Skip to main content

Advertisement

Log in

Tumor-derived CCL5 does not contribute to breast cancer progression

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Besides functioning as a chemotactic factor, CCL5 has been associated with progression of disease in women with breast cancer, immune modulation and metastasis. Here we asked whether CCL5 produced by tumor cells contributed to growth or metastasis of breast cancer. For this purpose, we used two murine mammary carcinomas, the 4T1 tumor which is metastatic and constitutively expresses CCL5, and the 168 tumor which is not metastatic and does not constitutively express CCL5. RNA interference was used to inhibit CCL5 expression from the 4T1 tumor, and a CCL5 transgene was used to express CCL5 by the 168 tumor. Six different clones of 4T1 that exhibited stable reduction in CCL5 expression, and three different clones of 168 that exhibited stable CCL5 expression were compared to the parental tumors and vector transfected controls. Significantly, in both models, tumor-derived CCL5 expression did not correlate with MHC expression, growth rate, or metastatic ability of the tumors. These results show that tumor-derived CCL5 expression alone does not make a significant contribution to breast cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schall TJ, Jongstra J, Dyer BJ, Jorgensen J, Clayberger C, Davis MM, Krensky AM (1988) A human T cell-specific molecule is a member of a new gene family. J Immunol 141:1018–1025

    PubMed  CAS  Google Scholar 

  2. Schall TJ, Bacon K, Toy KJ, Goeddel DV (1990) Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347:669–671

    Article  PubMed  CAS  Google Scholar 

  3. Roth SJ, Carr MW, Springer TA (1995) C–C chemokines, but not the C–X–C chemokines interleukin-8 and interferon-gamma inducible protein-10, stimulate transendothelial chemotaxis of T lymphocytes. Eur J Immunol 25:3482–3488

    Article  PubMed  CAS  Google Scholar 

  4. de la Rosa G, Longo N, Rodriguez-Fernandez JL, Puig-Kroger A, Pineda A, Corbi AL, Sanchez-Mateos P (2003) Migration of human blood dendritic cells across endothelial cell monolayers: adhesion molecules and chemokines involved in subset-specific transmigration. J Leukoc Biol 73:639–649

    Article  Google Scholar 

  5. Taub DD, Sayers TJ, Carter CR, Ortaldo JR (1995) Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis. J Immunol 155:3877–3888

    PubMed  CAS  Google Scholar 

  6. Kameyoshi Y, Dorschner A, Mallet AI, Christophers E, Schroder JM (1992) Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med 176:587–592

    Article  PubMed  CAS  Google Scholar 

  7. Conti P, Pang X, Boucher W, Letourneau R, Reale M, Barbacane RC, Thibault J, Theoharides TC (1997) RANTES is a pro-inflammatory chemokine and chemoattracts basophil cells to extravascular sites. J Pathol 183:352–358

    Article  PubMed  CAS  Google Scholar 

  8. Appay V, Dunbar PR, Cerundolo V, McMichael A, Czaplewski L, Rowland-Jones S (2000) RANTES activates antigen-specific cytotoxic T lymphocytes in a mitogen-like manner through cell surface aggregation. Int Immunol 12:1173–1182

    Article  PubMed  CAS  Google Scholar 

  9. Cridge TJ, Horowitz KM, Marinucci MN, Rose KM, Wells M, Werner MT, Kurt RA (2006) Functional and molecular alterations in T cells induced by CCL5. Immunol Invest 35:115–132

    Article  PubMed  CAS  Google Scholar 

  10. Bandeira-Melo C, Phoofolo M, Weller PF (2001) Extranuclear lipid bodies, elicited by CCR3-mediated signaling pathways, are the sites of chemokine-enhanced leukotriene C4 production in eosinophils and basophils. J Biol Chem 276:22779–22787

    Article  PubMed  CAS  Google Scholar 

  11. Locati M, Deuschle U, Massardi ML, Martinez FO, Sironi M, Sozzani S, Bartfai T, Mantovani A (2002) Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J Immunol 168:3557–3562

    PubMed  CAS  Google Scholar 

  12. Yao TC, Kuo ML, See LC, Ou LS, Lee WI, Chan CK, Huang JL (2006) RANTES and monocyte chemoattractant protein 1 as sensitive markers of disease activity in patients with juvenile rheumatoid arthritis: a six-year longitudinal study. Arthritis Rheum 54:2585–2593

    Article  PubMed  CAS  Google Scholar 

  13. Stanczyk J, Kowalski ML, Grzegorczyk J, Szkudlinska B, Jarzebska M, Marciniak M, Synder M (2005) RANTES and chemotactic activity in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Mediators Inflamm 2005:343–348

    Article  PubMed  Google Scholar 

  14. McCormack G, Moriarty D, O’Donoghue DP, McCormick PA, Sheahan K, Baird AW (2001) Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm Res 50:491–495

    Article  PubMed  CAS  Google Scholar 

  15. Ben-Baruch A (2006) Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16:38–52

    Article  PubMed  CAS  Google Scholar 

  16. Mrowietz U, Schwenk U, Maune S, Bartels J, Kupper M, Fichtner I, Schroder JM, Schadendorf D (1999) The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice. Br J Cancer 79:1025–1031

    Article  PubMed  CAS  Google Scholar 

  17. Moran CJ, Arenberg DA, Huang CC, Giordano TJ, Thomas DG, Misek DE, Chen G, Iannettoni MD, Orringer MB, Hanash S, Beer DG (2002) RANTES expression is a predictor of survival in stage I lung adenocarcinoma. Clin Cancer Res 8:3803–3812

    PubMed  CAS  Google Scholar 

  18. Vaday GG, Peehl DM, Kadam PA, Lawrence DM (2006) Expression of CCL5 (RANTES) and CCR5 in prostate cancer. The Prostate 66:124–134

    Article  PubMed  CAS  Google Scholar 

  19. Monti P, Marchesi F, Reni M, Mercalli A, Sordi V, Zerbi A, Balzano G, Di Carlo V, Allavena P, Piemonti L (2004) A comprehensive in vitro characterization of pancreatic ductal carcinoma cell line biological behavior and its correlation with the structural and genetic profile. Virchows Arch 445:236–247

    Article  PubMed  CAS  Google Scholar 

  20. Luboshits G, Shina S, Kaplan O, Engelberg S, Nass D, Lifshitz-Mercer B, Chaitchik S, Keydar I, Ben-Baruch A (1999) Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 59:4681–4687

    PubMed  CAS  Google Scholar 

  21. Niwa Y, Akamatsu H, Niwa H, Sumi H, Ozaki Y, Abe A (2001) Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clin Cancer Res 7:285–289

    PubMed  CAS  Google Scholar 

  22. Yaal-Hahoshen N, Shina S, Leider-Trejo L, Barnea I, Shabtai EL, Azenshtein E, Greenberg I, Keydar I, Ben-Baruch A (2006) The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clin Cancer Res 12:4474–4480

    Article  PubMed  CAS  Google Scholar 

  23. Robinson SC, Scott KA, Balkwill FR (2002) Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur J Immunol 32:404–412

    Article  PubMed  CAS  Google Scholar 

  24. Kurt RA, Baher A, Wisner KP, Tackitt S, Urba WJ (2001) Chemokine receptor desensitization in tumor-bearing mice. Cell Immunol 207:81–88

    Article  PubMed  CAS  Google Scholar 

  25. Kurt RA, Bauck M, Harma S, Adler E, Vitiello P, Wisner KP, Tackitt S, Urba WJ (2003) Altered chemokine receptor sensitivity in FVBN202 rat neu transgenic mice. Breast Cancer Res Treat 77:225–232

    Article  PubMed  CAS  Google Scholar 

  26. Aslakson CL, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    PubMed  CAS  Google Scholar 

  27. Miller FR, Miller BE, Heppner GH (1983) Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability. Invasion Met 3:22–31

    CAS  Google Scholar 

  28. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  PubMed  CAS  Google Scholar 

  29. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  30. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  PubMed  CAS  Google Scholar 

  31. Eissa SAL, Zaki SA, El-Maghraby SM, Kadry DY (2005) Importance of serum IL-18 and RANTES as markers for breast carcinoma progression. J Egypt Natl Canc Inst 17:51–55

    PubMed  Google Scholar 

  32. Ali S, Kaur J, Patel KD (2000) Intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and regulated on activation normal T cell expressed and secreted are expressed by human breast carcinoma cells and support eosinophil adhesion and activation. Am J Pathol 157:313–321

    PubMed  CAS  Google Scholar 

  33. Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, Wigler N, Keydar I, Ben-Baruch A (2002) The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res 62:1093–1102

    PubMed  CAS  Google Scholar 

  34. Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AEI, Balkwill FR (2003) A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res 63:8360–8365

    PubMed  CAS  Google Scholar 

  35. Adler EP, Lemken CA, Katchen NS, Kurt RA (2003) A dual role for tumor-derived RANTES (CCL5). Immunol Lett 90:187–194

    Article  PubMed  CAS  Google Scholar 

  36. Stormes KA, Lemken CA, Lepre JV, Marinucci MN, Kurt RA (2005) Inhibition of metastasis by inhibition of tumor-derived CCL5. Breast Cancer Res Treat 89:209–212

    Article  PubMed  CAS  Google Scholar 

  37. Azenshtein E, Meshel T, Shina S, Barak N, Keydar I, Ben-Baruch A (2005) The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors. Cancer Lett 217:73–86

    Article  PubMed  CAS  Google Scholar 

  38. Shahrara S, Park CC, Temkin V, Jarvis JW, Volin MV, Pope RM (2006) RANTES modulates TLR4-induced cytokine secretion in human peripheral blood monocytes. J Immunol 177:5077–5087

    PubMed  CAS  Google Scholar 

  39. Appay V, Rowland-Jones SL (2001) RANTES: a versatile and controversial chemokine. Trends Immunol 22:83–87

    Article  PubMed  CAS  Google Scholar 

  40. Bottazzi B, Polentarutti N, Acero R, Balsari A, Boraschi D, Ghezzi P, Salmona M, Mantovani A (1983) Regulation of the macrophage content of neoplasms by chemoattractants. Science 220:210–212

    Article  PubMed  CAS  Google Scholar 

  41. Bottazzi B, Colotta F, Sica A, Nobili N, Mantovani A (1990) A chemoattractant expressed in human sarcoma cells (tumor-derived chemotactic factor, TDCF) is identical to monocyte chemoattractant protein-1/monocyte chemotactic and activating factor (MCP-1/MCAF). Int J Cancer 45:795–797

    Article  PubMed  CAS  Google Scholar 

  42. Vitiello PF, Shainheit MG, Allison EM, Adler EP, Kurt RA (2004) Impact of tumor-derived CCL2 on T cell effector function. Immunol Lett 91:239–245

    Article  PubMed  CAS  Google Scholar 

  43. Brault MS, Kurt RA (2005) Impact of tumor-derived CCL2 on macrophage effector function. J Biomed Biotech 1:37–43

    Article  Google Scholar 

  44. Westby M, van der Ryst E (2005) CCR5 antagonists: host-targeted antivirals for the treatment of HIV infection. Antivir Chem Chemother 16:339–354

    PubMed  CAS  Google Scholar 

  45. Baba M, Takashima K, Miyake H, Kanzaki N, Teshima K, Wang X, Shiraishi M, Iizawa Y (2005) TAK-652 inhibits CCR5-mediated human immunodeficiency virus type 1 infection in vitro and has favorable pharmacokinetics in humans. Antimicrob Agents Chemother 49:4584–4591

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Institutes of Health R15 CA111539-01 (to R. A. K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Kurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayasinghe, M.M., Golden, J.M., Nair, P. et al. Tumor-derived CCL5 does not contribute to breast cancer progression. Breast Cancer Res Treat 111, 511–521 (2008). https://doi.org/10.1007/s10549-007-9802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9802-6

Keywords

Navigation