Skip to main content

Advertisement

Log in

Phenformin inhibits proliferation, invasion, and angiogenesis of cholangiocarcinoma cells via AMPK-mTOR and HIF-1A pathways

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Phenformin (Phen), a potent activator of AMPK, is effective against some resistant cancers. This study evaluated the inhibition of proliferation, migration, invasion, and angiogenesis by Phen in aggressive cancer cells and investigated the underlying mechanism of the inhibition. Cholangiocarcinoma (CCA) KKU-156 and KKU-452 cells were used in this study. The results showed that Phen suppressed cell proliferation and induced apoptosis in both cells. Phen suppressed migration and invasion of cancer cells in wound healing and transwell chamber assays, respectively. The effects were associated with depletions of glutathione (GSH) and decreased glutathione redox ratio which represents cellular redox state. The redox stress was linked with the loss of mitochondrial transmembrane potential, as evaluated by JC-1 assay. The effect of Phen on angiogenesis was performed using HUVEC cultured cells. Phen alone did not affect tube formation of HUVEC cells. However, conditioned media from CCA cell cultures treated with Phen suppressed the tube-like structure formation. The antitumor effect of Phen was associated with AMPK activation and suppression of mTOR phosphorylation, HIF-1A, and VEGF protein expression. In conclusion, Phen inhibits cell proliferation, migration, invasion, and angiogenesis probably through AMPK-mTOR and HIF-1A-VEGF pathways. Phen may be repurposed as chemoprevention of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • American Diabetes A (2019) 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2019. Diabetes Care 42:S90–S102

    Article  Google Scholar 

  • Appleyard MV, Murray KE, Coates PJ, Wullschleger S, Bray SE, Kernohan NM, Fleming S, Alessi DR, Thompson AM (2012) Phenformin as prophylaxis and therapy in breast cancer xenografts. Br J Cancer 106:1117–1122

    Article  CAS  Google Scholar 

  • Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, Geier A, Calvisi DF, Mertens JC, Trauner M, Benedetti A, Maroni L, Vaquero J, Macias RI, Raggi C, Perugorria MJ, Gaudio E, Boberg KM, Marin JJ, Alvaro D (2016) Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 13:261–280

    Article  Google Scholar 

  • Cerezo M, Tichet M, Abbe P, Ohanna M, Lehraiki A, Rouaud F, Allegra M, Giacchero D, Bahadoran P, Bertolotto C, Tartare-Deckert S, Ballotti R, Rocchi S (2013) Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. Mol Cancer Ther 12:1605–1615

    Article  CAS  Google Scholar 

  • Chaiteerakij R, Yang JD, Harmsen WS, Slettedahl SW, Mettler TA, Fredericksen ZS, Kim WR, Gores GJ, Roberts RO, Olson JE, Therneau TM, Roberts LR (2013) Risk factors for intrahepatic cholangiocarcinoma: association between metformin use and reduced cancer risk. Hepatology 57:648–655

    Article  CAS  Google Scholar 

  • Dandapani M, Hardie DG (2013) AMPK: opposing the metabolic changes in both tumour cells and inflammatory cells? Biochem Soc Trans 41:687–693

    Article  CAS  Google Scholar 

  • Di Magno L, Manni S, Di Pastena F, Coni S, Macone A, Cairoli S, Sambucci M, Infante P, Moretti M, Petroni M, Nicoletti C, Capalbo C, De Smaele E, Di Marcotullio L, Giannini G, Battistini L, Goffredo BM, Iorio E, Agostinelli E, Maroder M, Canettieri G (2020) Phenformin inhibits hedgehog-dependent tumor growth through a complex I-independent redox/corepressor module. Cell Rep 30:1737–1752

  • Do MT, Kim HG, Khanal T, Choi JH, Kim DH, Jeong TC, Jeong HG (2013) Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol Appl Pharmacol 271:229–238

    Article  CAS  Google Scholar 

  • Dodd KM, Yang J, Shen MH, Sampson JR, Tee AR (2015) mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 34:2239–2250

    Article  CAS  Google Scholar 

  • Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141

    Article  CAS  Google Scholar 

  • Hardie DG (2014) AMPK--sensing energy while talking to other signaling pathways. Cell Metab 20:939–952

    Article  CAS  Google Scholar 

  • Hu S, Ouyang Q, Cheng Q, Wang J, Feng F, Qiao L, Gan W, Shi Y, Wu D, Jiang X (2018) Phenformin inhibits cell proliferation and induces cell apoptosis and autophagy in cholangiocarcinoma. Mol Med Rep 17:6028–6032

    CAS  PubMed  Google Scholar 

  • Huang Y, Zhou S, He C, Deng J, Tao T, Su Q, Darko KO, Peng M, Yang X (2018) Phenformin alone or combined with gefitinib inhibits bladder cancer via AMPK and EGFR pathways. Cancer Commu 38:50–64

    Article  Google Scholar 

  • Khan H, Anshu A, Prasad A, Roy S, Jeffery J, Kittipongdaja W, Yang DT, Schieke SM (2019) Metabolic rewiring in response to biguanides is mediated by mROS/HIF-1a in malignant lymphocytes. Cell Rep 29:3009–3018

  • Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470

    Article  CAS  Google Scholar 

  • King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25:4675–4682

    Article  CAS  Google Scholar 

  • Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385–394

    Article  CAS  Google Scholar 

  • Kordes S, Pollak MN, Zwinderman AH, Mathot RA, Weterman MJ, Beeker A, Punt CJ, Richel DJ, Wilmink JW (2015) Metformin in patients with advanced pancreatic cancer: a double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol 16:839–847

    Article  CAS  Google Scholar 

  • Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC (2011) Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer 11:20

    Article  CAS  Google Scholar 

  • Liu X, Chhipa RR, Pooya S, Wortman M, Yachyshin S, Chow LM, Kumar A, Zhou X, Sun Y, Quinn B, McPherson C, Warnick RE, Kendler A, Giri S, Poels J, Norga K, Viollet B, Grabowski GA, Dasgupta B (2014) Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci U S A 111:E435–E444

    Article  CAS  Google Scholar 

  • Marchetti P, Giannarelli R, di Carlo A, Navalesi R (1991) Pharmacokinetic optimisation of oral hypoglycaemic therapy. Clin Pharmacokinet 21:308–317

    Article  CAS  Google Scholar 

  • Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR (2018) Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 233:2949–2965

    Article  CAS  Google Scholar 

  • Masoud GN, Li W (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389

    Article  Google Scholar 

  • Meric-Bernstam F, Gonzalez-Angulo AM (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27:2278–2287

    Article  CAS  Google Scholar 

  • Mogavero A, Maiorana MV, Zanutto S, Varinelli L, Bozzi F, Belfiore A, Volpi CC, Gloghini A, Pierotti MA, Gariboldi M (2017) Metformin transiently inhibits colorectal cancer cell proliferation as a result of either AMPK activation or increased ROS production. Sci Rep 7:15992

    Article  Google Scholar 

  • Morales DR, Morris AD (2015) Metformin in cancer treatment and prevention. Annu Rev Med 66:17–29

    Article  CAS  Google Scholar 

  • Munoz-Pinedo C, El Mjiyad N, Ricci JE (2012) Cancer metabolism: current perspectives and future directions. Cell Death Dis 3:e248

    Article  CAS  Google Scholar 

  • Plews RL, Mohd Yusof A, Wang C, Saji M, Zhang X, Chen CS, Ringel MD, Phay JE (2015) A novel dual AMPK activator/mTOR inhibitor inhibits thyroid cancer cell growth. J Clin Endocrinol Metab 100:748–756

    Article  Google Scholar 

  • Rajeshkumar NV, Yabuuchi S, Pai SG, De Oliveira E, Kamphorst JJ, Rabinowitz JD, Tejero H, Al-Shahrour F, Hidalgo M, Maitra A, Dang CV (2017) Treatment of pancreatic cancer patient-derived Xenograft panel with metabolic inhibitors reveals efficacy of phenformin. Clin Cancer Res 23:5639–5647

    Article  CAS  Google Scholar 

  • Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585

    Article  CAS  Google Scholar 

  • Saensa-Ard S, Leuangwattanawanit S, Senggunprai L, Namwat N, Kongpetch S, Chamgramol Y, Loilome W, Khansaard W, Jusakul A, Prawan A, Pairojkul C, Khantikeo N, Yongvanit P, Kukongviriyapan V (2017) Establishment of cholangiocarcinoma cell lines from patients in the endemic area of liver fluke infection in Thailand. Tumour Biol 39:1010428317725925

    Article  Google Scholar 

  • Suphim B, Prawan A, Kukongviriyapan U, Kongpetch S, Buranrat B, Kukongviriyapan V (2010) Redox modulation and human bile duct cancer inhibition by curcumin. Food Chem Toxicol 48:2265–2272

    Article  CAS  Google Scholar 

  • Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I (2018) Metformin as an anticancer agent. Trends Pharmacol Sci 39:867–878

    Article  CAS  Google Scholar 

  • Wandee J, Prawan A, Senggunprai L, Kongpetch S, Tusskorn O, Kukongviriyapan V (2018) Metformin enhances cisplatin induced inhibition of cholangiocarcinoma cells via AMPK-mTOR pathway. Life Sci 207:172–183

    Article  CAS  Google Scholar 

  • Wandee J, Prawan A, Senggunprai L, Kongpetch S, Kukongviriyapan V (2019) Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway. Life Sci 217:155–163

    Article  CAS  Google Scholar 

  • Wang Y, Meng Y, Zhang S, Wu H, Yang D, Nie C, Hu Q (2018) Phenformin and metformin inhibit growth and migration of LN229 glioma cells in vitro and in vivo. Onco Targets Ther 11:6039–6048

    Article  CAS  Google Scholar 

  • Yuan P, Ito K, Perez-Lorenzo R, Del Guzzo C, Lee JH, Shen CH, Bosenberg MW, McMahon M, Cantley LC, Zheng B (2013) Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proc Natl Acad Sci U S A 110:18226–18231

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by research grant from National Research Council of Thailand through Khon Kaen University (No. 61003302) and grant-in-aid from Faculty of Medicine (IN62302), Khon Kaen University, Thailand. RJ was supported by Studentship from Cholangiocarcinoma Research Institute, Khon Kaen University. We acknowledge Dr. Justin Thomas Reese for editing the manuscript via Publication Clinic KKU.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the study: VK. Performed the experiments: RJ, LS, SA, AP, and VK. Provided study materials: SA. LS, and AP. Analyzed the data: RJ, SA, LS, AP, and UK. Wrote the manuscript: VK and RJ.

Corresponding author

Correspondence to Veerapol Kukongviriyapan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaidee, R., Kongpetch, S., Senggunprai, L. et al. Phenformin inhibits proliferation, invasion, and angiogenesis of cholangiocarcinoma cells via AMPK-mTOR and HIF-1A pathways. Naunyn-Schmiedeberg's Arch Pharmacol 393, 1681–1690 (2020). https://doi.org/10.1007/s00210-020-01885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-01885-3

Keywords

Navigation