Skip to main content

Advertisement

Log in

FOXO transcription factors in cancer development and therapy

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The forkhead box O (FOXO) transcription factors are considered as tumor suppressors that limit cell proliferation and induce apoptosis. FOXO gene alterations have been described in a limited number of human cancers, such as rhabdomyosarcoma, leukemia and lymphoma. In addition, FOXO proteins are inactivated by major oncogenic signals such as the phosphatidylinositol-3 kinase pathway and MAP kinases. Their expression is also repressed by micro-RNAs in multiple cancer types. FOXOs are mediators of the tumor response to various therapies. However, paradoxical roles of FOXOs in cancer progression were recently described. FOXOs contribute to the maintenance of leukemia-initiating cells in acute and chronic myeloid leukemia. These factors may also promote invasion and metastasis of subsets of colon and breast cancers. Resistance to treatment was also ascribed to FOXO activation in multiple cases, including targeted therapies. In this review, we discuss the complex role of FOXOs in cancer development and response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fu Z, Tindall DJ (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27(16):2312–2319. doi:10.1038/onc.2008.24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC (1998) Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics 47(2):187–199. doi:10.1006/geno.1997.5122

    Article  CAS  PubMed  Google Scholar 

  3. Furuyama T, Nakazawa T, Nakano I, Mori N (2000) Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 349(Pt 2):629–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278(38):35959–35967. doi:10.1074/jbc.M302804200

    Article  CAS  PubMed  Google Scholar 

  5. Hosaka T, Biggs WH 3rd, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci USA 101(9):2975–2980. doi:10.1073/pnas.0400093101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27(16):2276–2288. doi:10.1038/onc.2008.21

    Article  CAS  PubMed  Google Scholar 

  7. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  8. Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380(Pt 2):297–309. doi:10.1042/BJ20040167

    Article  Google Scholar 

  9. Wang Y, Zhou Y, Graves DT (2014) FOXO transcription factors: their clinical significance and regulation. BioMed Res Int 2014:925350. doi:10.1155/2014/925350

    PubMed Central  PubMed  Google Scholar 

  10. Essaghir A, Dif N, Marbehant CY, Coffer PJ, Demoulin JB (2009) The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors. J Biol Chem 284(16):10334–10342. doi:10.1074/jbc.M808848200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. van der Vos KE, Coffer PJ (2011) The extending network of FOXO transcriptional target genes. Antioxid Redox Signal 14(4):579–592. doi:10.1089/ars.2010.3419

    Article  PubMed  CAS  Google Scholar 

  12. Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128(2):309–323. doi:10.1016/j.cell.2006.12.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441(7092):424–430. doi:10.1038/nature04869

    Article  CAS  PubMed  Google Scholar 

  14. Kharas MG, Deane JA, Wong S, O’Bosky KR, Rosenberg N, Witte ON, Fruman DA (2004) Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells. Blood 103(11):4268–4275. doi:10.1182/blood-2003-07-2193

    Article  CAS  PubMed  Google Scholar 

  15. Scheijen B, Ngo HT, Kang H, Griffin JD (2004) FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 23(19):3338–3349. doi:10.1038/sj.onc.1207456

    Article  CAS  PubMed  Google Scholar 

  16. Reagan-Shaw S, Ahmad N (2006) RNA interference-mediated depletion of phosphoinositide 3-kinase activates forkhead box class O transcription factors and induces cell cycle arrest and apoptosis in breast carcinoma cells. Cancer Res 66(2):1062–1069. doi:10.1158/0008-5472.CAN-05-1018

    Article  CAS  PubMed  Google Scholar 

  17. Prasad SB, Yadav SS, Das M, Govardhan HB, Pandey LK, Singh S, Pradhan S, Narayan G (2014) Down regulation of FOXO1 promotes cell proliferation in cervical cancer. J Cancer 5(8):655–662. doi:10.7150/jca.6554

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Kelly-Spratt KS, Philipp-Staheli J, Gurley KE, Hoon-Kim K, Knoblaugh S, Kemp CJ (2009) Inhibition of PI-3K restores nuclear p27Kip1 expression in a mouse model of Kras-driven lung cancer. Oncogene 28(41):3652–3662. doi:10.1038/onc.2009.226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Weidinger C, Krause K, Mueller K, Klagge A, Fuhrer D (2011) FOXO3 is inhibited by oncogenic PI3K/Akt signaling but can be reactivated by the NSAID sulindac sulfide. J Clin Endocrinol Metab 96(9):E1361–E1371. doi:10.1210/jc.2010-2453

    Article  CAS  PubMed  Google Scholar 

  20. Xie L, Ushmorov A, Leithauser F, Guan H, Steidl C, Farbinger J, Pelzer C, Vogel MJ, Maier HJ, Gascoyne RD, Moller P, Wirth T (2012) FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 119(15):3503–3511. doi:10.1182/blood-2011-09-381905

    Article  CAS  PubMed  Google Scholar 

  21. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC, Huang H, Kuo HP, Lee DF, Li LY, Lien HC, Cheng X, Chang KJ, Hsiao CD, Tsai FJ, Tsai CH, Sahin AA, Muller WJ, Mills GB, Yu D, Hortobagyi GN, Hung MC (2008) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10(2):138–148. doi:10.1038/ncb1676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sunayama J, Sato A, Matsuda K, Tachibana K, Watanabe E, Seino S, Suzuki K, Narita Y, Shibui S, Sakurada K, Kayama T, Tomiyama A, Kitanaka C (2011) FoxO3a functions as a key integrator of cellular signals that control glioblastoma stem-like cell differentiation and tumorigenicity. Stem Cells 29(9):1327–1337. doi:10.1002/stem.696

    CAS  PubMed  Google Scholar 

  23. Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC (2004) IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117(2):225–237

    Article  CAS  PubMed  Google Scholar 

  24. Chapuis N, Park S, Leotoing L, Tamburini J, Verdier F, Bardet V, Green AS, Willems L, Agou F, Ifrah N, Dreyfus F, Bismuth G, Baud V, Lacombe C, Mayeux P, Bouscary D (2010) IkappaB kinase overcomes PI3K/Akt and ERK/MAPK to control FOXO3a activity in acute myeloid leukemia. Blood 116(20):4240–4250. doi:10.1182/blood-2009-12-260711

    Article  CAS  PubMed  Google Scholar 

  25. Guo JP, Tian W, Shu S, Xin Y, Shou C, Cheng JQ (2013) IKBKE phosphorylation and inhibition of FOXO3a: a mechanism of IKBKE oncogenic function. PLoS One 8(5):e63636. doi:10.1371/journal.pone.0063636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lin H, Dai T, Xiong H, Zhao X, Chen X, Yu C, Li J, Wang X, Song L (2010) Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS One 5(12):e15797. doi:10.1371/journal.pone.0015797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Guo Y, Liu H, Zhang H, Shang C, Song Y (2012) miR-96 regulates FOXO1-mediated cell apoptosis in bladder cancer. Oncol Lett 4(3):561–565. doi:10.3892/ol.2012.775

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, Zakrzewski J, Blochin E, Rose A, Bogunovic D, Polsky D, Wei J, Lee P, Belitskaya-Levy I, Bhardwaj N, Osman I, Hernando E (2009) Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 106(6):1814–1819. doi:10.1073/pnas.0808263106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284(35):23204–23216. doi:10.1074/jbc.M109.031427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S, Lam EW (2010) Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 70(1):367–377. doi:10.1158/0008-5472.CAN-09-1891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Wu Z, Sun H, Zeng W, He J, Mao X (2012) Upregulation of MircoRNA-370 induces proliferation in human prostate cancer cells by downregulating the transcription factor FOXO1. PLoS One 7(9):e45825. doi:10.1371/journal.pone.0045825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pei H, Jin Z, Chen S, Sun X, Yu J, Guo W (2014) MiR-135b promotes proliferation and invasion of osteosarcoma cells via targeting FOXO1. Mol Cell Biochem. doi:10.1007/s11010-014-2281-2

    Google Scholar 

  33. Yang XW, Shen GZ, Cao LQ, Jiang XF, Peng HP, Shen G, Chen D, Xue P (2014) MicroRNA-1269 promotes proliferation in human hepatocellular carcinoma via downregulation of FOXO1. BMC Cancer 14(1):909. doi:10.1186/1471-2407-14-909

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Zhao Z, Qin L, Li S (2015) miR-411 contributes the cell proliferation of lung cancer by targeting FOXO1. Tumour Biol J Int Soc Oncodev Biol Med. doi:10.1007/s13277-015-4425-8

    Google Scholar 

  35. Ho KK, Myatt SS, Lam EW (2008) Many forks in the path: cycling with FoxO. Oncogene 27(16):2300–2311. doi:10.1038/onc.2008.23

    Article  CAS  PubMed  Google Scholar 

  36. Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, Place RF, Pookot D, Majid S, Igawa M, Dahiya R (2007) Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity. Oncogene 26(55):7647–7655. doi:10.1038/sj.onc.1210572

    Article  CAS  PubMed  Google Scholar 

  37. Shiota M, Song Y, Yokomizo A, Kiyoshima K, Tada Y, Uchino H, Uchiumi T, Inokuchi J, Oda Y, Kuroiwa K, Tatsugami K, Naito S (2010) Foxo3a suppression of urothelial cancer invasiveness through Twist1, Y-box-binding protein 1, and E-cadherin regulation. Clin Cancer Res Off J Am Assoc Cancer Res 16(23):5654–5663. doi:10.1158/1078-0432.CCR-10-0376

    Article  CAS  Google Scholar 

  38. Su B, Gao L, Baranowski C, Gillard B, Wang J, Ransom R, Ko HK, Gelman IH (2014) A genome-wide RNAi screen identifies FOXO4 as a metastasis-suppressor through counteracting PI3K/AKT signal pathway in prostate cancer. PLoS One 9(7):e101411. doi:10.1371/journal.pone.0101411

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Zhang H, Pan Y, Zheng L, Choe C, Lindgren B, Jensen ED, Westendorf JJ, Cheng L, Huang H (2011) FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion. Cancer Res 71(9):3257–3267. doi:10.1158/0008-5472.CAN-10-2603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M, Cichowski K (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10(6):459–472. doi:10.1016/j.ccr.2006.10.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. de Keizer PL, Packer LM, Szypowska AA, Riedl-Polderman PE, van den Broek NJ, de Bruin A, Dansen TB, Marais R, Brenkman AB, Burgering BM (2010) Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence. Cancer Res 70(21):8526–8536. doi:10.1158/0008-5472.CAN-10-1563

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Yoo SY, Kwon SM (2013) Angiogenesis and its therapeutic opportunities. Mediators Inflamm 2013:127170. doi:10.1155/2013/127170

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K, Hisatsune H, Nishikawa S, Nakayama K, Ikeda K, Motoyama N, Mori N (2004) Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem 279(33):34741–34749. doi:10.1074/jbc.M314214200

    Article  CAS  PubMed  Google Scholar 

  44. Abid MR, Shih SC, Otu HH, Spokes KC, Okada Y, Curiel DT, Minami T, Aird WC (2006) A novel class of vascular endothelial growth factor-responsive genes that require forkhead activity for expression. J Biol Chem 281(46):35544–35553. doi:10.1074/jbc.M608620200

    Article  CAS  PubMed  Google Scholar 

  45. Daly C, Wong V, Burova E, Wei Y, Zabski S, Griffiths J, Lai KM, Lin HC, Ioffe E, Yancopoulos GD, Rudge JS (2004) Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev 18(9):1060–1071. doi:10.1101/gad.1189704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A, Kollipara R, DePinho RA, Zeiher AM, Dimmeler S (2005) Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Investig 115(9):2382–2392. doi:10.1172/JCI23126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kim SY, Yoon J, Ko YS, Chang MS, Park JW, Lee HE, Kim MA, Kim JH, Kim WH, Lee BL (2011) Constitutive phosphorylation of the FOXO1 transcription factor in gastric cancer cells correlates with microvessel area and the expressions of angiogenesis-related molecules. BMC Cancer 11:264. doi:10.1186/1471-2407-11-264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Yalcin S, Marinkovic D, Mungamuri SK, Zhang X, Tong W, Sellers R, Ghaffari S (2010) ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3(−/−) mice. EMBO J 29(24):4118–4131. doi:10.1038/emboj.2010.292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegue E, DePinho RA, Gilliland DG (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2):325–339. doi:10.1016/j.cell.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  50. Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu WG (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12(7):665–675. doi:10.1038/ncb2069

    Article  CAS  PubMed  Google Scholar 

  51. Wang F, Marshall CB, Yamamoto K, Li GY, Plevin MJ, You H, Mak TW, Ikura M (2008) Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. J Mol Biol 384(3):590–603. doi:10.1016/j.jmb.2008.09.025

    Article  CAS  PubMed  Google Scholar 

  52. You H, Yamamoto K, Mak TW (2006) Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proc Natl Acad Sci USA 103(24):9051–9056. doi:10.1073/pnas.0600889103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bouchard C, Lee S, Paulus-Hock V, Loddenkemper C, Eilers M, Schmitt CA (2007) FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of Arf. Genes Dev 21(21):2775–2787. doi:10.1101/gad.453107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Renault VM, Thekkat PU, Hoang KL, White JL, Brady CA, Kenzelmann Broz D, Venturelli OS, Johnson TM, Oskoui PR, Xuan Z, Santo EE, Zhang MQ, Vogel H, Attardi LD, Brunet A (2011) The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene 30(29):3207–3221. doi:10.1038/onc.2011.35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ 3rd, Emanuel BS, Rovera G, Barr FG (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5(3):230–235. doi:10.1038/ng1193-230

    Article  CAS  PubMed  Google Scholar 

  56. Davis RJ, D’Cruz CM, Lovell MA, Biegel JA, Barr FG (1994) Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 54(11):2869–2872

    CAS  PubMed  Google Scholar 

  57. Xia SJ, Holder DD, Pawel BR, Zhang C, Barr FG (2009) High expression of the PAX3-FKHR oncoprotein is required to promote tumorigenesis of human myoblasts. Am J Pathol 175(6):2600–2608. doi:10.2353/ajpath.2009.090192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Linardic CM (2008) PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett 270(1):10–18. doi:10.1016/j.canlet.2008.03.035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Mercado GE, Xia SJ, Zhang C, Ahn EH, Gustafson DM, Lae M, Ladanyi M, Barr FG (2008) Identification of PAX3-FKHR-regulated genes differentially expressed between alveolar and embryonal rhabdomyosarcoma: focus on MYCN as a biologically relevant target. Genes Chromosomes Cancer 47(6):510–520. doi:10.1002/gcc.20554

    Article  CAS  PubMed  Google Scholar 

  60. Lagutina I, Conway SJ, Sublett J, Grosveld GC (2002) Pax3-FKHR knock-in mice show developmental aberrations but do not develop tumors. Mol Cell Biol 22(20):7204–7216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR (2004) Alveolar rhabdomyosarcomas in conditional Pax3: Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 18(21):2614–2626. doi:10.1101/gad.1244004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Fredericks WJ, Galili N, Mukhopadhyay S, Rovera G, Bennicelli J, Barr FG, Rauscher FJ 3rd (1995) The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 15(3):1522–1535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Borkhardt A, Repp R, Haas OA, Leis T, Harbott J, Kreuder J, Hammermann J, Henn T, Lampert F (1997) Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene 14(2):195–202. doi:10.1038/sj.onc.1200814

    Article  CAS  PubMed  Google Scholar 

  64. Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA (1997) AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 90(9):3714–3719

    CAS  PubMed  Google Scholar 

  65. Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH (2000) Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J 19(5):843–851. doi:10.1093/emboj/19.5.843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. So CW, Cleary ML (2002) MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol 22(18):6542–6552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. So CW, Cleary ML (2003) Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood 101(2):633–639. doi:10.1182/blood-2002-06-1785

    Article  CAS  PubMed  Google Scholar 

  68. Sugita S, Arai Y, Tonooka A, Hama N, Totoki Y, Fujii T, Aoyama T, Asanuma H, Tsukahara T, Kaya M, Shibata T, Hasegawa T (2014) A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 38(11):1571–1576. doi:10.1097/PAS.0000000000000286

    Article  PubMed  Google Scholar 

  69. Solomon DA, Brohl AS, Khan J, Miettinen M (2014) Clinicopathologic features of a second patient with Ewing-like sarcoma harboring CIC-FOXO4 gene fusion. Am J Surg Pathol 38(12):1724–1725. doi:10.1097/PAS.0000000000000335

    Article  PubMed Central  PubMed  Google Scholar 

  70. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, Johnson NA, Severson TM, Chiu R, Field M, Jackman S, Krzywinski M, Scott DW, Trinh DL, Tamura-Wells J, Li S, Firme MR, Rogic S, Griffith M, Chan S, Yakovenko O, Meyer IM, Zhao EY, Smailus D, Moksa M, Chittaranjan S, Rimsza L, Brooks-Wilson A, Spinelli JJ, Ben-Neriah S, Meissner B, Woolcock B, Boyle M, McDonald H, Tam A, Zhao Y, Delaney A, Zeng T, Tse K, Butterfield Y, Birol I, Holt R, Schein J, Horsman DE, Moore R, Jones SJ, Connors JM, Hirst M, Gascoyne RD, Marra MA (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476(7360):298–303. doi:10.1038/nature10351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Trinh DL, Scott DW, Morin RD, Mendez-Lago M, An J, Jones SJ, Mungall AJ, Zhao Y, Schein J, Steidl C, Connors JM, Gascoyne RD, Marra MA (2013) Analysis of FOXO1 mutations in diffuse large B-cell lymphoma. Blood 121(18):3666–3674. doi:10.1182/blood-2013-01-479865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Pellicano F, Scott MT, Helgason GV, Hopcroft LE, Allan EK, Aspinall-O’Dea M, Copland M, Pierce A, Huntly BJ, Whetton AD, Holyoake TL (2014) The antiproliferative activity of kinase inhibitors in chronic myeloid leukemia cells is mediated by FOXO transcription factors. Stem Cells 32(9):2324–2337. doi:10.1002/stem.1748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, Nakao S, Motoyama N, Hirao A (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463(7281):676–680. doi:10.1038/nature08734

    Article  CAS  PubMed  Google Scholar 

  74. Hurtz C, Hatzi K, Cerchietti L, Braig M, Park E, Kim YM, Herzog S, Ramezani-Rad P, Jumaa H, Muller MC, Hofmann WK, Hochhaus A, Ye BH, Agarwal A, Druker BJ, Shah NP, Melnick AM, Muschen M (2011) BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J Exp Med 208(11):2163–2174. doi:10.1084/jem.20110304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B, Ferraro F, Mercier F, Singh H, Brumme KM, Acharya SS, Scholl C, Tothova Z, Attar EC, Frohling S, DePinho RA, Armstrong SA, Gilliland DG, Scadden DT (2011) AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 146(5):697–708. doi:10.1016/j.cell.2011.07.032

    Article  CAS  PubMed  Google Scholar 

  76. Santamaria CM, Chillon MC, Garcia-Sanz R, Perez C, Caballero MD, Ramos F, de Coca AG, Alonso JM, Giraldo P, Bernal T, Queizan JA, Rodriguez JN, Fernandez-Abellan P, Barez A, Penarrubia MJ, Vidriales MB, Balanzategui A, Sarasquete ME, Alcoceba M, Diaz-Mediavilla J, San Miguel JF, Gonzalez M (2009) High FOXO3a expression is associated with a poorer prognosis in AML with normal cytogenetics. Leuk Res 33(12):1706–1709. doi:10.1016/j.leukres.2009.04.024

    Article  CAS  PubMed  Google Scholar 

  77. Gargini R, Cerliani JP, Escoll M, Anton IM, Wandosell F (2015) Cancer stem cell-like phenotype and survival are coordinately regulated by Akt/FoxO/Bim pathway. Stem Cells 33(3):646–660. doi:10.1002/stem.1904

    Article  CAS  PubMed  Google Scholar 

  78. Smit L, Berns K, Spence K, Ryder WD, Zeps N, Madiredjo M, Beijersbergen R, Bernards R, Clarke RB (2015) An integrated genomic approach identifies that the PI3K/AKT/FOXO pathway is involved in breast cancer tumor initiation. Oncotarget. doi:10.18632/oncotarget.6354

    Google Scholar 

  79. Prabhu VV, Allen JE, Dicker DT, El-Deiry WS (2015) Small-molecule ONC201/TIC10 targets chemotherapy-resistant colorectal cancer stem-like cells in an Akt/Foxo3a/TRAIL-dependent manner. Cancer Res 75(7):1423–1432. doi:10.1158/0008-5472.CAN-13-3451

    Article  CAS  PubMed  Google Scholar 

  80. Tenbaum SP, Ordonez-Moran P, Puig I, Chicote I, Arques O, Landolfi S, Fernandez Y, Herance JR, Gispert JD, Mendizabal L, Aguilar S, y Cajal SR, Schwartz S Jr, Vivancos A, Espin E, Rojas S, Baselga J, Tabernero J, Munoz A, Palmer HG (2012) Beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 18(6):892–901. doi:10.1038/nm.2772

    Article  CAS  PubMed  Google Scholar 

  81. Arques O, Chicote I, Puig I, Tenbaum SP, Argiles G, Dienstmann R, Fernandez N, Caratu G, Matito J, Silberschmidt D, Rodon J, Landolfi S, Prat A, Espin E, Charco R, Nuciforo P, Vivancos A, Shao W, Tabernero J, Palmer HG (2015) Tankyrase inhibition blocks Wnt/beta-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin Cancer Res Off J Am Assoc Cancer Res. doi:10.1158/1078-0432.CCR-14-3081

    Google Scholar 

  82. Sisci D, Maris P, Cesario MG, Anselmo W, Coroniti R, Trombino GE, Romeo F, Ferraro A, Lanzino M, Aquila S, Maggiolini M, Mauro L, Morelli C, Ando S (2013) The estrogen receptor alpha is the key regulator of the bifunctional role of FoxO3a transcription factor in breast cancer motility and invasiveness. Cell Cycle 12(21):3405–3420. doi:10.4161/cc.26421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Storz P, Doppler H, Copland JA, Simpson KJ, Toker A (2009) FOXO3a promotes tumor cell invasion through the induction of matrix metalloproteinases. Mol Cell Biol 29(18):4906–4917. doi:10.1128/MCB.00077-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Feng X, Wu Z, Wu Y, Hankey W, Prior TW, Li L, Ganju RK, Shen R, Zou X (2011) Cdc25A regulates matrix metalloprotease 1 through Foxo1 and mediates metastasis of breast cancer cells. Mol Cell Biol 31(16):3457–3471. doi:10.1128/MCB.05523-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Li Y, Yu J, Du D, Fu S, Chen Y, Yu F, Gao P (2013) Involvement of post-transcriptional regulation of FOXO1 by HuR in 5-FU-induced apoptosis in breast cancer cells. Oncol Lett 6(1):156–160. doi:10.3892/ol.2013.1352

    PubMed Central  PubMed  Google Scholar 

  86. Sunters A, Fernandez de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA, Coffer PJ, Medema RH, Coombes RC, Lam EW (2003) FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278(50):49795–49805. doi:10.1074/jbc.M309523200

    Article  CAS  PubMed  Google Scholar 

  87. Essafi A, Fernandez de Mattos S, Hassen YA, Soeiro I, Mufti GJ, Thomas NS, Medema RH, Lam EW (2005) Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 24(14):2317–2329. doi:10.1038/sj.onc.1208421

    Article  CAS  PubMed  Google Scholar 

  88. Yang JY, Hung MC (2011) Deciphering the role of forkhead transcription factors in cancer therapy. Curr Drug Targets 12(9):1284–1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK (2010) Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS One 5(12):e15288. doi:10.1371/journal.pone.0015288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Roy SK, Srivastava RK, Shankar S (2010) Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J Mol Signal 5:10. doi:10.1186/1750-2187-5-10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Valis K, Prochazka L, Boura E, Chladova J, Obsil T, Rohlena J, Truksa J, Dong LF, Ralph SJ, Neuzil J (2011) Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner. Cancer Res 71(3):946–954. doi:10.1158/0008-5472.CAN-10-2203

    Article  CAS  PubMed  Google Scholar 

  92. Han CY, Cho KB, Choi HS, Han HK, Kang KW (2008) Role of FoxO1 activation in MDR1 expression in adriamycin-resistant breast cancer cells. Carcinogenesis 29(9):1837–1844. doi:10.1093/carcin/bgn092

    Article  CAS  PubMed  Google Scholar 

  93. Hui RC, Francis RE, Guest SK, Costa JR, Gomes AR, Myatt SS, Brosens JJ, Lam EW (2008) Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells. Mol Cancer Ther 7(3):670–678. doi:10.1158/1535-7163.MCT-07-0397

    Article  CAS  PubMed  Google Scholar 

  94. Hui RC, Gomes AR, Constantinidou D, Costa JR, Karadedou CT, Fernandez de Mattos S, Wymann MP, Brosens JJ, Schulze A, Lam EW (2008) The forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression. Mol Cell Biol 28(19):5886–5898. doi:10.1128/MCB.01265-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N (2011) AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19(1):58–71. doi:10.1016/j.ccr.2010.10.031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Lin A, Piao HL, Zhuang L, Sarbassov DD, Ma L, Gan B (2014) FoxO transcription factors promote AKT Ser473 phosphorylation and renal tumor growth in response to pharmacological inhibition of the PI3K-AKT pathway. Cancer Res. doi:10.1158/0008-5472.CAN-13-1729

    Google Scholar 

  97. Ramanathan B, Jan KY, Chen CH, Hour TC, Yu HJ, Pu YS (2005) Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res 65(18):8455–8460. doi:10.1158/0008-5472.CAN-05-1162

    Article  CAS  PubMed  Google Scholar 

  98. Goto T, Takano M, Hirata J, Tsuda H (2008) The involvement of FOXO1 in cytotoxic stress and drug-resistance induced by paclitaxel in ovarian cancers. Br J Cancer 98(6):1068–1075. doi:10.1038/sj.bjc.6604279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Asada S, Daitoku H, Matsuzaki H, Saito T, Sudo T, Mukai H, Iwashita S, Kako K, Kishi T, Kasuya Y, Fukamizu A (2007) Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal 19(3):519–527. doi:10.1016/j.cellsig.2006.08.015

    Article  CAS  PubMed  Google Scholar 

  100. Matkar S, Sharma P, Gao S, Gurung B, Katona BW, Liao J, Muhammad AB, Kong XC, Wang L, Jin G, Dang CV, Hua X (2015) An epigenetic pathway regulates sensitivity of breast cancer cells to HER2 inhibition via FOXO/c-Myc axis. Cancer Cell 28(4):472–485. doi:10.1016/j.ccell.2015.09.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Wang W, Li NN, Du Y, Lv FF, Lin GQ (2013) FoxO3a and nilotinib-induced erythroid differentiation of CML-BC cells. Leuk Res 37(10):1309–1314. doi:10.1016/j.leukres.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  102. Szydlowski M, Kiliszek P, Sewastianik T, Jablonska E, Bialopiotrowicz E, Gorniak P, Polak A, Markowicz S, Nowak E, Grygorowicz MA, Prochorec-Sobieszek M, Szumera-Cieckiewicz A, Malenda A, Lech-Maranda E, Warzocha K, Juszczynski P (2015) FOXO1 activation is an effector of SYK and AKT inhibition in tonic BCR signal-dependent diffuse large B-cell lymphomas. Blood. doi:10.1182/blood-2015-06-654111

    PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from Salus Sanguinis foundation and from “Actions de Recherche Concertées” (Communauté Française de Belgique, Belgium). We apologize to authors whose excellent work could not be cited due to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Demoulin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coomans de Brachène, A., Demoulin, JB. FOXO transcription factors in cancer development and therapy. Cell. Mol. Life Sci. 73, 1159–1172 (2016). https://doi.org/10.1007/s00018-015-2112-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2112-y

Keywords

Navigation