Skip to main content

Advertisement

Log in

Human relaxin-2: historical perspectives and role in cancer biology

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

One of the most recognised and studied family of peptide hormones is the insulin superfamily. Within this family is the relaxin subfamily which comprises seven members: relaxin-1, -2 and -3 and insulin-like peptides 3, 4, 5 and 6. Besides exhibiting sequence similarities, each member exists as an active A–B heterodimer linked by three disulfide bonds. This mini-review is divided into three broad themes: an overview of all insulin superfamily members (including structural similarities); roles of each superfamily member and finally, a focus on the pleiotropic peptide hormone, human relaxin-2. In addition to promoting vasodilatory effects leading to evaluation in Phase III clinical trials for the treatment of acute heart failure, relaxin has recently been shown to be highly expressed by cancer cells, aiding in their proliferation, invasiveness and metastasis. These contrary effects of relaxin are discussed together with current efforts in the development of relaxin antagonists that may possess future therapeutic potential for the treatment of certain cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adham IM, Burkhardt E, Benahmed M (1993) Cloning of a cDNA for a novel insulin-like peptide of the testicular Leydig cells. J Biol Chem 268:26668–26672

    PubMed  CAS  Google Scholar 

  • Bani G, Bigazzi M (1984) Morphological changes induced in mouse mammary gland by porcine and human relaxin. Acta Anat 119:149–154

    Article  PubMed  CAS  Google Scholar 

  • Bani D, Masini E, Bello MG, Bigazzi M, Sacchi TB (1995) Relaxin activates the l-arginine-nitric oxide pathway in human breast cancer cells. Cancer Res 55:5272–5275

    PubMed  CAS  Google Scholar 

  • Bani D, Flagiello D, Poupon MF, Nistri S, Poirson-Birhcat F, Bigazzi M, Bani G, Sacchi TB (1999a) Relaxin promotes differentiation of human breast cancer cells MCF-7 transplanted into nude mice. Virchows Arch 435:509–519. doi:10.1007/s004280050435

    Article  PubMed  CAS  Google Scholar 

  • Bani D, Baccari MC, Nistri S, Calamai F, Bigazzi M, Sacchi TB (1999b) Relaxin up-regulates the nitric oxide biosynthetic pathway in the mouse uterus: involvement in the inhibition of myometrial contractility. Endocrinology 140:4434–4441. doi:10.1210/en.140.10.4434

    Article  PubMed  CAS  Google Scholar 

  • Barrett-Connor E, Garland C, McPhillips JB, Khaw KT, Wingard DL (1990) A prospective, population-based study of androstenedione, estrogens, and prostatic cancer. Cancer Res 50:169–173

    PubMed  CAS  Google Scholar 

  • Bathgate RAD (2006) Relaxin-3: improved synthesis strategy and demonstration of its high-affinity interaction with the relaxin receptor LGR7 both in vitro and in vivo. Biochemistry 45:1043–1053. doi:10.1021/bi052233e

    Article  PubMed  CAS  Google Scholar 

  • Bathgate R, Hsueh A, Sherwood OD (2006a) Physiology and molecular biology of the relaxin peptide family. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction, 3rd edn. Academic Press, San Diego, pp 679–768

    Chapter  Google Scholar 

  • Bathgate RAD, Ivell R, Sanborn BM, Sherwood OD, Summers RJ (2006b) International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev 58:7–31. doi:10.1124/pr.58.1.9

    Article  PubMed  CAS  Google Scholar 

  • Belgi A, Hossain MA, Shabanpoor F, Zhang S, Bathgate RAD, Tregear GW, Wade JD (2011) Structure and function relationship of murine insulin-like peptide 5 (INSL5): free C-terminus is essential for RXFP4 receptor binding and activation. Biochemistry 50:8352–8361

    Article  PubMed  CAS  Google Scholar 

  • Bellet D, Lavaissiere L, Mock P, Laurent A, Sabourin JC, Bedossa P, Le Bouteiller P, Frydman R, Troalen F, Bidart J (1997) Identification of pro-EPIL and EPIL peptides translated from insulin-like 4 (INSL4) mRNA in human placenta. J Clin Endocrinol Metab 82:3169–3172

    Article  PubMed  CAS  Google Scholar 

  • Binder C, Binder L, Gurlit L, Einspanier A (2001) High serum concentrations of relaxin correlate with dissemination of breast cancer. In: Tregear GW, Ivell R, Bathgate RA, Wade JD (eds) Relaxin 2000. Kluwer Academic Publishers, Netherlands, pp 423–432

    Google Scholar 

  • Binder C, Hagemann T, Husen B, Schulz M, Einspanier A (2002) Relaxin enhances in vitro invasiveness of breast cancer cell lines by up-regulation of matrix metalloproteases. MHR Basic Sci Reprod Med 8:789–796. doi:10.1093/molehr/8.9.789

  • Binder C, Simon A, Binder L, Hagemann T, Schulz M, Emons G, Trumper L, Einspanier A (2004) Elevated concentrations of serum relaxin are associated with metastatic disease in breast cancer patients. Breast Cancer Res Treat 87:157–166. doi:10.1023/b:brea.0000041622.30169.16

    Article  PubMed  CAS  Google Scholar 

  • Brener SHL, Schoenfeld C, Amelar RD, Dubin L, Weiss G (1984) Stimulation of human sperm cervical mucus penetration in vitro by relaxin. Fertil Steril 42:92–96

    Google Scholar 

  • Büllesbach EE, Schwabe C (2000) The relaxin receptor-binding site geometry suggests a novel gripping mode of interaction. J Biol Chem 275:35276–35280. doi:10.1074/jbc.M005728200

    Article  PubMed  Google Scholar 

  • Büllesbach EE, Schwabe C (2001) Synthesis and conformational analysis of the insulin-like 4 gene product. J Pept Res 57:77–83

    Article  PubMed  Google Scholar 

  • Büllesbach EE, Schwabe C (2002) The primary structure and the disulfide links of the bovine relaxin-like factor (RLF). Biochemistry 41:274–281. doi:10.1021/bi0117302

    Article  PubMed  Google Scholar 

  • Burger LL, Sherwood OD (1998) Relaxin increases the accumulation of new epithelial and stromal cells in the rat cervix during the second half of pregnancy. Endocrinology 139:3984–3995. doi:10.1210/en.139.9.3984

    Article  PubMed  CAS  Google Scholar 

  • Chan LJ, Hossain MA, Samuel CS, Separovic F, Wade JD (2011) The relaxin peptide family—structure, function and clinical applications. Protein Pept Lett 18:220–229

    Article  PubMed  CAS  Google Scholar 

  • Conrad KP, Novak J (2004) Emerging role of relaxin in renal and cardiovascular function. Am J Physiol Regul Integr Comp Physiol 287:250–261. doi:10.1152/ajpregu.00672.2003

    Article  Google Scholar 

  • Dschietzig T, Bartsch C, Baumann G, Stangl K (2006) Relaxin—a pleiotropic hormone and its emerging role for experimental and clinical therapeutics. Pharm Ther 112:38–56. doi:10.1016/j.pharmthera.2006.03.004

    Article  CAS  Google Scholar 

  • Eigenbrot C, Randal M, Quan C, Burnier J, O’Connell L, Rinderknecht E, Kossiakoff AA (1991) X-ray structure of human relaxin at 1.5 A. Comparison to insulin and implications for receptor binding determinants. J Mol Biol 221(1):15–21

    PubMed  CAS  Google Scholar 

  • Eppel W, Kucera E, Bielglmyer C (1999) Relationship of serum levels of endogenous relaxin to cervical size in the second trimester and to cervical ripening at term. Br J Obstet Gynaecol 106:917–923

    Article  PubMed  CAS  Google Scholar 

  • Failli P, Nistri S, Quattrone S, Mazzetti L, Bigazzi M, Sacchi TB, Bani D (2002) Relaxin up-regulates inducible nitric oxide synthase expression and nitric oxide generation in rat coronary endothelial cells. FASEB J 16:252–254

    PubMed  CAS  Google Scholar 

  • Feng S, Agoulnik A (2011) Expression of LDL-A module of relaxin receptor in prostate cancer cells inhibits tumorigenesis. Int J Oncol 39:1559–1565

    PubMed  CAS  Google Scholar 

  • Feng S, Agoulnik IU, Bogatcheva NV, Kamat AA, Kwabi-Addo B, Li R, Ayala G, Ittmann MM, Agoulnik AI (2007) Relaxin promotes prostate cancer progression. Clinical Cancer Res 13:1695–1702. doi:10.1158/1078-0432.ccr-06-2492

    Article  CAS  Google Scholar 

  • Ferlin A, Pepe A, Gianesello L, Garolla A, Feng S, Facciolli A, Morello R, Agoulnik AI, Foresta C (2009) New roles for INSL3 in adults. Ann N Y Acad Sci 1160:215–218. doi:10.1111/j.1749-6632.2008.03787.x

    Article  PubMed  CAS  Google Scholar 

  • Friedman A (2003) Remembrance: the contributions of Frederick Hisaw. J Clin Endocrinol Metab 88:524–527. doi:10.1210/jc.2002-021457

    Article  Google Scholar 

  • Gunnersen JM, Roche PJ, Tregear GW, Crawford RJ (1995) Characterization of human relaxin gene regulation in the relaxin-expressing human prostate adenocarcinoma cell line LNCaP.FGC. J Mol Endocrinol 15:153–166. doi:10.1677/jme.0.0150153

    Article  PubMed  CAS  Google Scholar 

  • Hansell DJ, Bryant-Greenwood GD, Greenwood FC (1991) Expression of the human relaxin H1 gene in the decidua, trophoblast, and prostate. J Clin Endocrinol Metab 72:899–904. doi:10.1210/jcem-72-4-899

    Article  PubMed  CAS  Google Scholar 

  • Hisaw F (1926) Experimental relaxation of the pubic ligament of the guinea pig. Proc Soc Exper Biol Med 23:661–663

    Google Scholar 

  • Hombach-Klonisch S, Bialek J, Trojanowicz B, Weber E, Holzhausen HJ, Silvertown JD, Summerlee AJ, Dralle H, Hoang-Vu C, Klonisch T (2006) Relaxin enhances the oncogenic potential of human thyroid carcinoma cells. Am J Pathol 169:617–632. doi:10.2353/ajpath.2006.050876

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Wade JD (2010) The roles of the A- and B-chains of human relaxin-2 and -3 on their biological activity. Curr Protein Pept Sci 11:719–724

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Bathgate RA, Kong C, Shabanpoor F, Zhang S, Haugaard-Jönsson LM, Rosengren KJ, Tregear GW, Wade JD (2008) Synthesis, conformation and receptor binding activity of human insulin-like peptide 5 (INSL5). ChemBioChem 9:1816–1822

    Article  CAS  Google Scholar 

  • Hossain MA, Samuel CS, Binder C, Hewitson TD, Tregear GW, Wade JD, Bathgate RAD (2010) The chemically synthesized human relaxin-2 analog, B-R13/17K H2, is an RXFP1 antagonist. Amino Acids 39:409–416. doi:10.1007/s00726-009-0454-1

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Chow BSM, Zhao C, Xu Q, Du XJ, Wade JD, Samuel CS (2011) H3 relaxin demonstrates antifibrotic properties via the RXFP1 receptor. Biochemistry 50:1368–1375. doi:10.1021/bi1013968

    Article  PubMed  CAS  Google Scholar 

  • Hsu SY (1999) Cloning of two novel mammalian paralogs of relaxin/insulin family proteins and their expression in testis and kidney. Mol Endocrinol 13:2163–2167. doi:10.1210/me.13.12.2163

    Article  PubMed  CAS  Google Scholar 

  • Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJW (2002) Activation of orphan receptors by the hormone relaxin. Science 295:671–674

    Article  PubMed  CAS  Google Scholar 

  • Hwang JJ, Shanks RD, Sherwood OD (1989) Monoclonal antibodies specific for rat relaxin. IV. Passive immunization with monoclonal antibodies during the antepartum period reduces cervical growth and extensibility, disrupts birth, and reduces pup survival in intact rats. Endocrinology 125:260–266. doi:10.1210/endo-125-1-260

    Article  PubMed  CAS  Google Scholar 

  • Ivell R, Hunt N, Khan-Dawood F, Dawood MY (1989) Expression of the human relaxin gene in the corpus luteum of the menstrual cycle and in the prostate. Mol Cellular Endocrinol 66:251–255. doi:10.1016/0303-7207(89)90037-3

    Article  CAS  Google Scholar 

  • Ivell R, Hartung S, Anand-Ivell R (2005) Insulin-like factor 3: where are we now? Ann NY Acad Sci 1041:486–496. doi:10.1196/annals.1282.073

    Article  PubMed  CAS  Google Scholar 

  • Jadeski LC, Hum KO, Chakraborty C, Lala PK (2000) Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int J Cancer 86:30–39. doi:10.1002/(sici)1097-0215(20000401)86:1<30::aid-ijc5>3.0.co;2-i

    Article  PubMed  CAS  Google Scholar 

  • Jadeski LC, Chakraborty C, Lala PK (2003) Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer 106:496. doi:10.1002/ijc.11268

    Article  PubMed  CAS  Google Scholar 

  • Johnson MR, Abdalla H, Allman AC, Wren ME, Kirkland A, Lighman SL (1991) Relaxin levels in ovum donation pregnancies. Fertil Steril 56:59–61

    PubMed  CAS  Google Scholar 

  • Kamat AA, Feng S, Agoulnik IU, Kheradmand F, Bogatcheva NV, Coffey D, Sood AK, Agoulnik AI (2006) The role of relaxin in endometrial cancer. Cancer Biol Therap 5:71–77. doi:10.4161/cbt.5.1.2289

    Article  CAS  Google Scholar 

  • Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, Toppari J, Fu P, Wade JD, Bathgate RAD, Hsueh AJ (2004) Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl Acad Sci USA 101:7323–7328. doi:10.1073/pnas.0307061101

    Article  PubMed  CAS  Google Scholar 

  • Kong RCK, Shiling PJ, Lobb DK, Gooley PR, Bathgate RAD (2010) Membrane receptors: structure and function of the relaxin family peptide receptors. Mol Cell Endocrinol 320:1–15. doi:10.1016/j.mce.2010.02.003

    Article  PubMed  CAS  Google Scholar 

  • Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, Bathgate RAD, Hsueh AJ (2002) INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem 277:31283–31286. doi:10.1074/jbc.C200398200

    Article  PubMed  CAS  Google Scholar 

  • Laurent A, Rouillac C, Delezoide AL, Giovangrandi Y, Vekemans M, Bellet D, Abitbol M, Vidaud M (1998) Insulin-like 4 (INSL4) gene expression in human embryonic and trophoblastic tissues. Mol Reprod Dev 51:123–129. doi:10.1002/(sici)1098-2795(199810)51:2<123:aid-mrd1>3.0.co2-s

    Article  PubMed  CAS  Google Scholar 

  • Liang WC, Wu X, Peale FV, Lee CV, Meng YG, Gutierrez J, Fu L, Malik AK, Gerber HP, Ferrara N, Fuh G (2006) Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem 281:951–961. doi:10.1074/jbc.M508199200

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Otvos L Jr, Kumagai J, Tregear GW, Bathgate RA, Wade JD (2004) Synthetic human insulin 4 does not activate the G-protein-coupled receptors LGR7 or LGR8. J Pept Sci 10:257–264. doi:10.1002/psc.521

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Lovenberg T (2008) Relaxin-3, INSL5, and their receptors. Orphan G protein-coupled receptors and novel neuropeptides. Results Probl Cell Differ 46:213–237. doi:10.1007/400_2007_055

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Eriste E, Sutton S (2003) Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem 278:50754–50764. doi:10.1074/jbc.M308995200

    Article  PubMed  CAS  Google Scholar 

  • Lok S, Johnston DS, Conklin D, Lofton-Day CE, Adams RL, Jelmberg AC, Whitmore TE, Schrader S, Grisworld MD, Jaspers SR (2000) Identification of INSL6, a new member of the insulin family that is expressed in the testis of the human and rat. Biol Reprod 62:1593–1599. doi:10.1095/biolreprod62.6.1593

    Google Scholar 

  • Lu CX, Walker WH, Sun J, Weisz OA, Gibbs RB, Witchel SF, Sperling MA, Menon RK (2006) Insulin-like peptide 6: characterization of secretory status and posttranslational modifications. Endocrinology 147:5611–5623. doi:10.1210/en.2006-0503

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Bathgate RAD, Zhang W-J, Liu Y-L, Shao X–X, Wade JD, Guo Z-Y (2010) Design and recombinant expression of insulin-like peptide 5 (INSL5) precursors and the preparation of mature human INSL5. Amino Acids 39:1343–1352

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Gundlach AL (2007) Relaxin-family peptide and receptor systems in brain: insights from recent anatomical and functional studies. Adv Exp Med Biol 612:119–137. doi:10.1007/978-0-387-74672-2_9

    Article  PubMed  Google Scholar 

  • McGowan BM, Stanley SA, Smith KL, White NE, Connolly MM, Thompson EL, Gardiner JV, Murphy KG, Ghatei MA, Bloom SR (2005) Central relaxin-3 administration causes hyperphagia in male Wistar rats. Endocrinology 146:3295–3300. doi:10.1210/en.2004-1532

    Article  PubMed  CAS  Google Scholar 

  • Min G, Sherwood OD (1996) Identification of specific relaxin-binding cells in the cervix, mammary glands, nipples, small intestine, and skin of pregnant pigs. Biol Reprod 55:1243–1252. doi:10.1095/biolreprod55.6.1243

    Article  PubMed  CAS  Google Scholar 

  • Montie J, Pienta K (1994) Review of the role of androgenic hormones in the epidemiology of benign prostatic hyperplasia and prostate cancer. Urology 43:892–899

    Article  PubMed  CAS  Google Scholar 

  • Nomura A, Heilbrun LK, Stemmermann GN, Judd HL (1988) Prediagnostic serum hormones and the risk of prostate cancer. Cancer Res 48:3515–3517

    PubMed  CAS  Google Scholar 

  • O’Day MB, Winn RJ, Easter RA, Dzuik PJ, Sherwood OD (1989) Hormonal control of the cervix in pregnant gilts. II. Relaxin promotes changes in the physical properties of the cervix in ovariectomized hormone-treated pregnant gilts. Endocrinology 125:3004–3010. doi:10.1210/endo-125-6-3004

    Article  PubMed  Google Scholar 

  • Park J, Chang C, Hsu S (2005) New Insights into biological roles of relaxin and relaxin-related peptides. Rev Endocr Metab Disorders 6:291–296. doi:10.1007/s11154-005-6187-x

    Article  Google Scholar 

  • Pupula M, Quinn P, Maclennan A (1986) The effect of porcine relaxin on the fertilisation of mouse oocytes in vitro. Clin Reprod Fertil 4:383–387

    PubMed  CAS  Google Scholar 

  • Sacchi TB, Bani D, Brandi ML, Falchetti A, Bigazzi M (1994) Relaxin influences growth, differentiation and cell–cell adhesion of human breast-cancer cells in culture. Int J Cancer 57:129–134. doi:10.1002/ijc.2910570123

    Article  PubMed  CAS  Google Scholar 

  • Samuel CS (2005) Relaxin: antifibrotic properties and effects in models of disease. Clin Med Res 3:241–249

    Article  PubMed  CAS  Google Scholar 

  • Samuel CS, Unemori EN, Mookerjee I, Bathgate RAD, Layfield SL, Mak J, Tregear GW, Du X-J (2004) Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145:4125–4133. doi:10.1210/en.2004-0209

    Article  PubMed  CAS  Google Scholar 

  • Samuel CS, Du XJ, Bathgate RAD, Summers RJ (2006) ‘Relaxin’ the stiffened heart and arteries: the therapeutic potential for relaxin in the treatment of cardiovascular disease. Pharm Ther 112:529–552. doi:10.1016/j.pharmthera.2005.05.012

    Article  CAS  Google Scholar 

  • Shabanpoor F, Separovic F, Wade JD (2009) The human insulin superfamily of polypeptide hormones. Vitam Horm 80:1–31. doi:10.1016/s0083-6729(08)00601-8

    Article  PubMed  CAS  Google Scholar 

  • Shabanpoor F, Hughes RA, Zhang S, Bathgate RAD, Layfield S, Hossain MA, Tregear GW, Separovic F, Wade JD (2010) Effect of helix-promoting strategies on the LGR8 receptor activity of novel analogues of the B-chain of human insulin-like peptide 3, INSL3. Amino Acids 38:121–131. doi:10.1007/s00726-008-0219-2

    Article  PubMed  CAS  Google Scholar 

  • Sherwood OD (2004) Relaxin’s physiological roles and other diverse actions. Endocr Rev 25:205–234. doi:10.1210/er.2003-0013

    Article  PubMed  CAS  Google Scholar 

  • Sherwood CD, O’Byrne EM (1974) Purification and characterization of porcine relaxin. Arch Biochem Biophys 160:185–196. doi:10.1016/s0003-9861(74)80025-1

    Article  PubMed  CAS  Google Scholar 

  • Silvertown JD, Geddes BJ, Summerlee AJ (2003) Adenovirus-mediated expression of human prorelaxin promotes the invasive potential of canine mammary cancer cells. Endocrinology 144:3683–3691. doi:10.1210/en.2003-0248

    Article  PubMed  CAS  Google Scholar 

  • Silvertown JD, Ng J, Sato T, Summerlee AJ, Medin JA (2006) H2 relaxin overexpression increases in vivo prostate xenograft tumor growth and angiogenesis. Int J Cancer 118:62–73. doi:10.1002/ijc.21288

    Article  PubMed  CAS  Google Scholar 

  • Silvertown JD, Symes JC, Neschadim A, Nonaka T, Kao JCH, Summerlee AJ, Medin JA (2007) Analog of H2 relaxin exhibits antagonistic properties and impairs prostate tumor growth. FASEB J 21:754–765. doi:10.1096/fj.06-6847com

    Article  PubMed  CAS  Google Scholar 

  • Sokol RZ, Wang XS, Lechago J, Johnston PD, Swerdloff RS (1989) Immunohistochemical localization of relaxin in human prostate. J Histochem Cytochem 37:1253–1255. doi:10.1177/37.8.2666509

    Article  PubMed  CAS  Google Scholar 

  • Teerlink JR, Metra M, Felker MG, Ponikowski P, Voors AA, Weatherley BD, Marmor A, Katz A, Grzybowski J, Unemori E, Teichman SL, Cotter G (2009) Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet 373:1429–1439. doi:10.1016/s0140-6736(09)60622-x

    Article  PubMed  CAS  Google Scholar 

  • Unemori EN, Amento EP (1990) Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts. J Biol Chem 265:10681–10685

    PubMed  CAS  Google Scholar 

  • Unemori EN, Pickford LB, Salles AL, Piercy CE, Grove BH, Erikson ME, Amento EP (1996) Relaxin induces an extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. J Clin Investig 98:2739–2745. doi:10.1172/jci119099

    Article  PubMed  CAS  Google Scholar 

  • Vinall RL, Tepper CG, Shi XB, Xue LA, Gandour-Edwards R, de Vere White RW (2006) The R273H p53 mutation can facilitate the androgen-independent growth of LNCaP by a mechanism that involves H2 relaxin and its cognate receptor LGR7. Oncogene 25:2082–2093

    Article  PubMed  CAS  Google Scholar 

  • Weiss G (1989) Relaxin in the male. Biol Reprod 40:197. doi:10.1095/biolreprod40.2.197

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson T (2005) Coevolution of the relaxin-like peptides and their receptors. Ann N Y Acad Sci 1041:534–539. doi:10.1196/annals.1282.080

    Article  PubMed  CAS  Google Scholar 

  • Willcox J, Summerlee A (2010) RLN2 and its role in cancer. In: Huret J (ed) Atlas of genetics and cytogenetics in oncology and haematology. INIST-CNRS, France, pp 1768–3262

    Google Scholar 

  • Winn RJ, Baker MD, Merle CA, Sherwood OD (1994) Individual and combined effects of relaxin, estrogen, and progesterone in ovariectomized gilts. II. Effects on mammary development. Endocrinology 135:1250–1255. doi:10.1210/en.135.3.1250

    Article  PubMed  CAS  Google Scholar 

  • Zhang W-J, Luo X, Liu Y-L, Shao X-X, Wade JD, Bathgate RAD, Guo Z-Y (2012) Site-specific DOTA/europium-labeling of the recombinant human relaxin-3 for receptor-ligand interaction. Amino Acids 43:983–992

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Kuei C, Sutton S, Kamme F, Yu J, Bonaventure P, Atack J, Lovenberg TW, Liu C (2008) Identification of the domains in RXFP4 (GPCR142) responsible for the high affinity binding and agonistic activity of INSL5 at RXFP4 compared to RXFP3 (GPCR135). Eur J Pharmacol 590:43–52. doi:10.1016/j.ejphar.2008.05.025

    Article  PubMed  CAS  Google Scholar 

  • Ziel HK (2000) Historical note Frederick L. Hisaw (1891–1972) and the discovery of relaxin. Endocrinologist 10:215218. doi:10.1097/00019616-200010040-00001

    Article  Google Scholar 

Download references

Acknowledgments

V.B.N. is a recipient of a Melbourne Research Scholarship by the University of Melbourne; C.S.S. is supported by a National Heart Foundation of Australia and National Health and Medical Research Council (NHMRC) of Australia RD Wright Fellowship; M.A.H was the recipient of Reid Trust and Florey Foundation Trust Fellowships and J.D.W is an NHMRC Principal Research Fellow. Some of the authors’ research reported in this review was supported by NHMRC Project Grants 508995 and 1023078. Research at the FNI was supported by the Victorian Government’s Operational Infrastructure Support Program.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed Akhter Hossain or John D. Wade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, V.B., Samuel, C.S., Separovic, F. et al. Human relaxin-2: historical perspectives and role in cancer biology. Amino Acids 43, 1131–1140 (2012). https://doi.org/10.1007/s00726-012-1375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1375-y

Keywords

Navigation