Skip to main content

Advertisement

Log in

Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial-to-mesenchymal transition (EMT) is a key contributor in the metastatic process. We previously showed the pan-deacetylase inhibitor LBH589 induces CDH1 expression in TNBC cells, suggesting regulation of EMT. The purpose of this study was to examine the effects of LBH589 on the metastatic qualities of TNBC cells and the role of EMT in this process. A panel of breast cancer cell lines (MCF-7, MDA-MB-231, and BT-549), drugged with LBH589, was examined for changes in cell morphology, migration, and invasion in vitro. The effect on in vivo metastasis was examined using immunofluorescent staining of lung sections. EMT gene expression profiling was used to determine LBH589-induced changes in TNBC cells. ZEB overexpression studies were conducted to validate requirement of ZEB in LBH589-mediated proliferation and tumorigenesis. Our results indicate a reversal of EMT by LBH589 as demonstrated by altered morphology and altered gene expression in TNBC. LBH589 was shown to be a more potent inhibitor of EMT than other HDAC inhibitors, SAHA and TMP269. Additionally, we found that LBH589 inhibits metastasis of MDA-MB-231 cells in vivo. These effects of LBH589 were mediated in part by inhibition of ZEB, as overexpression of ZEB1 or ZEB2 mitigated the effects of LBH589 on MDA-MB-231 EMT-associated gene expression, migration, invasion, CDH1 expression, and tumorigenesis. These data indicate therapeutic potential of LBH589 in targeting EMT and metastasis of TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A et al (2008) Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res 14:8010–8018

    Article  CAS  PubMed  Google Scholar 

  2. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    Article  PubMed  Google Scholar 

  3. Cleere DW (2010) Triple-negative breast cancer: a clinical update. Community Oncol 7:203–211

    Article  Google Scholar 

  4. Anders CK, Carey LA (2009) Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer 9:S73–S81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. De Laurentiis M, Cianniello D, Caputo R, Stanzione B, Arpino G, Cinieri S et al (2010) Treatment of triple negative breast cancer (TNBC): current options and future perspectives. Cancer Treat Rev 36:S80–S86

    Article  PubMed  Google Scholar 

  6. Chacon RD, Costanzo MV (2010) Triple-negative breast cancer. Breast Cancer Res 12:S3

    Article  PubMed Central  PubMed  Google Scholar 

  7. O’Driscoll L, Clynes M (2006) Biomarkers and multiple drug resistance in breast cancer. Curr Cancer Drug Targets 6:365–384

    Article  PubMed  Google Scholar 

  8. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528

    Article  CAS  PubMed  Google Scholar 

  9. Liu T, Kuljaca S, Tee A, Marshall GM (2006) Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 32:157–165

    Article  PubMed  Google Scholar 

  10. Atadja P (2009) Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges. Cancer Lett 280:233–241

    Article  CAS  PubMed  Google Scholar 

  11. Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME, Collins-Burow BM (2012) Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res 14(3):R79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Guarino M, Rubino B, Ballabio G (2007) The role of epithelial mesenchymal transition in cancer pathology. Pathology 39:305–318

    Article  CAS  PubMed  Google Scholar 

  13. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  CAS  PubMed  Google Scholar 

  14. Schmalhofer O, Brabletz S, Brabletz T (2009) E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28:151–166

    Article  CAS  PubMed  Google Scholar 

  15. Berx G, Raspe E, Christofori G, Thiery JP, Sleeman JP (2007) Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis 24:587–597

    Article  CAS  PubMed  Google Scholar 

  16. Kong D, Li Y, Wang Z, Sarkar FH (2011) Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers 3:716–729

    Article  PubMed Central  PubMed  Google Scholar 

  17. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M et al (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24:2375–2385

    Article  CAS  PubMed  Google Scholar 

  18. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278

    Article  CAS  PubMed  Google Scholar 

  19. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rhodes LV, Muir SE, Elliott S, Guillot LM, Antoon JW, Penfornis P et al (2010) Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Res Treat 121:293–300

    Article  CAS  PubMed  Google Scholar 

  21. Zhou C, Zhong Q, Rhodes LV, Townley I, Bratton MR, Zhang Q et al (2012) Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration. Breast Cancer Res 14(2):R45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Marsden CG, Wright MJ, Carrier L, Moroz K, Pochampally R, Rowan BG (2012) A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies. BMC Cancer 12:10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cowin P, Rowlands TM, Hatsell SJ (2005) Cadherins and catenins in breast cancer. Curr Opin Cell Biol 17(5):499–508

    Article  CAS  PubMed  Google Scholar 

  24. Nozato M, Kaneko S, Nakagawara A, Komuro H (2013) Epithelial–mesenchymal transition-related gene expression as a new prognostic marker for neuroblastoma. Int J Oncol 42(1):134–140

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Feng MY, Wang K, Shi QT, Yu XW, Geng JS (2009) Gene expression profiling in TWIST-depleted gastric cancer cells. Anat Rec 292(2):262–270

    Article  CAS  Google Scholar 

  26. Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M et al (2008) Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 68(7):2391–2399

    Article  CAS  PubMed  Google Scholar 

  27. Naik MU, Naik TU, Suckow AT, Duncan MK, Naik UP (2008) Attenuation of junctional adhesion molecule-A is a contributing factor for breast cancer cell invasion. Cancer Res 68(7):2194–2203

    Article  CAS  PubMed  Google Scholar 

  28. Abuharbeid S, Czubayko F, Aigner A (2006) The fibroblast growth factor-binding protein FGF-BP. Int J Biochem Cell Biol 38(9):1463–1468

    Article  CAS  PubMed  Google Scholar 

  29. Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M (2007) Vimentin and epithelial–mesenchymal transition in human breast cancer: observations in vitro and in vivo. Cells Tissues Organs 185(13):191–203

    Article  CAS  PubMed  Google Scholar 

  30. Loriot C, Burnichon N, Gadessaud N, Vescovo L, Amar L, Libé R et al (2012) Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. J Clin Endocrinol Metab 97(6):E954–E962

    Article  CAS  PubMed  Google Scholar 

  31. Zhou C, Nitschke AM, Xiong W, Zhang Q, Tang Y, Bloch M et al (2008) Proteomic analysis of tumor necrosis factor-alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype. Breast Cancer Res 10(6):R105

    Article  PubMed Central  PubMed  Google Scholar 

  32. Jiang Z, Wang Z, Xu Y, Wang B, Huang W, Cai S (2010) Analysis of RGS2 expression and prognostic significance in stage II and III colorectal cancer. Biosci Rep 30(6):383–390

    Article  CAS  PubMed  Google Scholar 

  33. Takada H, Wakabayashi N, Dohi O, Yasui K, Sakakura C, Mitsufuji S et al (2010) Tissue factor pathway inhibitor 2 (TFPI2) is frequently silenced by aberrant promoter hypermethylation in gastric cancer. Cancer Genet Cytogenet 197(1):16–24

    Article  CAS  PubMed  Google Scholar 

  34. Hibi K, Goto T, Shirahata A, Saito M, Kigawa G, Nemoto H et al (2011) Detection of TFPI2 methylation in the serum of gastric cancer patients. Anticancer Res 31(11):3835–3838

    CAS  PubMed  Google Scholar 

  35. Huang H, Sossey-Alaoui K, Beachy SH, Geradts J (2007) The tetraspanin superfamily member NET-6 is a new tumor suppressor gene. J Cancer Res Clin Oncol 133(10):761–769

    Article  CAS  PubMed  Google Scholar 

  36. Huang H, Groth J, Sossey-Alaoui K, Hawthorn L, Beall S, Geradts J (2005) Aberrant expression of novel and previously described cell membrane markers in human breast cancer cell lines and tumors. Clin Cancer Res 11(12):4357–4364

    Article  CAS  PubMed  Google Scholar 

  37. Vincan E, Swain RK, Brabletz T, Steinbeisser H (2007) Frizzled7 dictates embryonic morphogenesis: implications for colorectal cancer progression. Front Biosci 12:4558–4567

    Article  CAS  PubMed  Google Scholar 

  38. Morioka K, Tanikawa C, Ochi K, Daigo Y, Katagiri T, Kawano H et al (2009) Orphan receptor tyrosine kinase ROR2 as a potential therapeutic target for osteosarcoma. Cancer Sci 100(7):1227–1233

    Article  CAS  PubMed  Google Scholar 

  39. Bradley EW, Drissi MH (2011) Wnt5b regulates mesenchymal cell aggregation and chondrocyte differentiation through the planar cell polarity pathway. J Cell Physiol 226(6):1683–1693

    Article  CAS  PubMed  Google Scholar 

  40. Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H et al (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res 33(20):6566–6578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Weigelt B, Petersen JL, van‘t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  CAS  PubMed  Google Scholar 

  42. Scully OJ, Bay BH, Yip G, Yu Y (2012) Breast cancer metastasis. Cancer Genomics Proteomics 9:311–320

    CAS  PubMed  Google Scholar 

  43. Wang F, Qi Y, Li X, He W, Fan QX, Zong H (2013) HDAC inhibitor trichostatin A suppresses esophageal squamous cell carcinoma metastasis through HADC2 reduced MMP-2/9. Clin Invest Med 36(2):E87–E94

    CAS  PubMed  Google Scholar 

  44. Shan Z, Feng-Nian R, Jie G, Ting Z (2012) Effects of valproic acid on proliferation, apoptosis, angiogenesis and metastasis of ovarian cancer in vitro and in vivo. Asian Pac J Cancer Prev 13(8):3977–3982

    Article  PubMed  Google Scholar 

  45. Lin KT, Wang YW, Chen CT, Ho CM, Su WH, Jou YS (2012) HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res 18(17):4691–4701

    Article  CAS  PubMed  Google Scholar 

  46. Jiang GM, Wang HS, Zhang F, Zhang KS, Liu ZC, Fang R et al (2013) Histone deacetylase inhibitor induction of epithelial–mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochim Biophys Acta 1833(3):663–671

    Article  CAS  PubMed  Google Scholar 

  47. Kong D, Ahmad A, Bao B, Li Y, Banerjee S, Sarkar FH (2012) Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One 7(9):e45045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wang Y, Shang Y (2013) Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis. Exp Cell Res 319(2):160–169

    Article  CAS  PubMed  Google Scholar 

  49. Fortunati N, Marano F, Bandino A, Frairia R, Catalano MG, Boccuzzi G (2014) The pan-histone deacetylase inhibitor LBH589 (panobinostat) alters the invasive breast cancer cell phenotype. Int J Oncol 44(3):700–708

    PubMed  Google Scholar 

  50. Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn CO, Heidecke CD et al (2012) Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61(3):439–448

    Article  CAS  PubMed  Google Scholar 

  51. Kakihana M, Ohira T, Chan D, Webster RB, Kato H, Drabkin HA et al (2009) Induction of E-cadherin in lung cancer and interaction with growth suppression by histone deacetylase inhibition. J Thorac Oncol 4(12):1455–1465

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by: The Department of Defense Breast Cancer Research Program BC085426 (BM Collins-Burow); The National Institutes of Health/National Center for Research Resources P20RR020152 (BM Collins-Burow) and CA125806 (ME Burow); The National Science Foundation CMMI-1200201/1200247 (DB Chrisey). The funders did not have any involvement in study design; the collection, analysis, or interpretation of the data; the writing of the manuscript; or the decision to submit the manuscript for publication.

Ethical Standards

The authors declare that all experiments reported in this publication were performed in compliance with all current laws and regulations of the United States of America.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bridgette M. Collins-Burow.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhodes, L.V., Tate, C.R., Segar, H.C. et al. Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators. Breast Cancer Res Treat 145, 593–604 (2014). https://doi.org/10.1007/s10549-014-2979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-2979-6

Keywords

Navigation