mazaki, T., Ushio, M., Masuda, H., & Takayama, T. (2006). A case of bone metastasis of colon cancer that markedly responded to S-1/CPT-11 combination chemotherapy and became curable by resection. World Journal of Surgical Oncology, 4, 3.

    Article  PubMed  Google Scholar 

  58. Berge, T., & Lundberg, S. (1977). Cancer in Malmo 1958–1969. An autopsy study. Acta Pathologica et Microbiologica Scandinavica, Supplementum, 260, 1–235.

    Google Scholar 

  59. Drury, A. B., Palmer, P. H., & Highman, W. J. (1964). Carcinomatous metastasis to the vertebral bodies. Journal of Clinical Pathology, 17, 448–457.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Loberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, M.J., Loberg, R.D. CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer Metastasis Rev 25, 611–619 (2006). https://doi.org/10.1007/s10555-006-9027-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-9027-x

Keywords

Navigation