Skip to main content
Log in

The functions and regulations of DAPK in cancer metastasis

  • The Universe of DAPK
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Metastasis is responsible for most cancer deaths but it remains a poorly understood process. Recent evidence has emerged that death-associated protein kinase (DAPK) is a candidate of metastasis suppressor. DAPK downregulation or inactivation has been observed in a number of metastatic cancers through epigenetic, transcriptional, post-transcriptional, or post-translational mechanism. In certain cases, DAPK downregulation correlates with metastatic recurrence. Animal studies further show that DAPK impedes both early-stage and late-stage metastatic process, which suggests that DAPK possesses multiple mechanisms to suppress metastasis. Cell-based studies revealed that DAPK mediates several types of cell death, including apoptosis, autophagic death and necrosis, depending on death stimuli and cell context. DAPK also regulates cytoskeleton proteins to mediate death-associated cell morphological alterations and to inhibit cell motility. Besides tumor cells, DAPK can influence on stromal cells to regulate their survival and functions. These effects likely all contribute to the metastasis suppressive role of DAPK. The detail molecular mechanisms of these anti-metastatic effects of DAPK are reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CRC:

Colorectal carcinoma

DAPK:

Death-associated protein kinase

miRNA:

MicroRNA

MK:

Megakaryocyte

MLCII:

Regulatory light chain of myosin II

References

  1. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564

    Article  CAS  PubMed  Google Scholar 

  2. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  CAS  PubMed  Google Scholar 

  3. Deiss LP, Feinstein E, Berissi H et al (1995) Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 9:15–30

    Article  CAS  PubMed  Google Scholar 

  4. Inbal B, Cohen O, Polak-Charcon S et al (1997) DAP kinase links the control of apoptosis to metastasis. Nature 390:180–184

    Article  CAS  PubMed  Google Scholar 

  5. Chen HY, Lin YM, Chung HC et al (2012) miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 72:3631–3641

    Article  CAS  PubMed  Google Scholar 

  6. Harden SV, Tokumaru Y, Westra WH et al (2003) Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res 9:1370–1375

    CAS  PubMed  Google Scholar 

  7. Tang X, Khuri FR, Lee JJ et al (2000) Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J Natl Cancer Inst 92:1511–1516

    Article  CAS  PubMed  Google Scholar 

  8. Hu S, Liu D, Tufano RP et al (2006) Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. Int J Cancer 119:2322–2329

    Article  CAS  PubMed  Google Scholar 

  9. Chan AW, Chan MW, Lee TL et al (2005) Promoter hypermethylation of Death-associated protein-kinase gene associated with advance stage gastric cancer. Oncol Rep 13:937–941

    CAS  PubMed  Google Scholar 

  10. Hu SL, Kong XY, Cheng ZD et al (2010) Promoter methylation of p16, Runx3, DAPK and CHFR genes is frequent in gastric carcinoma. Tumori 96:726–733

    CAS  PubMed  Google Scholar 

  11. Sanchez-Cespedes M, Esteller M, Wu L et al (2000) Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res 60:892–895

    CAS  PubMed  Google Scholar 

  12. Catto JW, Azzouzi AR, Rehman I et al (2005) Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J Clin Oncol 23:2903–2910

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto H, Nagao M, Ogawa S et al (2003) Prognostic significance of death-associated protein-kinase expression in hepatocellular carcinomas. Anticancer Res 23:1333–1341

    CAS  PubMed  Google Scholar 

  14. Simpson DJ, Clayton RN, Farrell WE (2002) Preferential loss of Death Associated Protein kinase expression in invasive pituitary tumours is associated with either CpG island methylation or homozygous deletion. Oncogene 21:1217–1224

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez-Gomez P, Bello MJ, Alonso ME et al (2003) Frequent death-associated protein-kinase promoter hypermethylation in brain metastases of solid tumors. Oncol Rep 10:1031–1033

    CAS  PubMed  Google Scholar 

  16. Zhai J, Yang X, Zhang Y et al (2013) Reduced expression levels of the death-associated protein kinase and E-cadherin are correlated with the development of esophageal squamous cell carcinoma. Exp Ther Med 5:972–976

    PubMed Central  PubMed  Google Scholar 

  17. Bialik S, Kimchi A (2004) DAP-kinase as a target for drug design in cancer and diseases associated with accelerated cell death. Semin Cancer Biol 14:283–294

    Article  CAS  PubMed  Google Scholar 

  18. Gozuacik D, Kimchi A (2006) DAPk protein family and cancer. Autophagy 2:74–79

    CAS  PubMed  Google Scholar 

  19. Martello G, Rosato A, Ferrari F et al (2010) A microRNA targeting dicer for metastasis control. Cell 141:1195–1207

    Article  CAS  PubMed  Google Scholar 

  20. Chen Z, Lai TC, Jan YH et al (2013) Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J Clin Invest 123:1057–1067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kulshreshtha R, Ferracin M, Wojcik SE et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lee YR, Yuan WC, Ho HC et al (2010) The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. EMBO J 29:1748–1761

    Article  CAS  PubMed  Google Scholar 

  23. Yuan WC, Lee YR, Huang SF et al (2011) A Cullin3-KLHL20 ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression. Cancer Cell 20:214–228

    Article  CAS  PubMed  Google Scholar 

  24. Gade P, Roy SK, Li H et al (2008) Critical role for transcription factor C/EBP-beta in regulating the expression of death-associated protein kinase 1. Mol Cell Biol 28:2528–2548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li H, Gade P, Nallar SC et al (2008) The Med1 subunit of transcriptional mediator plays a central role in regulating CCAAT/enhancer-binding protein-beta-driven transcription in response to interferon-gamma. J Biol Chem 283:13077–13086

    Article  CAS  PubMed  Google Scholar 

  26. Gade P, Singh AK, Roy SK et al (2009) Down-regulation of the transcriptional mediator subunit Med1 contributes to the loss of expression of metastasis-associated dapk1 in human cancers and cancer cells. Int J Cancer 125:1566–1574

    Article  CAS  PubMed  Google Scholar 

  27. Kawaguchi K, Oda Y, Saito T et al (2004) Death-associated protein kinase (DAP kinase) alteration in soft tissue leiomyosarcoma: promoter methylation or homozygous deletion is associated with a loss of DAP kinase expression. Hum Pathol 35:1266–1271

    Article  CAS  PubMed  Google Scholar 

  28. Raveh T, Kimchi A (2001) DAP kinase-a proapoptotic gene that functions as a tumor suppressor. Exp Cell Res 264:185–192

    Article  CAS  PubMed  Google Scholar 

  29. Wang WJ, Kuo JC, Ku W et al (2007) The tumor suppressor DAPK is reciprocally regulated by tyrosine kinase Src and phosphatase LAR. Mol Cell 27:701–716

    Article  PubMed  Google Scholar 

  30. Bialik S, Kimchi A (2006) The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75:189–210

    Article  CAS  PubMed  Google Scholar 

  31. Bialik S, Kimchi A (2010) Lethal weapons: DAP-kinase, autophagy and cell death: DAP-kinase regulates autophagy. Curr Opin Cell Biol 22:199–205

    Article  CAS  PubMed  Google Scholar 

  32. Raveh T, Droguett G, Horwitz MS et al (2001) DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3:1–7

    Article  CAS  PubMed  Google Scholar 

  33. Wang WJ, Kuo JC, Yao CC et al (2002) DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J Cell Biol 159:169–179

    Article  CAS  PubMed  Google Scholar 

  34. Martoriati A, Doumont G, Alcalay M et al (2005) dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene 24:1461–1466

    Article  CAS  PubMed  Google Scholar 

  35. Ilic D, Almeida EA, Schlaepfer DD et al (1998) Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol 143:547–560

    Article  CAS  PubMed  Google Scholar 

  36. Chen CH, Wang WJ, Kuo JC et al (2005) Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J 24:294–304

    Article  CAS  PubMed  Google Scholar 

  37. Zalckvar E, Berissi H, Eisenstein M et al (2009) Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5:720–722

    Article  CAS  PubMed  Google Scholar 

  38. Zalckvar E, Berissi H, Mizrachy L et al (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10:285–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Eisenberg-Lerner A, Kimchi A (2007) DAP kinase regulates JNK signaling by binding and activating protein kinase D under oxidative stress. Cell Death Differ 14:1908–1915

    Article  CAS  PubMed  Google Scholar 

  40. Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev 29:351–378

    Article  CAS  PubMed  Google Scholar 

  41. Kuo JC, Wang WJ, Yao CC et al (2006) The tumor suppressor DAPK inhibits cell motility by blocking the integrin-mediated polarity pathway. J Cell Biol 172:619–631

    Article  CAS  PubMed  Google Scholar 

  42. Tadokoro S, Shattil SJ, Eto K et al (2003) Talin binding to integrin beta tails: a final common step in integrin activation. Science 302:103–106

    Article  CAS  PubMed  Google Scholar 

  43. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  CAS  PubMed  Google Scholar 

  44. Cohen O, Feinstein E, Kimchi A (1997) DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 16:998–1008

    Article  CAS  PubMed  Google Scholar 

  45. Bialik S, Bresnick AR, Kimchi A (2004) DAP-kinase-mediated morphological changes are localization dependent and involve myosin-II phosphorylation. Cell Death Differ 11:631–644

    CAS  PubMed  Google Scholar 

  46. Kuo JC, Lin JR, Staddon JM et al (2003) Uncoordinated regulation of stress fibers and focal adhesions by DAP kinase. J Cell Sci 116:4777–4790

    Article  CAS  PubMed  Google Scholar 

  47. Tan JL, Ravid S, Spudich JA (1992) Control of nonmuscle myosins by phosphorylation. Annu Rev Biochem 61:721–759

    Article  CAS  PubMed  Google Scholar 

  48. Harrison B, Kraus M, Burch L et al (2008) DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 283:9999–10014

    Article  CAS  PubMed  Google Scholar 

  49. Ivanovska J, Tregubova A, Mahadevan V et al (2013) Identification of DAPK as a scaffold protein for the LIMK/cofilin complex in TNF-induced apoptosis. Int J Biochem Cell Biol 45:1720–1729

    Article  CAS  PubMed  Google Scholar 

  50. Arber S, Barbayannis FA, Hanser H et al (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809

    Article  CAS  PubMed  Google Scholar 

  51. Yang N, Higuchi O, Ohashi K et al (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812

    Article  CAS  PubMed  Google Scholar 

  52. Wiggan O, Shaw AE, DeLuca JG et al (2012) ADF/cofilin regulates actomyosin assembly through competitive inhibition of myosin II binding to F-actin. Dev Cell 22:530–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Llambi F, Causeret F, Bloch-Gallego E et al (2001) Netrin-1 acts as a survival factor via its receptors UNC5H and DCC. EMBO J 20:2715–2722

    Article  CAS  PubMed  Google Scholar 

  54. Llambi F, Lourenco FC, Gozuacik D et al (2005) The dependence receptor UNC5H2 mediates apoptosis through DAP-kinase. EMBO J 24:1192–1201

    Article  CAS  PubMed  Google Scholar 

  55. Shohat G, Spivak-Kroizman T, Cohen O et al (2001) The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. J Biol Chem 276:47460–47467

    Article  CAS  PubMed  Google Scholar 

  56. Castets M, Coissieux MM, Delloye-Bourgeois C et al (2009) Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis. Dev Cell 16:614–620

    Article  CAS  PubMed  Google Scholar 

  57. Guenebeaud C, Goldschneider D, Castets M et al (2010) The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol Cell 40:863–876

    Article  CAS  PubMed  Google Scholar 

  58. Delloye-Bourgeois C, Brambilla E, Coissieux MM et al (2009) Interference with netrin-1 and tumor cell death in non-small cell lung cancer. J Natl Cancer Inst 101:237–247

    Article  CAS  PubMed  Google Scholar 

  59. Fitamant J, Guenebeaud C, Coissieux MM et al (2008) Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci USA 105:4850–4855

    Article  CAS  PubMed  Google Scholar 

  60. Li X, Koh AJ, Wang Z et al (2011) Inhibitory effects of megakaryocytic cells in prostate cancer skeletal metastasis. J Bone Miner Res 26:125–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Council Frontier Grant 101-2321-B-001-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-Hwa Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HY., Lee, YR. & Chen, RH. The functions and regulations of DAPK in cancer metastasis. Apoptosis 19, 364–370 (2014). https://doi.org/10.1007/s10495-013-0923-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0923-6

Keywords

Navigation