Skip to main content
Log in

Genetic polymorphisms in the cyclooxygenase-1 and cyclooxygenase-2 genes and risk of colorectal adenoma

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Cyclooxygenase (COX) enzymes, COX1 and COX2, are key in converting arachidonic acid (AA) into prostaglandins that have been associated with colorectal carcinogenesis. The aim of our study was to investigate associations of polymorphisms in COX genes, alone and in interaction with exposures known to be related to inflammation and AA metabolism, with risk of colorectal adenomas.

Materials and methods

In a community-, colonoscopy-based case–control study with 162 incident, sporadic colorectal adenoma cases and 211 controls, we investigated associations of two promoter polymorphisms (−842 A  > G in COX1 and −765 G > C in COX2) and two polymorphisms in the 3′-UTR of COX2 (8473 T > C and 9850 A > G) with risk of adenomas. Multiple logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) of colorectal adenoma after adjusting for potential confounders.

Results

Overall, there was no evidence for an association between any of the four polymorphisms and colorectal adenomas. However, we found a statistically significant interaction between the COX2 8473 T > C polymorphism and nonsteroidal anti-inflammatory drug (NSAIDs) use (P interaction = 0.03): The greatest reduced risk was observed for individuals with the 8473 C variant allele who also regularly used NSAIDs (OR = 0.35, 95% CI 0.16–0.75).

Conclusion

These results suggest that the C allele of COX2 8473 T > C polymorphism may interact with NSAIDs to reduce risk for colorectal adenoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Potter JD (1999) Colorectal cancer: molecules and populations. J Natl Cancer Inst 91:916–932

    Article  PubMed  CAS  Google Scholar 

  2. Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18:7908–7916

    Article  PubMed  CAS  Google Scholar 

  3. Jones R, Adel-Alvarez LA, Alvarez OR, Broaddus R, Das S (2003) Arachidonic acid and colorectal carcinogenesis. Mol Cell Biochem 253:141–149

    Article  PubMed  Google Scholar 

  4. Murakami M, Kudo I (2004) Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog Lipid Res 43:3–35

    Article  PubMed  CAS  Google Scholar 

  5. Prescott SM, Fitzpatrick FA (2000) Cyclooxygenase-2 and carcinogenesis. Biochim Biophys Acta 1470:M69–M78

    PubMed  CAS  Google Scholar 

  6. Chapple KS, Cartwright EJ, Hawcroft G et al (2000) Localization of cyclooxygenase-2 in human sporadic colorectal adenomas. Am J Pathol 156:545–553

    PubMed  CAS  Google Scholar 

  7. Maekawa M, Sugano K, Sano H et al (1998) Increased expression of cyclooxygenase-2 to -1 in human colorectal cancers and adenomas, but not in hyperplastic polyps. Jpn J Clin Oncol 28:421–426

    Article  PubMed  CAS  Google Scholar 

  8. Yoshimatsu K, Golijanin D, Paty PB et al (2001) Inducible microsomal prostaglandin E synthase is overexpressed in colorectal adenomas and cancer. Clin Cancer Res 7:3971–3976

    PubMed  CAS  Google Scholar 

  9. Sheng H, Shao J, Washington MK, DuBois RN (2001) Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem 276:18075–18081

    Article  PubMed  CAS  Google Scholar 

  10. Kawamori T, Uchiya N, Sugimura T, Wakabayashi K (2003) Enhancement of colon carcinogenesis by prostaglandin E2 administration. Carcinogenesis 24:985–990

    Article  PubMed  CAS  Google Scholar 

  11. Asano TK, McLeod RS (2004) Nonsteroidal anti-inflammatory drugs and aspirin for the prevention of colorectal adenomas and cancer: a systematic review. Dis Colon Rectum 47:665–673

    Article  PubMed  CAS  Google Scholar 

  12. Halushka MK, Walker LP, Halushka PV (2003) Genetic variation in cyclooxygenase 1: effects on response to aspirin. Clin Pharmacol Ther 73:122–130

    Article  PubMed  CAS  Google Scholar 

  13. Papafili A, Hill MR, Brull DJ et al (2002) Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol 22:1631–1636

    Article  PubMed  CAS  Google Scholar 

  14. Appleby SB, Ristimaki A, Neilson K, Narko K, Hla T (1994) Structure of the human cyclo-oxygenase-2 gene. Biochem J 302(Pt 3):723–727

    PubMed  CAS  Google Scholar 

  15. Dixon DA, Kaplan CD, McIntyre TM, Zimmerman GA, Prescott SM (2000) Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region. J Biol Chem 275:11750–11757

    Article  PubMed  CAS  Google Scholar 

  16. Gong Z, Xie D, Deng Z et al (2005) The PPAR{gamma} Pro12Ala polymorphism and risk for incident sporadic colorectal adenomas. Carcinogenesis 26:579–585

    Article  PubMed  CAS  Google Scholar 

  17. Gong Z, Hebert JR, Bostick RM et al (2007) Common polymorphisms in 5-lipoxygenase and 12-lipoxygenase genes and the risk of incident, sporadic colorectal adenoma. Cancer 109:849–857

    Article  PubMed  CAS  Google Scholar 

  18. O′Brien MJ, Winawer SJ, Zauber AG et al (1990) The National Polyp Study. Patient and polyp characteristics associated with high-grade dysplasia in colorectal adenomas. Gastroenterology 98:371–379

    PubMed  Google Scholar 

  19. Willett WC, Sampson L, Stampfer MJ et al (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122:51–65

    PubMed  CAS  Google Scholar 

  20. Pereira MA, Fitzgerald SJ, Gregg EW et al (1997) A collection of Physical Activity Questionnaires for health-related research. Med Sci Sports Exerc 29:S1–S205

    PubMed  CAS  Google Scholar 

  21. SAS Institute Inc (2004) SAS Language: Reference, Version 9.1. SAS Institute in Cary, NC. USA

  22. Khoury MJ, James LM (1993) Population and familial relative risks of disease associated with environmental factors in the presence of gene-environment interaction. Am J Epidemiol 137:1241–1250

    PubMed  CAS  Google Scholar 

  23. Agresti A (1996) An introduction to categorical data analysis. Wiley, New York

    Google Scholar 

  24. Cox DG, Pontes C, Guino E et al (2004) Polymorphisms in prostaglandin synthase 2/cyclooxygenase 2 (PTGS2/COX2) and risk of colorectal cancer. Br J Cancer 91:339–343

    PubMed  CAS  Google Scholar 

  25. Koh WP, Yuan JM, van den Berg D, Lee HP, Yu MC (2004) Interaction between cyclooxygenase-2 gene polymorphism and dietary n-6 polyunsaturated fatty acids on colon cancer risk: the Singapore Chinese Health Study. Br J Cancer 90:1760–1764

    PubMed  CAS  Google Scholar 

  26. Tan W, Wu J, Zhang X et al (2007) Associations of functional polymorphisms in cyclooxygenase-2 and platelet 12-lipoxygenase with risk of occurrence and advanced disease status of colorectal cancer. Carcinogenesis 28:1197–1201

    Article  PubMed  CAS  Google Scholar 

  27. Ueda N, Maehara Y, Tajima O, Tabata S, Wakabayashi K, Kono S (2008) Genetic polymorphisms of cyclooxygenase-2 and colorectal adenoma risk: the Self Defense Forces Health Study. Cancer Sci 99:576–581

    Article  PubMed  CAS  Google Scholar 

  28. Ulrich CM, Whitton J, Yu JH et al (2005) PTGS2 (COX-2) -765G > C promoter variant reduces risk of colorectal adenoma among nonusers of nonsteroidal anti-inflammatory drugs. Cancer Epidemiol Biomarkers Prev 14:616–619

    Article  PubMed  CAS  Google Scholar 

  29. Shen J, Gammon MD, Terry MB, Teitelbaum SL, Neugut AI, Santella RM (2006) Genetic polymorphisms in the cyclooxygenase-2 gene, use of nonsteroidal anti-inflammatory drugs, and breast cancer risk. Breast Cancer Res 8:R71

    Article  PubMed  Google Scholar 

  30. Sorensen M, Autrup H, Tjonneland A, Overvad K, Raaschou-Nielsen O (2005) A genetic polymorphism in prostaglandin synthase 2 (8473, T- > C) and the risk of lung cancer. Cancer Lett 226:49–54

    Article  PubMed  CAS  Google Scholar 

  31. Hu Z, Miao X, Ma H et al (2005) A common polymorphism in the 3′UTR of cyclooxygenase 2/prostaglandin synthase 2 gene and risk of lung cancer in a Chinese population. Lung Cancer 48:11–17

    Article  PubMed  CAS  Google Scholar 

  32. Park JM, Choi JE, Chae MH et al (2006) Relationship between cyclooxygenase 8473T > C polymorphism and the risk of lung cancer: a case-control study. BMC Cancer 6:70

    Article  PubMed  Google Scholar 

  33. Shahedi K, Lindstrom S, Zheng SL et al (2006) Genetic variation in the COX-2 gene and the association with prostate cancer risk. Int J Cancer 119:668–672

    Article  PubMed  CAS  Google Scholar 

  34. Siezen CL, Bueno-de-Mesquita HB, Peeters PH, Kram NR, van Doeselaar M, van Kranen HJ (2006) Polymorphisms in the genes involved in the arachidonic acid-pathway, fish consumption and the risk of colorectal cancer. Int J Cancer 119:297–303

    Article  PubMed  CAS  Google Scholar 

  35. Siezen CL, van Leeuwen AI, Kram NR, Luken ME, van Kranen HJ, Kampman E (2005) Colorectal adenoma risk is modified by the interplay between polymorphisms in arachidonic acid pathway genes and fish consumption. Carcinogenesis 26:449–457

    Article  PubMed  CAS  Google Scholar 

  36. Ali IU, Luke BT, Dean M, Greenwald P (2005) Allellic variants in regulatory regions of cyclooxygenase-2: association with advanced colorectal adenoma. Br J Cancer 93:953–959

    Article  PubMed  CAS  Google Scholar 

  37. Dixon DA (2004) Dysregulated post-transcriptional control of COX-2 gene expression in cancer. Curr Pharm Des 10:635–646

    Article  PubMed  CAS  Google Scholar 

  38. Wang LH, Hajibeigi A, Xu XM, Loose-Mitchell D, Wu KK (1993) Characterization of the promoter of human prostaglandin H synthase-1 gene. Biochem Biophys Res Commun 190:406–411

    Article  PubMed  CAS  Google Scholar 

  39. McEntee MF, Whelan J (2002) Dietary polyunsaturated fatty acids and colorectal neoplasia. Biomed Pharmacother 56:380–387

    Article  PubMed  CAS  Google Scholar 

  40. Whelan J, McEntee MF (2004) Dietary (n-6) PUFA and intestinal tumorigenesis. J Nutr 134:3421S–3426S

    PubMed  CAS  Google Scholar 

  41. Hebert JR, Clemow L, Pbert L, Ockene IS, Ockene JK (1995) Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int J Epidemiol 24:389–398

    Article  PubMed  CAS  Google Scholar 

  42. Kipnis V, Midthune D, Freedman LS et al (2001) Empirical evidence of correlated biases in dietary assessment instruments and its implications. Am J Epidemiol 153:394–403

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Public Health Service grant R01CA-51932 from the National Cancer Institute, the National Center for Research Resources grant RR017698 from the National Institutes of Health, Department of Health and Human Services, the American Cancer Society Research Scholar grant RSG-06-122-01-CNE, and a Georgia Cancer Coalition Distinguished Scholar award (to R. Bostick), and National Cancer Institute, Center for Research and Cancer Health Disparities grant 1 U01 CA114601-01 (to JR Hebert).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawen Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Z., Bostick, R.M., Xie, D. et al. Genetic polymorphisms in the cyclooxygenase-1 and cyclooxygenase-2 genes and risk of colorectal adenoma. Int J Colorectal Dis 24, 647–654 (2009). https://doi.org/10.1007/s00384-009-0656-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-009-0656-8

Keywords

Navigation