Skip to main content

Advertisement

Log in

Expression of fibronectin splice variants and oncofetal glycosylated fibronectin in the synovial membranes of patients with rheumatoid arthritis and osteoarthritis

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to define and compare the expression of fibronectin (Fn) isoforms in synovial tissue of patients with rheumatoid arthritis (RA) and osteoarthritis (OA).

Methods

Using monoclonal antibodies specific for total Fn, extra domain (ED)-A Fn, ED-B Fn, and oncofetal glycosylated Fn, we studied the expression of the Fn isoforms in synovium. Furthermore, in situ hybridization for the detection of ED-B Fn mRNA including a double labeling technique for the detection of cell type was applied.

Results

Strong expression of total Fn, ED-A Fn, oncofetal glycosylated Fn and, to a lesser extent, ED-B Fn could be demonstrated in the synovial lining layer in both RA and OA. Stromal and vessel expression of Fn isoforms was more prominent in RA tissue. Pannus tissue showed strong labeling with ED-B Fn.

Conclusion

The expression of alternatively spliced isoforms of Fn is associated with tissue remodeling and, as a partial process of this phenomenon, with neovascularization rather than underlying disease, X-ray status, or parameters of acute inflammation. In the lining layer, Fn expression correlates with hyperplasia associated with cell recruitment but not with proliferative status. Most remarkably, the expression of ED-B Fn in pannus tissue seems to be associated with the invasive phenotype described in RA tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–F.
Fig. 2A–E.
Fig. 3.

Similar content being viewed by others

References

  1. Kornblihtt AR, Pesce CG, Alonso CR, Cramer P, Srebrow A, Werbajh S, Muro AF (1996) The fibronectin gene as a model for splicing and transcription studies. FASEB J 10:248–257

    PubMed  Google Scholar 

  2. Hynes RO (1985) Molecular biology of fibronectin. Ann Rev Cell Biol 1:67–90

    CAS  PubMed  Google Scholar 

  3. Zardi L, Carnemolla B, Siri A, Petersen TE, Paolella G, Sebastio G, Baralle FE (1987) Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J 6:2337–2342

    CAS  PubMed  Google Scholar 

  4. Koch GA, Schoen RC, Klebe RJ, Shows TB (1982) Assignment of a fibronectin gene to human chromosome 2 using monoclonal antibodies. Exp Cell Res 141:293–302

    PubMed  Google Scholar 

  5. Vibe-Pedersen K, Kornblihtt AR, Baralle FE (1984) Expression of human alphaglobin/fibronectin gene hybrid generates two mRNAs by alternative splicing. EMBO J 3:2511–2526

    PubMed  Google Scholar 

  6. Gutman A, Kornblihtt AR (1987) Identification of a third region of cell-specific alternative splicing in human fibronectin mRNA. Proc Natl Acad Sci U S A 84:7179–7182

    PubMed  Google Scholar 

  7. Ffrench-Constant C, Van de Water L, Dvorak HF, Hynes RO (1989) Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. Cell Biol 109:903–914

    CAS  Google Scholar 

  8. Brown LF, Dubin D, Lavigne B, Logan B, Dvorak HF, Vandewater L (1993) Macrophages and fibroblasts express embryonic fibronectins during cutaneous wound healing. Am J Pathol 142:793–801

    PubMed  Google Scholar 

  9. Jarnagin WR, Rockey DC, Koteliansky VE, Wang S, Bissell DM (1994) Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. Cell Biol 127:2037–2048

    CAS  Google Scholar 

  10. Glukhova MA, Frid, MG, Shekhonin BV, Vasilevskaya TD, Grunwald J, Saginati M, Koteliansky VE (1989) Expression of extradomain A fibronectin sequence in vascular smooth muscle cells is phenotype dependent. Cell Biol 109:357–366

    CAS  Google Scholar 

  11. Ting KM, Rothaupt D, McCormick TS, Hammerberg C, Chen G, Gilliam AC, Stevens S, Culp L, Cooper KD (2000) Overexpression of the oncofetal Fn variant containing the EDA splice-in segment in the dermal-epidermal junction of psoriatic uninvolved skin. J Invest Dermatol 114:706–711

    Article  PubMed  Google Scholar 

  12. Scarpino S, Stoppacciaro A, Pellegrini C, Marzullo A, Zardi L, Tartaglia F, Viale G, Ruco LP (1999) Expression of EDA/EDB isoforms of fibronectin in papillary carcinoma of the thyroid. J Pathol 188:163–167

    PubMed  Google Scholar 

  13. Kosmehl H, Berndt A, Strassburger S, Borsi L, Rousselle P, Mandel U, Hyckel P, Zardi L, Katenkamp D (1999) Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer 81:1071–1079

    PubMed  Google Scholar 

  14. Laitinen LM, Vartio T, Virtanen I (1991) Cellular fibronectins are differentially expressed in human fetal and adult kidney. Lab Invest 64:492–498

    PubMed  Google Scholar 

  15. Schwarzbauer JE, Paul JI, Hynes RO (1985) On the origin of species of fibronectin. Proc Natl Acad Sci U S A 82:1424–1428

    PubMed  Google Scholar 

  16. Mould AP, Wheldon LA, Komoriya A, Wayner EA, Yamada KM, Humphries MJ (1990) Affinity chromatographic isolation of the melanoma adhesion receptor for the IIICS region of fibronectin and its identification as the integrin α4β1. Biol Chem 265:4020–4024

    CAS  Google Scholar 

  17. Guan J-L, Hynes RO (1990) Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor α4β1. Cell 60:53–61

    CAS  PubMed  Google Scholar 

  18. Carnemolla B, Balza E, Siri A, Zardi L, Nicotra MR, Bigotti A, Natali PG (1989) A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. Cell Biol 108:1139–1148

    CAS  Google Scholar 

  19. Kaczmarek J, Castellani P, Nicolo G, Spina B, Allemanni G, Zardi L (1994) Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer 58:11–16

    Google Scholar 

  20. Kosmehl H, Berndt A, Katenkamp D, Mandel U, Bohle R, Gabler U, Celeda D (1995) Differential expression of fibronectin splice variants, oncofetal glycosylated fibronectin and laminin isoforms in nodular palmar fibromatosis. Path Res Pract 191:1105–1113

    CAS  PubMed  Google Scholar 

  21. Fassbender HG (1983) Histomorphological basis of articular cartilage destruction in rheumatoid arthritis. Coll Rel Res 3:141–155

    CAS  Google Scholar 

  22. Gay S, Denys FR, Tarkowski A, Gay RE, Tanaka A (1988) Ultrastructural demonstration of oncogene expression in proliferating synovial lining cells in rheumatoid arthritis. Arthritis Rheum 31:S23

    Google Scholar 

  23. Gay S, Gay RE, Koopman WJ (1993) Molecular and cellular mechanisms of joint destruction in rheumatoid arthritis: two cellular mechanisms explain joint destruction? Ann Rheum Dis 52:39–47

    Google Scholar 

  24. Matsuura H, Takio K, Titan K et al (1988) The oncofetal structure of human fibronectin defined by monoclonal antibody FDC-6. J Biol Chem 263:3314–3322

    CAS  PubMed  Google Scholar 

  25. Borsi L, Carnemolla B, Castellani P, Rossellini C, Veccio D, Allemanni G, Chang SE, Taylor-Papadimitriou J, Pande H, Zardi L (1987) Monoclonal antibodies in the analysis of fibronectin isoforms generated by alternative splicing of mRNA precursors in normal and transformed human cells. Cell Biol 104:595–600

    CAS  Google Scholar 

  26. Carnemolla B, Leprini A, Allemanni G, Saginati M, Zardi L (1992) The inclusion of the type III repeat ED-B in the fibronectin molecule generates conformational modifications that unmask a cryptic sequence. J Biol Chem 267:24689–24692

    CAS  PubMed  Google Scholar 

  27. Mandel U, Therkildsen MH, Reibel J, Gaggero B, Sweeney B, Matsuura H, Kakomori S-I, Dabelsteen E, Clausen H (1992) Cancer-associated changes in glycosylation of fibronectin. APMIS 100:817–826

    CAS  PubMed  Google Scholar 

  28. Gustmann C, Altmannsberger M, Osborn M, Griesser H, Feller HC (1991) Cytokeratin expression and vimentin content in large cell anaplastic lymphomas and other non Hodgkin's lymphoma. Am J Pathol 138:1413–1422

    CAS  PubMed  Google Scholar 

  29. Berndt A, Kosmehl H, Borsi L, Luo XM, Zardi L, Katenkamp D (1998) Evidence of ED-B fibronectin synthesis in human tissues by non-radioactive RNA in situ hybridization. Investigations on carcinoma (oral squamous cell and breast carcinoma), chronic inflammation (rheumatoid synovitis) and fibromatosis (Morbus Dupuytren). Histochem Cell Biol 109:249–255

    Article  CAS  PubMed  Google Scholar 

  30. Kriegsmann J, Keyszer G, Geiler T, Gay RE, Gay S (1994) A new double labeling technique for combined in situ hybridization and immunohistochemical analysis. Lab Invest 71:911–917

    CAS  PubMed  Google Scholar 

  31. Scott DL, Delamere JP, Walton KW (1981) The distribution of fibronectin in the pannus of rheumatoid arthritis. Br J Exp Pathol 62:362–368

    CAS  PubMed  Google Scholar 

  32. Scott DL, Wainwright AC, Walton KW, Williamson N (1981) Significance of fibronectin in rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 40:142–153

    PubMed  Google Scholar 

  33. Cutolo M, Picasso M, Ponassi M, Sun MZ, Balza E (1992) Tenascin and fibronectin distribution in human normal and pathological synovium. J Rheumatol 19:1439–1447

    PubMed  Google Scholar 

  34. Claudepierre P, Allanore Y, Belec L, Larget-Piet B, Zardi L, Chevalier X (1999) Increased Ed-B fibronectin plasma levels in spondyloarthropathies: comparison with rheumatoid arthritis patients and a healthy population. Rheumatology 38:1099–1103

    Article  CAS  PubMed  Google Scholar 

  35. Shiozawa S, Ziff M (1983) Immunoelectron microscopic demonstration of fibronectin in rheumatoid pannus and at the cartilage-pannus junction. Ann Rheum Dis 42:254–263

    CAS  PubMed  Google Scholar 

  36. Mapp PI, Revell PA (1985) Fibronectin production by synovial intimal cells. Rheumatol Int 5:229–237

    PubMed  Google Scholar 

  37. Waller HA, Butler MG, McClean JGB, Dowd GSE, Scott DL (1992) Localisation of fibronectin mRNA in the rheumatoid synovium by in situ hybridisation. Ann Rheum Dis 51:735–740

    PubMed  Google Scholar 

  38. Hino K, Shiozawa S, Kuroki Y, Ishikawa H, Shiozawa K, Sekiguchi K, Hirano H, Sakasihia E, Miyashita K, Chihara K (1995) EDA-containing fibronectin is synthesized from rheumatoid synovial fibroblast-like cells. Arthritis Rheum 38:678–683

    CAS  PubMed  Google Scholar 

  39. Chevalier X, Claudepierre P, Groult N, Zardi L, Hornebeck W (1996) Presence of ED-A containing fibronectin in human articular cartilage from patients with osteoarthritis and rheumatoid arthritis. J Rheumatol 23:1022–1030

    CAS  PubMed  Google Scholar 

  40. Shiozawa K, Hino K, Shiozawa S (2001) Alternatively spliced EDA-containing fibronectin in synovial fluid as a predictor of rheumatoid joint destruction. Rheumatology 40:739–742

    Article  CAS  PubMed  Google Scholar 

  41. Peters JH, Maunder RJ, Woolf AD, Cochrane CG, Ginsberg MH (1989) Elevated plasma levels of ED1+ ("cellular") fibronectin in patients with vascular injury. J Lab Clin Med 113:586–597

    CAS  PubMed  Google Scholar 

  42. Carsons S, Clausen H, Wolf J (1994) Expression of a developmentally regulated epitope on fibronectins from the synovial fluid of patients with rheumatic disease. J Rheumatol 21:1888–1891

    PubMed  Google Scholar 

  43. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochem Biophys Acta 1072:129–157

    Article  Google Scholar 

  44. Trabandt A, Gay RE, Gay S (1992) Oncogene activation in rheumatoid synovium. APMIS 100:861–875

    PubMed  Google Scholar 

  45. Shiozawa S, Yoshihara R, Kuroki Y, Fujita T, Shiozawa K, Imura S (1992) Pathogenic importance of fibronectin in the superficial region of articular cartilage as a local factor for the induction of pannus extension on rheumatoid articular cartilage. Ann Rheum Dis 51:869–873

    CAS  PubMed  Google Scholar 

  46. Müller-Ladner U, Kriegsmann J, Gay RE, Gay S (1995) Oncogenes in rheumatoid arthritis. Rheum Dis Clin North Am 21:675–690

    PubMed  Google Scholar 

  47. Lalor PA, Mapp PI, Hall PA, Revell PA (1987) Proliferative activity of cells of the synovium as demonstrated by a monoclonal antibody, Ki-67. Rheumatol Int 7:183–186

    PubMed  Google Scholar 

  48. Kinne RW, Emmrich F, Bail H, Kladny B, Schaser K, Stöss H, Mohr W (1995) Expression of activation markers of the rheumatoid arthritis synovial membrane: comment on the article by Qu et al. Arthritis Rheum 38:1346–1347

    PubMed  Google Scholar 

  49. Mohr W, Beneke G, Mohring W (1975) Proliferation of synovial lining cells and fibroblasts. Ann Rheum Dis 34:217–224

    Google Scholar 

  50. Aicher WK, Heer AH, Trabandt A, Bridges SL Jr, Schroeder HW Jr, Stransky G, Gay RE, Eibel H, Peter HH, Siebenlist U, Koopman WJ, Gay S (1994) Overexpression of zinc-finger transcription factor Z-225/Egr-1 in synoviocytes from rheumatoid arthritis patients. J Immunol 152:5940–5948

    PubMed  Google Scholar 

  51. Henderson B, Revell P, Edwards JCW (1988) Synovial lining hyperplasia in rheumatoid arthritis. Dogma and fact. Ann Rheum Dis 47:348–349

    PubMed  Google Scholar 

  52. Ridley MG, Kingsley G, Pitzalis C, Panayi GS (1990) Monocyte activation in rheumatoid arthritis. Evidence for in situ activation and differentiation in joints. Br J Rheum 29:84–88

    CAS  Google Scholar 

  53. Kosmehl H, Berndt A, Katenkamp D (1996) Molecular variants of fibronectin and laminin: structure, physiological occurrence and histopathological aspects. Virchows Arch 429:311–322

    PubMed  Google Scholar 

  54. Szekanecz Z, Haines GK, Harlow LA, Shah MR, Fong TW, Fu R, Lin SJ, Rayan G, Koch AE (1995) Increased synovial expression of transforming growth factor (TGF)-beta receptor endoglin and TGF-beta 1 in rheumatoid arthritis: possible interactions in the pathogenesis of the disease. Clin Immunol Immunopathol 76:187–194

    Article  PubMed  Google Scholar 

  55. Chu CQ, Field M, Allard S, Abney E, Feldmann M, Maini RN (1992) Detection of cytokines at the cartilage/pannus junction in patients with rheumatoid arthritis: implications for the role of cytokines in cartilage destruction and repair. Br J Rheumatol 31:653–661

    PubMed  Google Scholar 

  56. Sarkissian M, Lafyatis R (1998) Transforming growth factor-beta and platelet derived growth factor regulation of fibrillar fibronectin matrix formation by synovial fibroblasts. J Rheumatol 25:613–622

    CAS  PubMed  Google Scholar 

  57. Berndt A, Kosmehl H, Mandel U, Gabler U, Luo X, Celeda D, Zardi L, Katenkamp D (1995) TGFβ and bFGF synthesis and localization in Dupuytren's Disease (nodular palmar fibromatosis) relative to cellular activity myofibroblast phenotype and oncofoetal variants of fibronectin. Histochem J 27:1014–1020

    PubMed  Google Scholar 

  58. Walle TK, Vartio T, Helve T, Virtanen I, Kurki P (1990) Cellular fibronectin in rheumatoid synovium and synovial fluid: a possible factor contributing to lymphocytic infiltration. Scand J Immunol 31:535–540

    PubMed  Google Scholar 

  59. Elices MJ, Tsai V, Strahl D, Goel AS, Tollefson V, Arrhenius T, Wayner EA, Gaeta FC, Fikes JD, Firestein GS (1994) Expression of functional significance of alternatively spliced CS1 fibronectin in rheumatoid arthritis microvasculature. J Clin Invest 93:405–416

    PubMed  Google Scholar 

  60. Clemmensen I, Holund B, Andersen RB (1983) Fibrin and fibronectin in rheumatoid synovial membrane and rheumatoid synovial fluid. Arthritis Rheum 26:479–485

    PubMed  Google Scholar 

  61. Müller-Ladner U, Elices MJ, Kriegsmann J, Strahl D, Gay RE, Firestein GS, Gay S (1997) Alternatively spliced CS-1 fibronectin isoform and its receptor VLA-4 in rheumatoid arthritis synovium. J Rheumatol 24:1873–1880

    PubMed  Google Scholar 

  62. Castellani P, Viale G, Dorcaratto A, Nicolo G, Kaczmarek J, Querze G, Zardi L (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59:612–618

    CAS  PubMed  Google Scholar 

  63. Koch AE (1988) Angiogenesis. Implications for rheumatoid arthritis. Arthritis Rheum 41:951–962

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the German Ministry of Education, Science, Research, and Technology (Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie): FKZ 01 ZZ 9602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriegsmann, J., Berndt, A., Hansen, T. et al. Expression of fibronectin splice variants and oncofetal glycosylated fibronectin in the synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Rheumatol Int 24, 25–33 (2004). https://doi.org/10.1007/s00296-003-0316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-003-0316-1

Keywords

Navigation