Skip to main content

Advertisement

Log in

Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances cisplatin [cis-diammine dichloroplatinum (II)] (CDDP)-induced apoptosis in the oral squamous cell carcinoma (OSCC) cell line by complex, multifunctional mechanisms. We investigated the role of endoplasmic reticulum (ER) stress in the enhancing effect of SAHA on CDDP, compared with the ER stressor thapsigargin.

Methods

We chose OSCC cell line HSC-3 to ascertain the mechanism of SAHA-enhanced cytotoxicity among various cell lines. HSC-3 cells were incubated with CDDP/SAHA for 48 h, followed by the assessment of cell chemosensitivity to CDDP with MTT and TUNEL assays. Western blot analysis was used to detect the expressions of ER-related molecules, and flow cytometry was used to monitor caspase activity.

Results

Treatment with CDDP/SAHA potently induced apoptosis in HSC-3 cells with a significant increase in caspase-4 and -12 functions. For example, 60% of cells became apoptotic after 48 h of treatment with CDDP/SAHA. In addition, SAHA alone rapidly induced sustained phosphorylation of eukaryotic translation initiation factor-2 (eIF2)α, which is up-regulated during ER stress. Inhibition of ER stress by salubrinal, an inhibitor of eIF2α dephosphorylation, abrogated SAHA’s enhancement of CDDP cytotoxicity. Levels of phospho-Akt are decreased in SAHA-treated cells, and this is in turn associated with increased activity of protein phosphatase 1 (PP1) by SAHA, the phosphatase upstream of Akt.

Conclusion

These data indicate that up-regulation of specific-ER stress-associated events is an integral part of the mechanism by which SAHA enhances CDDP-induced apoptosis, and PP1 up-regulation followed by Akt dephosphorylation plays an important role in SAHA-enhanced CDDP apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Licitra L, Grandi C, Guzzo M, Mariani L, Lo Vullo S, Valvo F, Quattrone P, Valagussa P, Bonadonna G, Molinari R, Cantu G (2003) Primary chemotherapy in resectable oral cavity squamous cell cancer: a randomized controlled trial. J Clin Oncol 21:327–333

    Article  PubMed  CAS  Google Scholar 

  2. Foote RL, Kasperbauer JL, Okuno SH, Nichols DA, Olsen KD, Brown PD, Garces YI, Sargent DJ, Strome SE (2005) A pilot study of high-dose intraarterial cisplatin chemotherapy with concomitant accelerated radiotherapy for patients with previously untreated T4 and selected patients with T3N0-N3M0 squamous cell carcinoma of the upper aerodigestive tract. Cancer 103:559–568

    Article  PubMed  CAS  Google Scholar 

  3. Akervall J, Guo X, Qian CN, Schoumans J, Leeser B, Kort E, Cole A, Resau J, Bradford C, Carey T, Wennerberg J, Anderson H, Tennvall J, Teh BT (2004) Genetic and expression profiles of squamous cell carcinoma of the head and neck correlate with cisplatin sensitivity and resistance in cell lines and patients. Clin Cancer Res 10:8204–8213

    Article  PubMed  CAS  Google Scholar 

  4. Rikiishi H, Shinohara F, Sato T, Sato Y, Suzuki M, Echigo S (2007) Chemosensitization of oral squamous cell carcinoma cells to cisplatin by histone deacetylase inhibitor, suberoylanilide hydroxamic acid. Int J Oncol 30:1181–1188

    PubMed  CAS  Google Scholar 

  5. Mandic A, Hansson J, Linder S, Shoshan MC (2003) Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278:9100–9106

    Article  PubMed  CAS  Google Scholar 

  6. Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63

    PubMed  Google Scholar 

  7. Rao RV, Hermel E, Castro-Obregon S, Del Rio G, Ellerby LM, Ellerby HM, Bredesen DE (2001) Coupling endoplasmic reticulum stress to the cell death program mechanism of caspase activation. J Biol Chem 276:33869–33874

    Article  PubMed  CAS  Google Scholar 

  8. Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621

    Article  PubMed  CAS  Google Scholar 

  9. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664

    Article  PubMed  CAS  Google Scholar 

  10. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  PubMed  CAS  Google Scholar 

  11. Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Andtbacka RH, Dunner K Jr, Pal A, Bornmann WG, Chiao PJ, Huang P, Xiong H, Abbruzzese JL, McConkey DJ (2006) Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66:3773–3781

    Article  PubMed  CAS  Google Scholar 

  12. Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59:657–663

    PubMed  CAS  Google Scholar 

  13. Liu H, Baliga R (2005) Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 16:1985–1992

    Article  PubMed  CAS  Google Scholar 

  14. Rabik CA, Fishel ML, Holleran JL, Kasza K, Kelley MR, Egorin MJ, Dolan ME (2008) Enhancement of cisplatin cytotoxicity by O6-benzylguanine involves endoplasmic reticulum stress. J Pharmacol Exp Ther 327:442–452

    Article  PubMed  CAS  Google Scholar 

  15. Del Bello B, Moretti D, Gamberucci A, Maellaro E (2007) Cross-talk between calpain and caspase-3/-7 in cisplatin-induced apoptosis of melanoma cells: a major role of calpain inhibition in cell death protection and p53 status. Oncogene 26:2717–2726

    Article  PubMed  CAS  Google Scholar 

  16. Marks PA, Miller T, Richon VM (2003) Histone deacetylases. Curr Opin Pharmcol 3:344–351

    Article  CAS  Google Scholar 

  17. Lu Q, Yang YT, Chen CS, Davis M, Byrd JC, Etherton MR, Umar A, Chen CS (2004) Zn2+-chelating motif-tethered short-chain fatty acids as a novel class of histone deacetylase inhibitors. J Med Chem 47:467–474

    Article  PubMed  CAS  Google Scholar 

  18. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  19. Fischer H, Koenig U, Eckhart L, Tschachler E (2002) Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293:722–726

    Article  PubMed  CAS  Google Scholar 

  20. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K, Tsujimoto Y, Tohyama M (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol 165:347–356

    Article  PubMed  CAS  Google Scholar 

  21. Bitko V, Barik S (2001) An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J Cell Biochem 80:441–454

    Article  PubMed  CAS  Google Scholar 

  22. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  PubMed  CAS  Google Scholar 

  23. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  PubMed  CAS  Google Scholar 

  24. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S, Kaufman RJ (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165–1176

    Article  PubMed  CAS  Google Scholar 

  25. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5:781–792

    Article  PubMed  CAS  Google Scholar 

  26. Yamaguchi H, Bhalla K, Wang H (2003) Bax plays a pivotal role in thapsigargin-induced apoptosis of human colon cancer HCT116 cells by controlling Smac/Diablo and Omi/HtrA2 release from mitochondria. Cancer Res 63:1483–1489

    PubMed  CAS  Google Scholar 

  27. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307:935–939

    Article  PubMed  CAS  Google Scholar 

  28. Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS (2005) Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 280:38879–38887

    Article  PubMed  CAS  Google Scholar 

  29. Lee TJ, Lee JT, Kim SH, Choi YH, Song KS, Park JW, Kwon TK (2008) Overexpression of Par-4 enhances thapsigargin-induced apoptosis via down-regulation of XIAP and inactivation of Akt in human renal cancer cells. J Cell Biochem 103:358–368

    Article  PubMed  CAS  Google Scholar 

  30. Querfeld C, Rizvi MA, Kuzel TM, Guitart J, Rademaker A, Sabharwal SS, Krett NL, Rosen ST (2006) The selective protein kinase Cβ inhibitor enzastaurin induces apoptosis in cutaneous T-cell lymphoma cell lines through the AKT pathway. J Invest Dermatol 126:1641–1647

    Article  PubMed  CAS  Google Scholar 

  31. Yung HW, Korolchuk S, Tolkovsky AM, Charnock-Jones DS, Burton GJ (2007) Endoplasmic reticulum stress exacerbates ischemia-reperfusion-induced apoptosis through attenuation of Akt protein synthesis in human choriocarcinoma cells. FASEB J 21:872–884

    Article  PubMed  CAS  Google Scholar 

  32. Asselin E, Mills GB, Tsang BK (2001) XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res 61:1862–1868

    PubMed  CAS  Google Scholar 

  33. Lei P, Abdelrahim M, Cho SD, Liu X, Safe S (2008) Structure-dependent activation of endoplasmic reticulum stress-mediated apoptosis in pancreatic cancer by 1, 1-bis(3′-indoly)-1-(p-substituted phenyl)methanes. Mol Cancer Ther 7:3363–3372

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. D. Mrozek for editing the manuscript. This work was supported in part by Grant-in-Aids for Scientific Research (20659309) from the Japan Society for the Promotion of Science and (19791480 and 19791482) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemi Rikiishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, M., Endo, M., Shinohara, F. et al. Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells. Cancer Chemother Pharmacol 64, 1115–1122 (2009). https://doi.org/10.1007/s00280-009-0969-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-0969-x

Keywords

Navigation