Skip to main content

Advertisement

Log in

Cyclooxygenase-2 expression in primary breast cancers predicts dissemination of cancer cells to the bone marrow

  • Clinical Trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose Cyclooxygenase-2 (COX2) plays a role in breast cancer progression at various stages starting from pre-malignant phenotype to clinical metastasis. Breast cancer metastasizes commonly to the bone and preclinical studies suggest an involvement of COX2 in this process. Detection of disseminated tumor cells in the bone marrow of patients at the time of surgery correlates with the subsequent development of clinical bone metastasis. Therefore, to investigate whether COX2 is important for breast cancer metastasis in humans, we analyzed COX2 protein expression by immunostaining of primary tumors from 112 operable stages I, II, or III patients and determined its correlation with bone marrow micrometastasis (BMM). Methods We detected COX2 protein in primary tumors by immunostaining with a monoclonal antibody, and tumor cells present in the bone marrow by immunostaining for epithelial cytokeratins and by morphological criteria. Results COX2 expression in primary breast cancer correlated with BMM in a highly statistically significant manner (P = 0.006). Our statistical analyses of correlations of the COX2 positivity in primary tumor with other clinically relevant indicators revealed that COX2 positivity correlates with high nuclear grade (P = 0.0004). Furthermore, we were able to detect COX2 protein in BMM by immunostaining. Conclusions These studies indicate that COX2 produced in primary breast cancer cells may be vital to the initial development of BMM that may subsequently lead to osteolytic bone metastases in patients with breast cancer, and that COX2 inhibitors may be useful in halting this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Braun S, Vogl FD, Naume B, Janni W, Osborne MP et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802. doi:10.1056/NEJMoa050434

    Article  PubMed  CAS  Google Scholar 

  2. Slade MJ, Singh A, Smith BM, Tripuraneni G, Hall E et al (2005) Persistence of bone marrow micrometastases in patients receiving adjuvant therapy for breast cancer: results at 4 years. Int J Cancer 114:94–100. doi:10.1002/ijc.20655

    Article  PubMed  CAS  Google Scholar 

  3. Wiedswang G, Borgen E, Schirmer C, Karesen R, Kvalheim G et al (2006) Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int J Cancer 118:2013–2019. doi:10.1002/ijc.21576

    Article  PubMed  CAS  Google Scholar 

  4. Wolfle U, Muller V, Pantel K (2006) Disseminated tumor cells in breast cancer: detection, characterization and clinical relevance. Future Oncol 2:553–561. doi:10.2217/14796694.2.4.553

    Article  PubMed  Google Scholar 

  5. Lacroix M (2006) Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer 13:1033–1067. doi:10.1677/ERC-06-0001

    Article  PubMed  CAS  Google Scholar 

  6. Fidler IJ, Kim SJ, Langley RR (2007) The role of the organ microenvironment in the biology and therapy of cancer metastasis. J Cell Biochem 101:927–936. doi:10.1002/jcb.21148

    Article  PubMed  CAS  Google Scholar 

  7. Cristofanilli M, Broglio KR, Guarneri V, Jackson S, Fritsche HA et al (2007) Circulating tumor cells in metastatic breast cancer: biologic staging beyond tumor burden. Clin Breast Cancer 7:471–479

    Article  PubMed  Google Scholar 

  8. Singh B, Lucci A (2002) Role of cyclooxygenase-2 in breast cancer. J Surg Res 108:173–179. doi:10.1006/jsre.2002.6532

    Article  PubMed  CAS  Google Scholar 

  9. Howe LR, Dannenberg AJ (2003) COX-2 inhibitors for the prevention of breast cancer. J Mammary Gland Biol Neoplasia 8:31–43. doi:10.1023/A:1025731204719

    Article  PubMed  Google Scholar 

  10. Wang D, Dubois RN (2004) Cyclooxygenase-2: a potential target in breast cancer. Semin Oncol 31:64–73. doi:10.1053/j.seminoncol.2004.01.008

    Article  PubMed  CAS  Google Scholar 

  11. Singh B, Berry JA, Shoher A, Ayers GD, Wei C et al (2007) COX-2 involvement in breast cancer metastasis to bone. Oncogene 26:3789–3796. doi:10.1038/sj.onc.1210154

    Article  PubMed  CAS  Google Scholar 

  12. Singh B, Berry JA, Shoher A, Ramakrishnan V, Lucci A (2005) COX-2 overexpression increases motility and invasion of breast cancer cells. Int J Oncol 26:1393–1399

    PubMed  CAS  Google Scholar 

  13. Singh B, Berry JA, Vincent LE, Lucci A (2006) Involvement of IL-8 in COX-2-mediated bone metastases from breast cancer. J Surg Res 134:44–51. doi:10.1016/j.jss.2006.03.018

    Article  PubMed  CAS  Google Scholar 

  14. Singh B, Berry JA, Shoher A, Lucci A (2006) COX-2 induces IL-11 production in human breast cancer cells. J Surg Res 131:267–275. doi:10.1016/j.jss.2005.11.582

    Article  PubMed  CAS  Google Scholar 

  15. Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y et al (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32:1–7. doi:10.1016/S8756-3282(02)00915-8

    Article  PubMed  CAS  Google Scholar 

  16. Morgan H, Tumber A, Hill PA (2004) Breast cancer cells induce osteoclast formation by stimulating host IL-11 production and downregulating granulocyte/macrophage colony-stimulating factor. Int J Cancer 109:653–660. doi:10.1002/ijc.20056

    Article  PubMed  CAS  Google Scholar 

  17. Hanavadi S, Martin TA, Watkins G, Mansel RE, Jiang WG (2006) Expression of interleukin 11 and its receptor and their prognostic value in human breast cancer. Ann Surg Oncol 13:802–808. doi:10.1245/ASO.2006.05.028

    Article  PubMed  Google Scholar 

  18. Bendre MS, Margulies AG, Walser B, Akel NS, Bhattacharrya S et al (2005) Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappa B ligand pathway. Cancer Res 65:11001–11009. doi:10.1158/0008-5472.CAN-05-2630

    Article  PubMed  CAS  Google Scholar 

  19. Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E et al (2004) Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 10:7157–7162. doi:10.1158/1078-0432.CCR-04-0812

    Article  PubMed  CAS  Google Scholar 

  20. Roche-Nagle G, Connolly EM, Eng M, Bouchier-Hayes DJ, Harmey JH (2004) Antimetastatic activity of a cyclooxygenase-2 inhibitor. Br J Cancer 91:359–365

    PubMed  CAS  Google Scholar 

  21. Macchetti AH, Marana HR, Silva JS, de Andrade JM, Ribeiro-Silva A et al (2006) Tumor-infiltrating CD4+ T lymphocytes in early breast cancer reflect lymph node involvement. Clinics 61:203–208

    PubMed  Google Scholar 

  22. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246. doi:10.1158/0008-5472.CAN-06-1278

    Article  PubMed  CAS  Google Scholar 

  23. Faour WH, He Y, He QW, de Ladurantaye M, Quintero M et al (2001) Prostaglandin E(2) regulates the level and stability of cyclooxygenase-2 mRNA through activation of p38 mitogen-activated protein kinase in interleukin-1 beta-treated human synovial fibroblasts. J Biol Chem 276:31720–31731. doi:10.1074/jbc.M104036200

    Article  PubMed  CAS  Google Scholar 

  24. Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ (2002) Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem 277:18649–18657. doi:10.1074/jbc.M111415200

    Article  PubMed  CAS  Google Scholar 

  25. Wang SC, Lien HC, Xia W, Chen IF, Lo HW et al (2004) Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 6:251–261. doi:10.1016/j.ccr.2004.07.012

    Article  PubMed  CAS  Google Scholar 

  26. Schmitz KJ, Callies R, Wohlschlaeger J, Kimmig R, Otterbach F et al (2006) Overexpression of cyclo-oxygenase-2 is an independent predictor of unfavourable outcome in node-negative breast cancer, but is not associated with protein kinase B (Akt) and mitogen-activated protein kinase (ERK1/2, p38) activation or with Her-2/neu signalling pathways. J Clin Pathol 59:685–691. doi:10.1136/jcp. 2005.030650

    Article  PubMed  CAS  Google Scholar 

  27. Wiedswang G, Naess AB, Naume B, Karesen R (2001) Micrometastasis to axillary lymph nodes and bone marrow in breast cancer patients. Breast 10:237–242. doi:10.1054/brst.2000.0245

    Article  PubMed  CAS  Google Scholar 

  28. Ristimaki A, Sivula A, Lundin J, Lundin M, Salminen T et al (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62:632–635

    PubMed  CAS  Google Scholar 

  29. Ranger GS, Thomas V, Jewell A, Mokbel K (2004) Elevated cyclooxygenase-2 expression correlates with distant metastases in breast cancer. Anticancer Res 24:2349–2351

    PubMed  CAS  Google Scholar 

  30. Zerkowski MP, Camp RL, Burtness BA, Rimm DL, Chung GG (2007) Quantitative analysis of breast cancer tissue microarrays shows high cox-2 expression is associated with poor outcome. Cancer Invest 25:19–26. doi:10.1080/07357900601128825

    Article  PubMed  CAS  Google Scholar 

  31. Singh B, Vincent L, Berry JA, Multani AS, Lucci A (2007) Cyclooxygenase-2 expression induces genomic instability in MCF10A breast epithelial cells. J Surg Res 140:220–226. doi:10.1016/j.jss.2007.01.039

    Article  PubMed  CAS  Google Scholar 

  32. Singh B, Cook KR, Vincent L, Hall CS, Berry JA, Multani AS et al (2008) Cyclooxygenase-2 induces genomic instability, BLC2 expression, doxorubicin resistance, and altered cancer-inhibiting cell phenotype in MCF7 breast cancer cells. J Surg Res 147:240–246. doi:10.1016/j.jss.2008.02.026

    Article  PubMed  CAS  Google Scholar 

  33. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524. doi:10.1038/nature03799

    Article  PubMed  CAS  Google Scholar 

  34. Balic M, Lin H, Young L, Hawes D, Giuliano A et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621. doi:10.1158/1078-0432.CCR-06-0169

    Article  PubMed  CAS  Google Scholar 

  35. Liou JY, Ellent DP, Lee S, Goldsby J, Ko BS et al (2007) Cyclooxygenase-2-derived prostaglandin E2 protects mouse embryonic stem cells from apoptosis. Stem Cells 25:1096–1103. doi:10.1634/stemcells.2006-0505

    Article  PubMed  CAS  Google Scholar 

  36. Hee Kim Y, Jae Han H (2008) High glucose-induced prostaglandin E2 and peroxisome proliferator-activated receptor omega promotes mouse embryonic stem cells proliferation. Stem Cells 26:745–755. doi:10.1634/stemcells.2007-0786

    Article  CAS  Google Scholar 

  37. Bozionellou V, Mavroudis D, Perraki M, Papadopoulos S, Apostolaki S et al (2004) Trastuzumab administration can effectively target chemotherapy-resistant cytokeratin-19 messenger RNA-positive tumor cells in the peripheral blood and bone marrow of patients with breast cancer. Clin Cancer Res 10:8185–8194. doi:10.1158/1078-0432.CCR-03-0094

    Article  PubMed  CAS  Google Scholar 

  38. Kimmel SE, Berlin JA, Reilly M, Jaskowiak J, Kishel L et al (2005) Patients exposed to rofecoxib and celecoxib have different odds of nonfatal myocardial infarction. Ann Intern Med 142:157–164

    PubMed  CAS  Google Scholar 

  39. McGettigan P, Henry D (2006) Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA 296:1633–1644. doi:10.1001/jama.296.13.jrv60011

    Article  PubMed  CAS  Google Scholar 

  40. Wu JM, Fackler MJ, Halushka MK, Molavi DW, Taylor ME et al (2008) Heterogeneity of breast cancer metastases: comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin Cancer Res 14:1938–1946. doi:10.1158/1078-0432.CCR-07-4082

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported in part by the grants DK067682 (AL) and CA16672 (Core) from the National Institutes of Health and DAMD17-03-1-0669 (AL) from the United States Army Medical Research and Material Command. We thank Gabriel Hortobagyi for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Lucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucci, A., Krishnamurthy, S., Singh, B. et al. Cyclooxygenase-2 expression in primary breast cancers predicts dissemination of cancer cells to the bone marrow. Breast Cancer Res Treat 117, 61–68 (2009). https://doi.org/10.1007/s10549-008-0135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0135-x

Keywords

Navigation