Skip to main content

Advertisement

Log in

Antiangiogenic properties of fasudil, a potent Rho-Kinase inhibitor

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Vascular endothelial growth factor (VEGF) plays a pivotal role in pathological angiogenesis. In this study, we addressed the therapeutic potential of fasudil, a potent Rho-kinase inhibitor, for VEGF-elicited angiogenesis and also for the intracellular signalings induced by VEGF.

Methods

In vitro, the inhibitory effects of fasudil on the VEGF-dependent VEGF receptor 2 (VEFGR2 or KDR), extracellular signal-related kinase (ERK) 1/2, Akt and myosin light chain (MLC) phosphorylation, as well as on the migration and proliferation of bovine retinal microvascular endothelial cells (BRECs) were analyzed with Western blotting, [3H]-thymidine uptake, and modified Boyden chamber assay. VEGF-elicited in vivo angiogenesis was analyzed with a mouse corneal micropocket assay coembedded with or without fasudil.

Results

VEGF caused enhanced MLC phosphorylation of BRECs, which was almost completely attenuated by 10μM fasudil. VEGF-dependent phosphorylation of ERK1/2 and Akt were also partially but significantly attenuated by treatment with fasudil without affecting VEGFR2 (KDR) phosphorylation. Moreover, both VEGF-induced [3H]-thymidine uptake and the migration of BRECs were significantly inhibited in the presence of fasudil. Finally, VEGF-elicited angiogenesis in the corneal micropocket assay was potently attenuated by coembedding with fasudil (P < 0.01).

Conclusions

These findings indicate that fasudil might have a therapeutic potential for ocular angiogenic diseases. The antiangiogenic effect of fasudil appears to be mediated through the blockade not only of Rho-kinase signaling but also of ERK and Akt signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 2005;25:1767–1775.

    Article  PubMed  CAS  Google Scholar 

  2. Asano T, Ikegaki I, Satoh S, et al. Mechanism of action of a novel antivasospasm drug, HA1077. J Pharmacol Exp Ther 1987;24:1033–1040.

    Google Scholar 

  3. Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997;389:990–994.

    Article  PubMed  CAS  Google Scholar 

  4. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331:1480–1487.

    Article  PubMed  CAS  Google Scholar 

  5. Hata Y, Nakagawa K, Ishibashi T, Inomata H, Ueno H, Sueishi K. Hypoxia-induced expression of vascular endothelial growth factor by retinal glial cells promotes in vitro angiogenesis. Virchows Arch 1995;426:479–486.

    Article  PubMed  CAS  Google Scholar 

  6. Bashshur ZF, Bazarbachi A, Schakal A, Haddad ZA, El Haibi CP, Noureddin BN. Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 2006;142:1–9.

    Article  PubMed  CAS  Google Scholar 

  7. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR. VEGF inhibition study in ocular neovascularization clinical trial group. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004;351:2805–2816.

    Article  PubMed  CAS  Google Scholar 

  8. Economopoulou M, Bdeir K, Cines DB, et al. Inhibition of pathologic retinal neovascularization by alpha-defensins. Blood 2005;106:3831–3838.

    Article  PubMed  CAS  Google Scholar 

  9. Konopatskaya O, Churchill AJ, Harper SJ, Bates DO, Gardiner TA. VEGF165b, an endogenous C-terminal splice variant of VEGF, inhibits retinal neovascularization in mice. Mol Vis 2006;12:626–632.

    PubMed  CAS  Google Scholar 

  10. Ojima T, Takagi H, Suzuma K, et al. Ephrin A1 inhibits vascular endothelial growth factor-induced intracellular signaling and suppresses retinal neovascularization and blood-retinal barrier breakdown. Am J Pathol 2006;168:331–339.

    Article  PubMed  CAS  Google Scholar 

  11. Shen J, Yang X, Xiao WH, Hackett SF, Sato Y, Campochiaro PA. Vasohibin is up-regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB J 2006;20:723–725.

    PubMed  CAS  Google Scholar 

  12. Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 2001;49:568–581.

    Article  PubMed  CAS  Google Scholar 

  13. van Nieuw Amerongen GP, Koolwijk P, Versteilen A, van Hinsbergh VW. Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol 2003;23:211–217.

    Article  PubMed  Google Scholar 

  14. Nakayama M, Amano M, Katsumi A, et al. Rho-kinase and myosin II activities are required for cell type and environment specific migration. Genes Cells 2005;10:107–117.

    Article  PubMed  CAS  Google Scholar 

  15. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992;70:389–399.

    Article  PubMed  CAS  Google Scholar 

  16. Sun H, Breslin JW, Zhu J, Yuan SY, Wu MH. Rho and ROCK signaling in VEGF-induced microvascular endothelial hyperpermeability. Microcirculation 2006;13:237–247.

    Article  PubMed  CAS  Google Scholar 

  17. Zeng L, Xu H, Chew TL, et al. HMG CoA reductase inhibition modulates VEGF-induced endothelial cell hyperpermeability by preventing RhoA activation and myosin regulatory light chain phosphorylation. FASEB J 2005;19:1845–1847.

    PubMed  CAS  Google Scholar 

  18. Hoang MV, Whelan MC, Senger DR. Rho activity critically and selectively regulates endothelial cell organization during angiogenesis. Proc Natl Acad Sci U S A 2004;101:1874–1879.

    Article  PubMed  CAS  Google Scholar 

  19. Hyvelin JM, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P. Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 2005;97:185–191.

    Article  PubMed  CAS  Google Scholar 

  20. Ishikura K, Yamada N, Ito M, et al. Beneficial acute effects of rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J 2006;70:174–178.

    Article  PubMed  CAS  Google Scholar 

  21. Vicari RM, Chaitman B, Keefe D, et al. Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebocontrolled, phase 2 trial. J. Am Coll Cardiol 2005;46:1803–1811.

    Article  CAS  Google Scholar 

  22. Kishi T, Hirooka Y, Masumoto A, et al. Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation 2005;111:2741–2747.

    Article  PubMed  CAS  Google Scholar 

  23. Masumoto A, Hirooka Y, Shimokawa H, Hironaga K, Setoguchi S, Takeshita A. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension 2001;38:1307–1310.

    Article  PubMed  CAS  Google Scholar 

  24. Gerber H-P, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway. J Biol Chem 1998;273:30336–30343.

    Article  PubMed  CAS  Google Scholar 

  25. Dimmeler S, Dernbach E, Zeiher AM. Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 2000;477:258–262.

    Article  PubMed  CAS  Google Scholar 

  26. Nakao S, Kuwano T, Tsutsumi-Miyahara C, et al. Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest 2005;115:2979–2991.

    Article  PubMed  CAS  Google Scholar 

  27. Noda Y, Hata Y, Hisatomi T, et al. Functional properties of hyalocytes under PDGF-rich conditions. Invest Ophthalmol Vis Sci 2004;45:2107–2114.

    Article  PubMed  Google Scholar 

  28. Cascone I, Giraudo E, Caccavari F, et al. Temporal and spatial modulation of Rho GTPases during in vitro formation of capillary vascular network. Adherens junctions and myosin light chain as targets of Rac1 and RhoA. J Biol Chem 2003;278:50702–50713.

    Article  PubMed  CAS  Google Scholar 

  29. Eliceiri BP, Klemke R, Stromblad S, Cheresh DA. Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 1998;140:1255–1263.

    Article  PubMed  CAS  Google Scholar 

  30. Mavria G, Vercoulen Y, Yeo M, et al. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell 2006;9:33–44.

    Article  PubMed  CAS  Google Scholar 

  31. Gliki G, Wheeler-Jones C, Zachary I. Vascular endothelial growth factor induces protein kinase C (PKC)-dependent Akt/PKB activation and phosphatidylinositol 3′-kinase-mediates PKC delta phosphorylation: role of PKC in angiogenesis. Cell Biol Int 2002;26:751–759.

    Article  PubMed  CAS  Google Scholar 

  32. Shimokawa H, Seto M, Katsumata N, et al. Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc Res 1999;43:1029–1039.

    Article  PubMed  CAS  Google Scholar 

  33. Wolfrum S, Dendorfer A, Rikitake Y, et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/ protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol 2004;24:1842–1847.

    Article  PubMed  CAS  Google Scholar 

  34. Hirayama K, Hata Y, Noda Y, et al. The involvement of the rho-kinase pathway and its regulation in cytokine-induced collagen gel contraction by hyalocytes. Invest Ophthalmol Vis Sci 2004;45:3896–3903.

    Article  PubMed  Google Scholar 

  35. Miura M, Hata Y, Hirayama K, et al. Critical role of the Rho-kinase pathway in TGF-beta2-dependent collagen gel contraction by retinal pigment epithelial cells. Exp Eye Res 2006;82:849–859.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Hata.

About this article

Cite this article

Hata, Y., Miura, M., Nakao, S. et al. Antiangiogenic properties of fasudil, a potent Rho-Kinase inhibitor. Jpn J Ophthalmol 52, 16–23 (2008). https://doi.org/10.1007/s10384-007-0487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-007-0487-5

Key Words

Navigation