Skip to main content

Advertisement

Log in

Calmodulin modulates Akt activity in human breast cancer cell lines

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Growth factor-induced activation of Akt occurs in the majority of human breast cancer cell lines resulting in a variety of cellular outcomes, including suppression of apoptosis and enhanced survival. We demonstrate that epidermal growth factor (EGF)-initiated activation of Akt is mediated by the ubiquitous calcium sensing molecule, calmodulin, in the majority of human breast cancer cell lines. Specifically, in estrogen receptor (ER)-negative, but not ER-positive, breast cancer cells, Akt activation is abolished by treatment with the calmodulin antagonist, W-7. Suppression of calmodulin expression by siRNAs against all three calmodulin genes in c-Myc-overexpressing mouse mammary carcinoma cells results in significant inhibition of EGF-induced Akt activation. Additionally, transient expression of constitutively active Akt (Myr-Akt) can overcome W-7-mediated suppression of Akt activation. These results confirm the involvement of calmodulin in the Akt pathway. The calmodulin independence of EGF-initiated Akt signaling in some cells was not explained by calmodulin expression level. Additionally, it was not explained by ER status or activation, since removal of estrogen and ablation of the ER did not convert the ER-positive, W-7 insensitive, MCF-7 cell line to calmodulin dependent signaling. However, forced overexpression of either epidermal growth factor receptor (EGFR) or ErbB2 did partially restore calmodulin dependent EGF-stimulated Akt activation. This is consistent with observation that W-7 sensitive cells tend to be estrogen independent and express high levels of EGFR family members. In an attempt to address how calmodulin is regulating Akt activity, we looked at localization of fluorescently tagged Akt and calmodulin in MCF-7 and SK-BR-3 cells. We found that both Akt and calmodulin translocate to the membrane after EGF-stimulation, and this translocation to the same sub-cellular compartment is inhibited by the calmodulin inhibitor W-7. Thus, calmodulin may be regulating Akt activity by modulating its sub-cellular location and is a novel target in the poor prognosis, ER-negative subset of breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868. doi:10.1016/S0092-8674(00)80595-4

    Article  PubMed  CAS  Google Scholar 

  2. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789. doi:10.1038/378785a0

    Article  PubMed  CAS  Google Scholar 

  3. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927. doi:10.1101/gad.13.22.2905

    Article  PubMed  CAS  Google Scholar 

  4. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241. doi:10.1016/S0092-8674(00)80405-5

    Article  PubMed  CAS  Google Scholar 

  5. Feng J, Tamaskovic R, Yang Z, Brazil DP, Merlo A, Hess D et al (2004) Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem 279:35510–35517. doi:10.1074/jbc.M404936200

    Article  PubMed  CAS  Google Scholar 

  6. Kennedy SG, Kandel ES, Cross TK, Hay N (1999) Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 19:5800–5810

    PubMed  CAS  Google Scholar 

  7. Dillon RL, White DE, Muller WJ (2007) The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene 26:1338–1345. doi:10.1038/sj.onc.1210202

    Article  PubMed  CAS  Google Scholar 

  8. Clark AS, West K, Streicher S, Dennis PA (2002) Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 1:707–717

    PubMed  CAS  Google Scholar 

  9. Perez-Tenorio G, Stal O (2002) Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Br J Cancer 86:540–545. doi:10.1038/sj.bjc.6600126

    Article  PubMed  CAS  Google Scholar 

  10. Yano S, Tokumitsu H, Soderling TR (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396:584–587. doi:10.1038/25147

    Article  PubMed  CAS  Google Scholar 

  11. DeLorenzo RJ (1981) The calmodulin hypothesis of neurotransmission. Cell Calcium 2:365–385. doi:10.1016/0143-4160(81)90026-9

    Article  PubMed  CAS  Google Scholar 

  12. Hidaka H, Sasaki Y, Tanaka T, Endo T, Ohno S, Fujii Y et al (1981) N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci USA 78:4354–4357. doi:10.1073/pnas.78.7.4354

    Article  PubMed  CAS  Google Scholar 

  13. Jurado LA, Chockalingam PS, Jarrett HW (1999) Apocalmodulin. Physiol Rev 79:661–682

    PubMed  CAS  Google Scholar 

  14. Egea J, Espinet C, Soler RM, Dolcet X, Yuste VJ, Encinas M et al (2001) Neuronal survival induced by neurotrophins requires calmodulin. J Cell Biol 154:585–597. doi:10.1083/jcb.200101023

    Article  PubMed  CAS  Google Scholar 

  15. Ramljak D, Coticchia CM, Nishanian TG, Saji M, Ringel MD, Conzen SD et al (2003) Epidermal growth factor inhibition of c-Myc-mediated apoptosis through Akt and Erk involves Bcl-xL upregulation in mammary epithelial cells. Exp Cell Res 287:397–410. doi:10.1016/S0014-4827(03)00135-6

    Article  PubMed  CAS  Google Scholar 

  16. Ichikawa J, Furuya K, Miyata S, Nakashima T, Kiyohara T (2000) EGF enhances Ca(2+) mobilization and capacitative Ca(2+) entry in mouse mammary epithelial cells. Cell Biochem Funct 18:215–225. doi:10.1002/1099-0844(200009)18:3≤215::AID-CBF875≥3.0.CO;2-S

    Google Scholar 

  17. Ichikawa J, Kiyohara T (2001) Suppression of EGF-induced cell proliferation by the blockade of Ca2+ mobilization and capacitative Ca2+ entry in mouse mammary epithelial cells. Cell Biochem Funct 19:213–219. doi:10.1002/cbf.914

    Article  PubMed  CAS  Google Scholar 

  18. Krishnaraju K, Murugesan K, Vij U, Kapur BM, Farooq A (1991) Calmodulin levels in oestrogen receptor positive and negative human breast tumours. Br J Cancer 63:346–347

    PubMed  CAS  Google Scholar 

  19. Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI et al (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 99:6967–6972. doi:10.1073/pnas.102172399

    Article  PubMed  CAS  Google Scholar 

  20. Deb TB, Coticchia CM, Dickson RB (2004) Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells. J Biol Chem 279:38903–38911. doi:10.1074/jbc.M405314200

    Article  PubMed  CAS  Google Scholar 

  21. Miller DL, El-Ashry D, Cheville AL, Liu Y, McLeskey SW, Kern FG (1994) Emergence of MCF-7 cells overexpressing a transfected epidermal growth factor receptor (EGFR) under estrogen-depleted conditions: evidence for a role of EGFR in breast cancer growth and progression. Cell Growth Differ 5:1263–1274

    PubMed  CAS  Google Scholar 

  22. Liu Y, El-Ashry D, Chen D, Ding IY, Kern FG (1995) MCF-7 breast cancer cells overexpressing transfected c-erbB-2 have an in vitro growth advantage in estrogen-depleted conditions and reduced estrogen-dependence and tamoxifen-sensitivity in vivo. Breast Cancer Res Treat 34:97–117. doi:10.1007/BF00665783

    Article  PubMed  CAS  Google Scholar 

  23. Wang X, Seed B (2003) A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res 31:e154. doi:10.1093/nar/gng154

    Article  PubMed  CAS  Google Scholar 

  24. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527. doi:10.1016/j.ccr.2006.10.008

    Article  PubMed  CAS  Google Scholar 

  25. Ross DT, Perou CM (2001) A comparison of gene expression signatures from breast tumors and breast tissue derived cell lines. Dis Markers 17:99–109

    PubMed  CAS  Google Scholar 

  26. Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83:249–289. doi:10.1023/B:BREA.0000014042.54925.cc

    Article  PubMed  CAS  Google Scholar 

  27. Thompson EW, Martin MB, Saceda M, Clarke R, Brunner N, Lippman ME et al (1989) Regulation of breast cancer cells by hormones and growth factors: effects on proliferation and basement membrane invasiveness. Horm Res 32(Suppl 1):242–249

    Article  PubMed  Google Scholar 

  28. Fischer R, Koller M, Flura M, Mathews S, Strehler-Page MA, Krebs J et al (1988) Multiple divergent mRNAs code for a single human calmodulin. J Biol Chem 263:17055–17062

    PubMed  CAS  Google Scholar 

  29. Hollestelle A, Elstrodt F, Nagel JH, Kallemeijn WW, Schutte M (2007) Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. Mol Cancer Res 5:195–201. doi:10.1158/1541-7786.MCR-06-0263

    Article  PubMed  CAS  Google Scholar 

  30. Lee YR, Park J, Yu HN, Kim JS, Youn HJ, Jung SH (2005) Up-regulation of PI3 K/Akt signaling by 17beta-estradiol through activation of estrogen receptor-alpha, but not estrogen receptor-beta, and stimulates cell growth in breast cancer cells. Biochem Biophys Res Commun 336:1221–1226. doi:10.1016/j.bbrc.2005.08.256

    Article  PubMed  CAS  Google Scholar 

  31. Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, Lu YY et al (2001) Phosphatidylinositol-3-OH Kinase (PI3 K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res 61:5985–5991

    PubMed  CAS  Google Scholar 

  32. Palfi A, Vizi S, Gulya K (1999) Differential distribution and intracellular targeting of mRNAs corresponding to the three calmodulin genes in rat brain. A quantitative in situ hybridization study. J Histochem Cytochem 47:583–600

    PubMed  CAS  Google Scholar 

  33. Toutenhoofd SL, Strehler EE (2000) The calmodulin multigene family as a unique case of genetic redundancy: multiple levels of regulation to provide spatial and temporal control of calmodulin pools? Cell Calcium 28:83–96. doi:10.1054/ceca.2000.0136

    Article  PubMed  CAS  Google Scholar 

  34. Toutenhoofd SL, Strehler EE (2002) Regulation of calmodulin mRNAs in differentiating human IMR-32 neuroblastoma cells. Biochim Biophys Acta 1600:95–104

    PubMed  CAS  Google Scholar 

  35. Ginestier C, Cervera N, Finetti P, Esteyries S, Esterni B, Adelaide J et al (2006) Prognosis and gene expression profiling of 20q13-amplified breast cancers. Clin Cancer Res 12:4533–4544. doi:10.1158/1078-0432.CCR-05-2339

    Article  PubMed  CAS  Google Scholar 

  36. Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A et al (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61:5979–5984

    PubMed  CAS  Google Scholar 

  37. Gruvberger SK, Ringner M, Eden P, Borg A, Ferno M, Peterson C et al (2003) Expression profiling to predict outcome in breast cancer: the influence of sample selection. Breast Cancer Res 5:23–26. doi:10.1186/bcr548

    Article  PubMed  CAS  Google Scholar 

  38. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A et al (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9:121–132. doi:10.1016/j.ccr.2006.01.013

    Article  PubMed  CAS  Google Scholar 

  39. Davidson NE, Gelmann EP, Lippman ME, Dickson RB (1987) Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol 1:216–223

    Article  PubMed  CAS  Google Scholar 

  40. Filmus J, Pollak MN, Cailleau R, Buick RN (1985) MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF. Biochem Biophys Res Commun 128:898–905

    Article  PubMed  CAS  Google Scholar 

  41. Rae JM, Scheys JO, Clark KM, Chadwick RB, Kiefer MC, Lippman ME (2004) EGFR and EGFRvIII expression in primary breast cancer and cell lines. Breast Cancer Res Treat 87:87–95. doi:10.1023/B:BREA.0000041585.26734.f9

    Article  PubMed  CAS  Google Scholar 

  42. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. doi:10.1073/pnas.191367098

    Article  PubMed  CAS  Google Scholar 

  43. Creighton CJ, Hilger AM, Murthy S, Rae JM, Chinnaiyan AM, El-Ashry D (2006) Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res 66:3903–3911. doi:10.1158/0008-5472.CAN-05-4363

    Article  PubMed  CAS  Google Scholar 

  44. Oh AS, Lorant LA, Holloway JN, Miller DL, Kern FG, El-Ashry D (2001) Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells. Mol Endocrinol 15:1344–1359. doi:10.1210/me.15.8.1344

    Article  PubMed  CAS  Google Scholar 

  45. Sabnis GJ, Jelovac D, Long B, Brodie A (2005) The role of growth factor receptor pathways in human breast cancer cells adapted to long-term estrogen deprivation. Cancer Res 65:3903–3910. doi:10.1158/0008-5472.CAN-04-4092

    Article  PubMed  CAS  Google Scholar 

  46. Nicholson RI, Hutcheson IR, Britton D, Knowlden JM, Jones HE, Harper ME et al (2005) Growth factor signalling networks in breast cancer and resistance to endocrine agents: new therapeutic strategies. J Steroid Biochem Mol Biol 93:257–262. doi:10.1016/j.jsbmb.2004.12.006

    Article  PubMed  CAS  Google Scholar 

  47. Riggins RB, Thomas KS, Ta HQ, Wen J, Davis RJ, Schuh NR et al (2006) Physical and functional interactions between Cas and c-Src induce tamoxifen resistance of breast cancer cells through pathways involving epidermal growth factor receptor and signal transducer and activator of transcription 5b. Cancer Res 66:7007–7015. doi:10.1158/0008-5472.CAN-05-3952

    Article  PubMed  CAS  Google Scholar 

  48. Shen X, Valencia CA, Szostak JW, Dong B, Liu R (2005) Scanning the human proteome for calmodulin-binding proteins. Proc Natl Acad Sci USA 102:5969–5974. doi:10.1073/pnas.0407928102

    Article  PubMed  CAS  Google Scholar 

  49. Dong B, Valencia CA, Liu R (2007) Ca2+/calmodulin directly interacts with the pleckstrin homology domain of AKT1. J Biol Chem 282:25131–25140. doi:10.1074/jbc.M702123200

    Article  PubMed  CAS  Google Scholar 

  50. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448:439–444. doi:10.1038/nature05933

    Article  PubMed  CAS  Google Scholar 

  51. Kakiuchi S, Sobue K, Fujita M (1981) Purification of a 240 000 Mr calmodulin-binding protein from a microsomal fraction of brain. FEBS Lett 132:144–148. doi:10.1016/0014-5793(81)80449-8

    Article  PubMed  CAS  Google Scholar 

  52. Kakiuchi S, Yamazaki R, Teshima Y, Uenishi K, Yasuda S, Kashiba A et al (1978) Membrane-bound protein modulator and phosphodiesterase. Adv Cyclic Nucleotide Res 9:253–263

    PubMed  CAS  Google Scholar 

  53. Strobl JS, Peterson VA (1992) Tamoxifen-resistant human breast cancer cell growth: inhibition by thioridazine, pimozide and the calmodulin antagonist, W-13. J Pharmacol Exp Ther 263:186–193

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of our colleague, Dr. Robert B. Dickson, who passed away before submission of this manuscript. We thank Dr. Dorraya El-Ashry and Dr. Francis G. Kern for the use of the MCE5, MB7 and MB8 cell lines. Assistance from LCCC Tissue Culture Share Resource is gratefully acknowledged (NIH 4P30CA51008). This work was supported in part by National Institutes of Health Grant 2RO1AG014963 and United States Department of Defense Grant DAMD 17-01-1-0251 (to R.B.D.). C.M.C. was supported by a predoctoral training grant from the United States Department of Defense (DAMD 17-01-1-0246). T.B.D. was partly supported by an NIH Specialized Program of Research Excellence (SPORE) grant in breast cancer to Lombardi Comprehensive Cancer Center (2P50CA58185) and by United States Department of Defense postdoctoral training grant DAMD 17-00-1-0271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coticchia, C.M., Revankar, C.M., Deb, T.B. et al. Calmodulin modulates Akt activity in human breast cancer cell lines. Breast Cancer Res Treat 115, 545–560 (2009). https://doi.org/10.1007/s10549-008-0097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0097-z

Keywords

Navigation