Skip to main content
Log in

Lysophosphatidic acid (LPA) and angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Lysophosphatidic acid (LPA) is a simple lipid with many important biological functions such as the regulation of cellular proliferation, cellular migration, differentiation, and suppression of apoptosis. Although a direct angiogenic effect of LPA has not been reported to date, there are indications that LPA promotes angiogenesis. In addition, LPA is a chemoattractant for cultured endothelial cells and promotes barrier function in such cultures [1]. To test the hypothesis that LPA is angiogenic, we used the chicken chorio-allantoic membrane (CAM) assay. Sequence analysis of the cloned, full-length chicken LPA receptor cDNAs revealed three receptor types that are orthologous to the mammalian LPA1, LPA2, and LPA3 receptors. We document herein that LPA is angiogenic in the CAM system and further that synthetic LPA receptor agonists and antagonists mimic or block this response, respectively. Our results predict that LPA receptor antagonists are a possible therapeutic route to interdicting angiogenesis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. English D, Kovala AT, Welch Z, Harvey KA, Siddiqui RA, Brindley DN, Garcia JG (1999) Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by LPA, potential mediators of hematopoietic angiogenesis. J Hematother Stem Cell Res 8(6):627–634

    Article  PubMed  CAS  Google Scholar 

  2. Duriex ME, Lynch KR (1993) Signaling properties of lysophosphatidic acid. Trends Pharmacol Sci 14:249–254

    Article  Google Scholar 

  3. Goodemote KA, Mattie ME, Berger A, Spiegel S (1995) Involvement of a pertussis toxin-sensitive G protein in the mitogenic signaling pathways of sphingosine–1-phosphate. J Biol Chem 270:10272–10277

    Article  PubMed  CAS  Google Scholar 

  4. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

  5. Postma FR, Jalink K, Hengeveld T, Moolenar WH (1996) Sphingosine-1-phosphate rapidly induces rho-dependent neurite retraction: action through a specific cell surface receptor. EMBO J 15:2388–2395

    PubMed  CAS  Google Scholar 

  6. Noguchi K, Ishii S, Shimizu T (2003) Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 278:25600–25606

    Article  PubMed  CAS  Google Scholar 

  7. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281:23589–23597

    Article  PubMed  CAS  Google Scholar 

  8. Van Koppen CJ, Heringdorf DMZ, Laser KT, Zhang CY, Jakobs KH, Bunemann M, Pott L (1996) Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine 1-phosphate. J Biol Chem 271:2082–2087

    Article  PubMed  Google Scholar 

  9. Fromm C, Coso OA, Montaner S, Xu N, Gutkind JS (1997) The small GTP-binding protein Rho links G protein-coupled receptors and Galpha 12 to the serum response element and to cellular transformation. Proc Natl Acad Sci USA 94:10098–10103

    Article  PubMed  CAS  Google Scholar 

  10. Ghosh S, Strum JC, Bell RM (1997) Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J 11:45–50

    PubMed  CAS  Google Scholar 

  11. Bian D, Su S, Mahanivong C, Cheng RK, Han Q, Pan ZK, Sun P, Huang S (2004) Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras-MEK kinase 1 pathway. Cancer Res 64:4209–4217

    Article  PubMed  CAS  Google Scholar 

  12. Contos JJ, Ishii I, Fukushima N, Kingsbury MA, Ye X, Kawamura S, Brown JH, Chun J (2002) Characterization of lpa2 (Edg4) and lpa1/lpa2 (Edg4/Edg2) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa2. Mol Cell Biol 22:6921–6929

    Article  PubMed  CAS  Google Scholar 

  13. Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK, Suzuki H, Amano T, Kennedy G, Arai H, Aoki J, Chun J (2005) LPA3-mediated lysophosphatidic acid signaling in embryo implantation and spacing. Nature 435:104–108

    Article  PubMed  CAS  Google Scholar 

  14. Baker DL, Desiderio DM, Miller DD, Tolley B, Tigyi GJ (2001) Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal Biochem 292:287–295

    Article  PubMed  CAS  Google Scholar 

  15. Saulnier-Blache JS, Girard A, Simon MF, Lafontan M, Valet P (2000) A simple and highly sensitive radioenzymatic assay for lysophosphatidic acid quantification. J Lipid Res 41:1947–1951

    PubMed  CAS  Google Scholar 

  16. Pages C, Simon MF, Valet P, Saulnier-Blache JS (2001) Lysophosphatidic acid synthesis and release. Prostaglandins Other Lipid Mediat 64:1–10

    Article  PubMed  CAS  Google Scholar 

  17. Saba JD (2004) Lysophospholipids in development: miles apart and edging in. J Cell Biochem 92:967–992

    Article  PubMed  CAS  Google Scholar 

  18. Lee H, Goetzl EJ, An S (2000) Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. Am J Physiol Cell Physiol 278:C612–C618

    PubMed  CAS  Google Scholar 

  19. English D, Kovala AT, Welch Z, Harvey KA, Siddiqui RA, Brindley DN, Garcia JG (1999) Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. J Hematother Stem Cell Res 8(6):627–634

    Article  PubMed  CAS  Google Scholar 

  20. Wu WT, Chen CN, Lin CI, Chen JH, Lee H (2005) Lysophospholipids enhance matrix metalloproteinase-2 expression in human endothelial cells. Endocrinology 146:3387–3400

    Article  PubMed  CAS  Google Scholar 

  21. Nam SW, Clair T, Kim YS, McMarlin A, Schiffmann E, Liotta LA, Stracke ML (2001) Autotaxin (NPP–2), a metastasis-enhancing mitogen, is an angiogenic factor. Cancer Res 61:6938–6944

    PubMed  CAS  Google Scholar 

  22. van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, van Rooijen MA, Pradere JP, Pettit TR, Wakelam MJO, Saulnier-Blache JS, Mummery CL, Moolenaar WH, Jonkers J (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26(13):5015–5022

    Article  PubMed  Google Scholar 

  23. Sabbadini RA (2006) Targeting sphingosine-1-phosphate for cancer therapy. Br J Cancer 95:1131–1135

    Article  PubMed  CAS  Google Scholar 

  24. Heasley BH, Jarosz R, Lynch KR, Macdonald TL (2004) Initial structure-activity relationships of lysophosphatidic acid receptor antagonist: discovery of a high-affinity LPA1/LPA3 receptor antagonist. Bioorg Med Chem Lett 14:2735–2740

    Article  PubMed  CAS  Google Scholar 

  25. Hasegawa Y, Erickson JR, Goddard GJ, Yu S, Liu S, Cheng KW, Eder A, Bandoh K, Aoki J, Jarosz R, Schrier AD, Lynch KR, Mills GB, Fang X (2003) Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J Biol Chem 278:11962–11969

    Article  PubMed  CAS  Google Scholar 

  26. Lee S, Lynch KR (2005) Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA). Biochem J 391:317–323

    Article  PubMed  CAS  Google Scholar 

  27. van Meeteren LA, Frederiks F, Giepmans BN, Pedrosa MF, Billington SJ, Jost BH, Tambourgi DV, Moolenaar WH (2004) Spider and bacterial sphingomyelinases D target cellular lysophosphatidic acid receptors by hydrolyzing lysophosphatidylcholine. J Biol Chem 279(12):10833–10836

    Article  PubMed  Google Scholar 

  28. Goetzl EJ, An S (1998) Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J 12:1589–1598

    PubMed  CAS  Google Scholar 

  29. Koutrafouri V, Leondiadis L, Avgoustakis K, Livaniou E, Czarnecki J, Ithakissios DS, Evangelatos GP (2001) Effect of thymosin peptides on the chick chorioallantoic membrane angiogenesis model. Biochim Biophys Acta 1568:60–66

    PubMed  CAS  Google Scholar 

  30. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  PubMed  CAS  Google Scholar 

  31. Chen CH, Walterscheid JP (2006) Plaque angiogenesis versus compensatory arteriogenesis in atherosclerosis. Circ Res 99:787–789

    Article  PubMed  CAS  Google Scholar 

  32. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank Sangderk Lee, Ph.D. (Lynch laboratory) for providing us with helpful advice for cloning the chicken LPA receptors.

Funding sources

This work was supported by research grants from the National Institutes of Health (R01 GM052722 (KRL) and F31 HL079881 (CRL).

Disclosures

VPC32183 is sold by Avanti Polar Lipids under license from the University of Virginia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin R. Lynch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera-Lopez, C.M., Tucker, A.L. & Lynch, K.R. Lysophosphatidic acid (LPA) and angiogenesis. Angiogenesis 11, 301–310 (2008). https://doi.org/10.1007/s10456-008-9113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-008-9113-5

Keywords

Navigation