Skip to main content

Advertisement

Log in

In vitro and in vivo effects of the conformationally restricted polyamine analogue CGC-11047 on small cell and non-small cell lung cancer cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Polyamines are essential for normal growth; however, the requirement for, and the metabolism of, polyamines are frequently dysregulated in cancer. Polyamine analogues have demonstrated promising preclinical results in multiple model systems of cancer, but their clinical utility has been limited by apparent toxicity. A representative compound of a new generation of short chain, conformationally restricted polyamine analogues, CGC-11047 has been synthesized and ongoing phase I clinical trials indicate it to be well tolerated at weekly doses of 610 mg (dose escalation is still in progress). Therefore, studies were designed to gain a better understanding of its effects on cellular polyamine biochemistry and efficacy in the treatment of human lung cancer models in vitro and in vivo.

Methods

Human lung cancers cell lines representing non-small cell and small cell lung cancers were investigated for their growth and biochemical response to CGC-11047. Effects of in vitro treatment with CGC-11047 on cell growth, the activity of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC), and the expression and activity of the polyamine catabolic enzymes spermidine/spermine N 1-acetyltransferase (SSAT) and spermine oxides (SMO) were measured. Additionally, the overall effects on intracellular polyamine pools were monitored. Finally, the in vivo efficacy of CGC-11047 in the treatment of a nude mouse model of human non-small cell lung cancer was evaluated.

Results

CGC-11047 effectively inhibited the growth of both small cell and non-small cell lung cancer cells in vitro. The greatest biochemical effects were observed in the non-small cell lung cancer cells where in addition to a profound down regulation of ODC activity, there was a significant increase in polyamine catabolism leading to a greater degree of polyamine pool depletion and greater accumulation of CGC-11047 when compared with the changes observed for the small cell lines. Importantly, CGC-11047 was found to be highly significant (P < 0.0001) in delaying the progression of established tumors in an in vivo model of human non-small cell lung cancer.

Conclusion

CGC-11047 represents a promising new polyamine analogue that warrants further preclinical and, potentially, clinical evaluation in lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ODC:

Ornithine decarboxylase

SMO:

Spermine oxides

SSAT:

Spermidine/spermine N 1-acetyltransferase

References

  1. Abeloff MD, Slavik M, Luk GD, Griffin CA, Hermann J, Blanc O, Sjoerdsma A, Baylin SB (1984) Phase I trial and pharmacokinetic studies of alpha-difluoromethylornithine—an inhibitor of polyamine biosynthesis. J Clin Oncol 2:124–130

    PubMed  CAS  Google Scholar 

  2. Abeloff MD, Rosen ST, Luk GD, Baylin SB, Zeltzman M, Sjoerdsma A (1986) Phase ii trials of alpha-difluoromethylornithine, an inhibitor of polyamine synthesis, in advanced small cell lung cancer and colon cancer. Cancer Treat Rep 70:843–845

    PubMed  CAS  Google Scholar 

  3. Babbar N, Casero RA Jr (2006) Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis. Cancer Res 66:11125–11130

    Article  PubMed  CAS  Google Scholar 

  4. Bergeron RJ, McManis JS, Liu CZ, Feng Y, Weimar WR, Luchetta GR, Wu Q, Ortiz-Ocasio J, Vinson JR, Kramer D et al (1994) Antiproliferative properties of polyamine analogues: A structure-activity study. J Med Chem 37:3464–3476

    Article  PubMed  CAS  Google Scholar 

  5. Bergeron RJ, Feng Y, Weimar WR, McManis JS, Dimova H, Porter C, Raisler B, Phanstiel O (1997) A comparison of structure-activity relationships between spermidine and spermine analogue antineoplastics. J Med Chem 40:1475–1494

    Article  PubMed  CAS  Google Scholar 

  6. Bernacki RJ, Bergeron RJ, Porter CW (1992) Antitumor activity of N,N’-bis(ethyl)spermine homologues against human malme-3 melanoma xenografts. Cancer Res 52:2424–2430

    PubMed  CAS  Google Scholar 

  7. Bernacki RJ, Oberman EJ, Seweryniak KE, Atwood A, Bergeron RJ, Porter CW (1995) Preclinical antitumor efficacy of the polyamine analogue N1, N11- diethylnorspermine administered by multiple injection or continuous infusion. Clin Cancer Res 1:847–857

    PubMed  CAS  Google Scholar 

  8. Boncher T, Bi X, Varghese S, Casero RA Jr, Woster PM (2007) Polyamine-based analogues as biochemical probes and potential therapeutics. Biochem Soc Trans 35:356–363

    Article  PubMed  CAS  Google Scholar 

  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  10. Casero RA, Frydman B, Murray Stewart T, Woster PA (2005) Significance of targeting polyamine metabolism as an antineoplastic strategy: unique targets for polyamine analogues. West Pharm Soc 289:C826–835

    Google Scholar 

  11. Casero RA Jr, Celano P, Ervin SJ, Porter CW, Bergeron RJ, Libby PR (1989) Differential induction of spermidine/spermine N1-acetyltransferase in human lung cancer cells by the bis(ethyl)polyamine analogues. Cancer Res 49:3829–3833

    PubMed  CAS  Google Scholar 

  12. Casero RA Jr, Ervin SJ, Celano P, Baylin SB, Bergeron RJ (1989) Differential response to treatment with the bis(ethyl)polyamine analogues between human small cell lung carcinoma and undifferentiated large cell lung carcinoma in culture. Cancer Res 49:639–643

    PubMed  CAS  Google Scholar 

  13. Casero RA Jr, Celano P, Ervin SJ, Wiest L, Pegg AE (1990) High specific induction of spermidine/spermine N1-acetyltransferase in a human large cell lung carcinoma. Biochem J 270:615–620

    PubMed  CAS  Google Scholar 

  14. Casero RA Jr, Celano P, Ervin SJ, Applegren NB, Wiest L, Pegg AE (1991) Isolation and characterization of a cdna clone that codes for human spermidine/spermine N1-acetyltransferase. J Biol Chem 266:810–814

    PubMed  CAS  Google Scholar 

  15. Casero RA Jr, Mank AR, Xiao L, Smith J, Bergeron RJ, Celano P (1992) Steady-state messenger RNA and activity correlates with sensitivity to N1,N12-bis(ethyl)spermine in human cell lines representing the major forms of lung cancer. Cancer Res 52:5359–5363

    PubMed  CAS  Google Scholar 

  16. Casero RA Jr, Pegg AE (1993) Spermidine/spermine N1-acetyltransferase—the turning point in polyamine metabolism. Faseb J 7:653–661

    PubMed  CAS  Google Scholar 

  17. Casero RA Jr, Gabrielson EW, Pegg AE (1994) Immunohistochemical staining of human spermidine/spermine N1-acetyltransferase superinduced in response to treatment with antitumor polyamine analogues. Cancer Res 54:3955–3958

    PubMed  CAS  Google Scholar 

  18. Casero RA Jr, Woster PM (2001) Terminally alkylated polyamine analogues as chemotherapeutic agents. J Med Chem 44:1–26

    Article  PubMed  CAS  Google Scholar 

  19. Casero RA Jr, Wang Y, Stewart TM, Devereux W, Hacker A, Smith R, Woster PM (2003) The role of polyamine catabolism in anti-tumour drug response. Biochem Soc Trans 31:361–365

    Article  PubMed  CAS  Google Scholar 

  20. Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390

    Article  PubMed  CAS  Google Scholar 

  21. Chang BK, Bergeron RJ, Porter CW, Liang Y (1992) Antitumor effects of n-alkylated polyamine analogues in human pancreatic adenocarcinoma models. Cancer Chemother Pharmacol 30:179–182

    Article  PubMed  CAS  Google Scholar 

  22. Chang BK, Bergeron RJ, Porter CW, Vinson JR, Liang Y, Libby PR (1992) Regulatory and antiproliferative effects of N-alkylated polyamine analogues in human and hamster pancreatic adenocarcinoma cell lines. Cancer Chemother Pharmacol 30:183–188

    Article  PubMed  CAS  Google Scholar 

  23. Chen Y, Kramer DL, Diegelman P, Vujcic S, Porter CW (2001) Apoptotic signaling in polyamine analogue-treated SK-MEL-28 human melanoma cells. Cancer Res 61:6437–6444

    PubMed  CAS  Google Scholar 

  24. Creaven PJ, Perez R, Pendyala L, Meropol NJ, Loewen G, Levine E, Berghorn E, Raghavan D (1997) Unusual central nervous system toxicity in a phase I study of N1,N11 diethylnorspermine in patients with advanced malignancy. Invest New Drugs 15:227–234

    Article  PubMed  CAS  Google Scholar 

  25. Devereux W, Wang Y, Stewart TM, Hacker A, Smith R, Frydman B, Valasinas AL, Reddy VK, Marton LJ, Ward TD et al (2003) Induction of the PAOh1/SMO polyamine oxidase by polyamine analogues in human lung carcinoma cells Cancer. Chemother Pharmacol 52:383–390

    Article  CAS  Google Scholar 

  26. Frydman B, Porter CW, Maxuitenko Y, Sarkar A, Bhattacharya S, Valasinas A, Reddy VK, Kisiel N, Marton LJ, Basu HS (2003) A novel polyamine analog (SL-11093) inhibits growth of human prostate tumor xenografts in nude mice. Cancer Chemother Pharmacol 51:488–492

    PubMed  CAS  Google Scholar 

  27. Gabrielson E, Tully E, Hacker A, Pegg AE, Davidson NE, Casero RA Jr (2004) Induction of spermidine/spermine N1-acetyltransferase in breast cancer tissues treated with the polyamine analogue N1, N11-diethylnorspermine. Cancer Chemother Pharmacol 54:122–126

    Article  PubMed  CAS  Google Scholar 

  28. Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792

    Article  PubMed  CAS  Google Scholar 

  29. Ha HC, Woster PM, Yager JD, Casero RA Jr (1997) The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc Natl Acad Sci USA 94:11557–11562

    Article  PubMed  CAS  Google Scholar 

  30. Hahm HA, Ettinger DS, Bowling K, Hoker B, Chen TL, Zabelina Y, Casero RA Jr (2002) Phase I study of N1,N11-diethylnorspermine in patients with non-small cell lung cancer. Clin Cancer Res 8:684–690

    PubMed  CAS  Google Scholar 

  31. Huang Y, Hager ER, Phillips DL, Dunn VR, Hacker A, Frydman B, Kink JA, Valasinas AL, Reddy VK, Marton LJ et al (2003) A novel polyamine analog inhibits growth and induces apoptosis in human breast cancer cells. Clin Cancer Res 9:2769–2777

    PubMed  CAS  Google Scholar 

  32. Kabra PM, Lee HK, Lubich WP, Marton LJ (1986) Solid-phase extraction and determination of dansyl derivatives of unconjugated and acetylated polyamines by reversed-phase liquid chromatography: improved separation systems for polyamines in cerebrospinal fluid, urine and tissue. J Chromatogr 380:19–32

    Article  PubMed  CAS  Google Scholar 

  33. Levin VA, Hess KR, Choucair A, Flynn PJ, Jaeckle KA, Kyritsis AP, Yung WK, Prados MD, Bruner JM, Ictech S et al (2003) Phase iii randomized study of postradiotherapy chemotherapy with combination alpha-difluoromethylornithine-pcv versus pcv for anaplastic gliomas. Clin Cancer Res 9:981–990

    PubMed  CAS  Google Scholar 

  34. Marton LJ, Pegg AE (1995) Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35:55–91

    Article  PubMed  CAS  Google Scholar 

  35. McCloskey DE, Casero RA Jr, Woster PM, Davidson NE (1995) Induction of programmed cell death in human breast cancer cells by an unsymmetrically alkylated polyamine analogue. Cancer Res 55:3233–3236

    PubMed  CAS  Google Scholar 

  36. Mitchell JL, Simkus CL, Thane TK, Tokarz P, Bonar MM, Frydman B, Valasinas AL, Reddy VK, Marton LJ (2004) Antizyme induction mediates feedback limitation of the incorporation of specific polyamine analogues in tissue culture. Biochem J 384:271–279

    Article  PubMed  CAS  Google Scholar 

  37. Mitchell JL, Thane TK, Sequeira JM, Marton LJ, Thokala R (2007) Antizyme and antizyme inhibitor activities influence cellular responses to polyamine analogs. Amino Acids 33:291–297

    Article  PubMed  CAS  Google Scholar 

  38. Pless M, Belhadj K, Menssen HD, Kern W, Coiffier B, Wolf J, Herrmann R, Thiel E, Bootle D, Sklenar I et al (2004) Clinical efficacy, tolerability, and safety of SAM486a, a novel polyamine biosynthesis inhibitor, in patients with relapsed or refractory non-Hodgkin’s lymphoma: results from a phase II multicenter study. Clin Cancer Res 10:1299–1305

    Article  PubMed  CAS  Google Scholar 

  39. Porter CW, Sufrin JR (1986) Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy. Anticancer Res 6:525–542

    PubMed  CAS  Google Scholar 

  40. Porter CW, Bergeron RJ (1988) Enzyme regulation as an approach to interference with polyamine biosynthesis—an alternative to enzyme inhibition. Adv Enzyme Regul 27:57–79

    Article  PubMed  CAS  Google Scholar 

  41. Porter CW, Ganis B, Libby PR, Bergeron RJ (1991) Correlations between polyamine analogue-induced increases in spermidine/spermine N1-acetyltransferase activity, polyamine pool depletion, and growth inhibition in human melanoma cell lines. Cancer Res 51:3715–3720

    PubMed  CAS  Google Scholar 

  42. Porter CW, Bernacki RJ, Miller J, Bergeron RJ (1993) Antitumor activity of N1,N11-bis(ethyl)norspermine against human melanoma xenografts and possible biochemical correlates of drug action. Cancer Res 53:581–586

    PubMed  CAS  Google Scholar 

  43. Reddy VK, Valasinas A, Sarkar A, Basu HS, Marton LJ, Frydman B (1998) Conformationally restricted analogues of N1,N11-bisethylspermine: synthesis and growth inhibitory effects on human tumor cell lines. J Med Chem 41:4723–4732

    Article  PubMed  CAS  Google Scholar 

  44. Reddy VK, Sarkar A, Valasinas A, Marton LJ, Basu HS, Frydman B (2001) Cis-unsaturated analogues of 3,8,13,18,23-pentaazapentacosane (BE-4-4-4-4): synthesis and growth inhibitory effects on human prostate cancer cell lines. J Med Chem 44:404–417

    Article  PubMed  CAS  Google Scholar 

  45. Seely JE, Pegg AE (1983) Ornithine decarboxylase (mouse kidney). Methods Enzymol 94:158–161

    Article  PubMed  CAS  Google Scholar 

  46. Seiler N (2003) Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 2. Structural analogues and derivatives. Curr Drug Targets 4:565–585

    Article  PubMed  CAS  Google Scholar 

  47. Seiler N (2003) Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 1. Selective enzyme inhibitors. Curr Drug Targets 4:537–564

    Article  PubMed  CAS  Google Scholar 

  48. Streiff RR, Bender JF (2001) Phase I study of N1-N11-diethylnorspermine (denspm) administered tid for 6 days in patients with advanced malignancies. Invest New Drugs 19:29–39

    Article  PubMed  CAS  Google Scholar 

  49. Valasinas A, Sarkar A, Reddy VK, Marton LJ, Basu HS, Frydman B (2001) Conformationally restricted analogues of N1,N14-bisethylhomospermine (BE-4-4-4): synthesis and growth inhibitory effects on human prostate cancer cells. J Med Chem 44:390–403

    Article  PubMed  CAS  Google Scholar 

  50. Wallace HM, Fraser AV (2003) Polyamine analogues as anticancer drugs. Biochem Soc Trans 31:393–396

    Article  PubMed  CAS  Google Scholar 

  51. Wallace HM, Fraser AV (2004) Inhibitors of polyamine metabolism: review article. Amino Acids 26:353–365

    Article  PubMed  CAS  Google Scholar 

  52. Wang Y, Devereux W, Woster PM, Stewart TM, Hacker A, Casero RA Jr (2001) Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 61:5370–5373

    PubMed  CAS  Google Scholar 

  53. Wang Y, Murray-Stewart T, Devereux W, Hacker A, Frydman B, Woster PM, Casero RA Jr (2003) Properties of purified recombinant human polyamine oxidase, PAOh1/SMO. Biochem Biophys Res Commun 304:605–611

    Article  PubMed  CAS  Google Scholar 

  54. Wang Y, Casero RA (2006) Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both? J Biochem 139:17–25

    Article  PubMed  CAS  Google Scholar 

  55. Waters WR, Frydman B, Marton LJ, Valasinas A, Reddy VK, Harp JA, Wannemuehler MJ, Yarlett N (2000) [N1,N12]bis(ethyl)-cis-6,7-dehydrospermine: A new drug for treatment and prevention of cryptosporidium parvum infection of mice deficient in t-cell receptor alpha. Antimicrob Agents Chemother 44:2891–2894

    Article  PubMed  CAS  Google Scholar 

  56. Wolff AC, Armstrong DK, Fetting JH, Carducci MK, Riley CD, Bender JF, Casero RA Jr, Davidson NE (2003) A phase ii study of the polyamine analog N1,N11-diethylnorspermine (DENSpm) daily for five days every 21 days in patients with previously treated metastatic breast cancer. Clin Cancer Res 9:5922–5928

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by NIH grants CA051085 and CA098454, and by the Patrick C. Walsh Prostate Cancer Research Fund, for which RAC is the Schwatrz Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Casero Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hacker, A., Marton, L.J., Sobolewski, M. et al. In vitro and in vivo effects of the conformationally restricted polyamine analogue CGC-11047 on small cell and non-small cell lung cancer cells. Cancer Chemother Pharmacol 63, 45–53 (2008). https://doi.org/10.1007/s00280-008-0706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0706-x

Keywords

Navigation