Skip to main content

The Role of Chromosome Deletions in Human Cancers

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1044))

Abstract

Chromosome deletions are a hallmark of human cancers. These chromosome abnormalities have been observed for over than a century and frequently associated with poor prognosis. However, their functions and potential underlying mechanisms remain elusive until recently. Recent technique breakthroughs, including cancer genomics, high throughput library screening and genome editing, opened a new era in the mechanistic studying of chromosome deletions in human cancer. In this chapter, we will focus on the latest studies on the functions of chromosome deletions in human cancers, especially hematopoietic malignancies and try to persuade the readers that these chromosome alterations could play significant roles in the genesis and drug responses of human cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  2. Hansemann D (1890) Asymmetrical cell division in epithelial cancers and its biological significance. Arch Pathol Anat etc Berl 119:299–326

    Article  Google Scholar 

  3. Hansemann D (1891) Festschr. Rudolf Virchow, von seine Assistenten, Berl:1–12

    Google Scholar 

  4. Boveri T (1929) The origin of malignant tumors. Williams and Wilkins, Boston

    Google Scholar 

  5. Nowell PCH (1960) D.A. a minute chromosome in human chronic granulocytic leukemia. Science 132:1497

    Google Scholar 

  6. Shlien A, Malkin D (2009) Copy number variations and cancer. Genome Med 1:62. https://doi.org/10.1186/gm62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sherr CJ (2004) Principles of tumor suppression. Cell 116:235–246

    Article  CAS  PubMed  Google Scholar 

  8. Solimini NL et al (2012) Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 337:104–109. https://doi.org/10.1126/science.1219580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cai Y et al (2016) Loss of chromosome 8p governs tumor progression and drug response by altering lipid metabolism. Cancer Cell 29:751–766. https://doi.org/10.1016/j.ccell.2016.04.003

    Article  PubMed  CAS  Google Scholar 

  10. Liu Y et al (2016) Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature 531:471–475. https://doi.org/10.1038/nature17157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kotini AG et al (2015) Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nat Biotechnol 33:646–655. https://doi.org/10.1038/nbt.3178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wong JC et al. (2015) Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis. Elife 4. https://doi.org/10.7554/eLife.07839

  13. Chen C et al (2014) MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25:652–665. https://doi.org/10.1016/j.ccr.2014.03.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zender L et al (2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864. https://doi.org/10.1016/j.cell.2008.09.061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mader SS (2007) Biology. 9th edn. McGraw Hill Higher Education, New York

    Google Scholar 

  16. Rowley JDL (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    Article  CAS  PubMed  Google Scholar 

  17. Druker BJ et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042. https://doi.org/10.1056/NEJM200104053441402

    Article  PubMed  CAS  Google Scholar 

  18. Druker BJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037. https://doi.org/10.1056/NEJM200104053441401

    Article  PubMed  CAS  Google Scholar 

  19. Caspersson T, Zech L, Johansson C, Modest EJ (1970) Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 30:215–227

    Article  CAS  PubMed  Google Scholar 

  20. Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782–792. https://doi.org/10.1038/nrg1692

    Article  PubMed  CAS  Google Scholar 

  21. Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A 79:4381–4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kallioniemi A et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  CAS  PubMed  Google Scholar 

  23. Pinkel D, Albertson DG (2005) Array comparative genomic hybridization and its applications in cancer. Nat Genet 37(Suppl):S11–S17. https://doi.org/10.1038/ng1569

    Article  PubMed  CAS  Google Scholar 

  24. Beroukhim R et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905. https://doi.org/10.1038/nature08822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bignell GR et al (2010) Signatures of mutation and selection in the cancer genome. Nature 463:893–898. https://doi.org/10.1038/nature08768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685–696. https://doi.org/10.1038/nrg2841

    Article  PubMed  CAS  Google Scholar 

  27. Albertson DG, Collins C, McCormick F, Gray JW (2003) Chromosome aberrations in solid tumors. Nat Genet 34:369–376. https://doi.org/10.1038/ng1215

    Article  PubMed  CAS  Google Scholar 

  28. Kenneth Kaushansky ML, Prchal J, Levi MM, Press O, Burns L, Caligiuri M (2015) Williams hematology, 9th edn. McGraw-Hill Education, New York

    Google Scholar 

  29. Neuman WL et al (1992) Chromosomal loss and deletion are the most common mechanisms for loss of heterozygosity from chromosomes 5 and 7 in malignant myeloid disorders. Blood 79:1501–1510

    PubMed  CAS  Google Scholar 

  30. Zabarovsky ER, Lerman MI, Minna JD (2002) Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 21:6915–6935. https://doi.org/10.1038/sj.onc.1205835

    Article  PubMed  CAS  Google Scholar 

  31. Greenberg P et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088

    PubMed  CAS  Google Scholar 

  32. Nimer SD (2006) Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol 24:2576–2582

    Article  CAS  PubMed  Google Scholar 

  33. Haase D et al (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110:4385–4395

    Article  CAS  PubMed  Google Scholar 

  34. Soenen V et al (1998) 17p deletion in acute myeloid leukemia and myelodysplastic syndrome. Analysis of breakpoints and deleted segments by fluorescence in situ. Blood 91:1008–1015

    PubMed  CAS  Google Scholar 

  35. Sterkers Y et al (1998) Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p deletion. Blood 91:616–622

    PubMed  CAS  Google Scholar 

  36. Smith SM et al (2003) Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood 102:43–52

    Article  CAS  PubMed  Google Scholar 

  37. Levine EG et al (1990) Sequential karyotypes in non-Hodgkin lymphoma: their nature and significance. Genes Chromosom Cancer 1:270–280

    Article  CAS  PubMed  Google Scholar 

  38. Caporaso N et al (2007) Chronic lymphocytic leukaemia genetics overview. Brit J Haematol 139:630–634

    Article  CAS  Google Scholar 

  39. Chng W, Glebov O, Bergsagel P, Kuehl W (2007) Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol 20:571–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yokota J, Wada M, Shimosato Y, Terada M, Sugimura T (1987) Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc Natl Acad Sci 84:9252–9256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saito H et al (1993) Detailed deletion mapping of chromosome 17q in ovarian and breast cancers: 2-cM region on 17q21. 3 often and commonly deleted in tumors. Cancer Res 53:3382–3385

    PubMed  CAS  Google Scholar 

  42. Emi M et al (1992) Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer. Cancer Res 52:5368–5372

    PubMed  CAS  Google Scholar 

  43. Garcia JM et al (1999) Allelic loss of the PTEN region (10q23) in breast carcinomas of poor pathophenotype. Breast Cancer Res Treat 57:237–243

    Article  CAS  PubMed  Google Scholar 

  44. Van den Berghe H et al (1974) Distinct haematological disorder with deletion of long arm of no. 5 chromosome. Nature 251:437–438

    Article  PubMed  Google Scholar 

  45. List A et al (2006) Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 355:1456–1465. https://doi.org/10.1056/NEJMoa061292

    Article  PubMed  CAS  Google Scholar 

  46. Boultwood J, Pellagatti A, McKenzie AN, Wainscoat JS (2010) Advances in the 5q- syndrome. Blood 116:5803–5811. https://doi.org/10.1182/blood-2010-04-273771

    Article  PubMed  CAS  Google Scholar 

  47. Dastugue N et al (1995) Prognostic significance of karyotype in de novo adult acute myeloid leukemia. The BGMT group. Leukemia 9:1491–1498

    PubMed  CAS  Google Scholar 

  48. Qian Z et al (2010) Cytogenetic and genetic pathways in therapy-related acute myeloid leukemia. Chem Biol Interact 184:50–57. https://doi.org/10.1016/j.cbi.2009.11.025

    Article  PubMed  CAS  Google Scholar 

  49. Johnson E, Cotter FE (1997) Monosomy 7 and 7q--associated with myeloid malignancy. Blood Rev 11:46–55

    Article  CAS  PubMed  Google Scholar 

  50. Jerez A et al (2012) Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood 119:6109–6117. https://doi.org/10.1182/blood-2011-12-397620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Le Beau MM et al (1996) Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood 88:1930–1935

    PubMed  Google Scholar 

  52. Liang H et al (1998) Molecular anatomy of chromosome 7q deletions in myeloid neoplasms: evidence for multiple critical loci. Proc Natl Acad Sci U S A 95:3781–3785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jary L et al (1997) The 17p-syndrome: a distinct myelodysplastic syndrome entity? Leuk Lymphoma 25:163–168. https://doi.org/10.3109/10428199709042506

    Article  PubMed  CAS  Google Scholar 

  54. Sankar M et al (1998) Identification of a commonly deleted region at 17p13.3 in leukemia and lymphoma associated with 17p abnormality. Leukemia 12:510–516

    Article  CAS  PubMed  Google Scholar 

  55. Miller LD et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci U S A 102:13550–13555. https://doi.org/10.1073/pnas.0506230102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rowley JD, Le Beau MM (1989) Cytogenetic and molecular analysis of therapy-related leukemia. Ann N Y Acad Sci 567:130–140

    Article  CAS  PubMed  Google Scholar 

  57. Mermel CH et al (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12:R41. https://doi.org/10.1186/gb-2011-12-4-r41

    Article  PubMed  PubMed Central  Google Scholar 

  58. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68:820–823

    Article  PubMed  PubMed Central  Google Scholar 

  59. Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1:157–162. https://doi.org/10.1038/35101031

    Article  PubMed  CAS  Google Scholar 

  60. Machiela MJ et al (2016) Mosaic 13q14 deletions in peripheral leukocytes of non-hematologic cancer cases and healthy controls. J Hum Genet 61:411–418. https://doi.org/10.1038/jhg.2015.166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Witkiewicz AK, Knudsen KE, Dicker AP, Knudsen ES (2011) The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle 10:2497–2503. https://doi.org/10.4161/cc.10.15.16776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sulong S et al (2009) A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood 113:100–107. https://doi.org/10.1182/blood-2008-07-166801

    Article  PubMed  CAS  Google Scholar 

  63. Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758. https://doi.org/10.1038/nrc2723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008. https://doi.org/10.1101/cshperspect.a001008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Varley J, Germline M (2003) TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 21:313–320. https://doi.org/10.1002/humu.10185

    Article  PubMed  CAS  Google Scholar 

  66. Steck PA et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362. https://doi.org/10.1038/ng0497-356

    Article  PubMed  CAS  Google Scholar 

  67. Costa RM, Silva AJ (2002) Molecular and cellular mechanisms underlying the cognitive deficits associated with neurofibromatosis 1. J Child Neurol 17:622–626; discussion 627–629, 646–651. https://doi.org/10.1177/088307380201700813

    Article  PubMed  Google Scholar 

  68. Albertsen H et al (1994) Genetic mapping of the BRCA1 region on chromosome 17q21. Am J Hum Genet 54:516–525

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Nordstrom-O’Brien M et al (2010) Genetic analysis of von Hippel-Lindau disease. Hum Mutat 31:521–537. https://doi.org/10.1002/humu.21219

    Article  PubMed  CAS  Google Scholar 

  70. Santarosa M, Ashworth A (2004) Haploinsufficiency for tumour suppressor genes: when you don’t need to go all the way. Biochim Biophys Acta 1654:105–122. https://doi.org/10.1016/j.bbcan.2004.01.001

    Article  PubMed  CAS  Google Scholar 

  71. Quon KC, Berns A (2001) Haplo-insufficiency? Let me count the ways. Genes Dev 15:2917–2921. https://doi.org/10.1101/gad.949001

    Article  PubMed  CAS  Google Scholar 

  72. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396:177–180. https://doi.org/10.1038/24179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Komuro H et al (1999) p27KIP1 deletions in childhood acute lymphoblastic leukemia. Neoplasia 1:253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kawamata N et al (1995) Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in human malignancies. Cancer Res 55:2266–2269

    PubMed  CAS  Google Scholar 

  75. Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65–95. https://doi.org/10.1146/annurev-biochem-051710-134100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zang ZJ et al (2012) Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 44:570–574. https://doi.org/10.1038/ng.2246

    Article  PubMed  CAS  Google Scholar 

  77. Kandoth C et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339. https://doi.org/10.1038/nature12634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13:283–296. https://doi.org/10.1038/nrm3330

    Article  CAS  PubMed  Google Scholar 

  79. Chen Z et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730. https://doi.org/10.1038/nature03918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kwabi-Addo B et al (2001) Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci U S A 98:11563–11568. https://doi.org/10.1073/pnas.201167798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Alimonti A et al (2010) Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42:454–458. https://doi.org/10.1038/ng.556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Tang YC, Amon A (2013) Gene copy-number alterations: a cost-benefit analysis. Cell 152:394–405. https://doi.org/10.1016/j.cell.2012.11.043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Sheltzer JM et al (2017) Single-chromosome gains commonly function as tumor suppressors. Cancer Cell 31:240–255. https://doi.org/10.1016/j.ccell.2016.12.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Adams DJ et al (2004) Mutagenic insertion and chromosome engineering resource (MICER). Nat Genet 36:867–871. https://doi.org/10.1038/ng1388

    Article  PubMed  CAS  Google Scholar 

  85. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. https://doi.org/10.1126/science.1232033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Shalem O et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87. https://doi.org/10.1126/science.1247005

    Article  PubMed  CAS  Google Scholar 

  88. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165. https://doi.org/10.1038/sj.onc.1210302

    Article  PubMed  CAS  Google Scholar 

  89. Johnson EJ et al (1996) Molecular definition of a narrow interval at 7q22.1 associated with myelodysplasia. Blood 87:3579–3586

    PubMed  CAS  Google Scholar 

  90. Schwartz S et al (2003) Human-mouse alignments with BLASTZ. Genome Res 13:103–107. https://doi.org/10.1101/gr.809403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Wasserman WW, Palumbo M, Thompson W, Fickett JW, Lawrence CE (2000) Human-mouse genome comparisons to locate regulatory sites. Nat Genet 26:225–228. https://doi.org/10.1038/79965

    Article  PubMed  CAS  Google Scholar 

  92. Sanchez-Rivera FJ, Jacks T (2015) Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 15:387–395. https://doi.org/10.1038/nrc3950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Tschaharganeh DF, Bosbach B, Lowe SW (2016) Coordinated tumor suppression by chromosome 8p. Cancer Cell 29:617–619. https://doi.org/10.1016/j.ccell.2016.04.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kotini AG et al (2017) Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell Stem Cell 20:315–328 e317. https://doi.org/10.1016/j.stem.2017.01.009

  95. Papapetrou EP (2016) Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 22:1392–1401. https://doi.org/10.1038/nm.4238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Xue W et al (2012) A cluster of cooperating tumor-suppressor gene candidates in chromosomal deletions. Proc Natl Acad Sci U S A 109:8212–8217. https://doi.org/10.1073/pnas.1206062109

    Article  PubMed  PubMed Central  Google Scholar 

  97. Davoli T et al (2013) Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155:948–962. https://doi.org/10.1016/j.cell.2013.10.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Nijhawan D et al (2012) Cancer vulnerabilities unveiled by genomic loss. Cell 150:842–854. https://doi.org/10.1016/j.cell.2012.07.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Muller FL et al (2012) Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 488:337–342. https://doi.org/10.1038/nature11331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Davoli T, Uno H, Wooten EC, Elledge SJ (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355. https://doi.org/10.1126/science.aaf8399

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, M., Yang, Y., Liu, Y., Chen, C. (2018). The Role of Chromosome Deletions in Human Cancers. In: Zhang, Y. (eds) Chromosome Translocation. Advances in Experimental Medicine and Biology, vol 1044. Springer, Singapore. https://doi.org/10.1007/978-981-13-0593-1_9

Download citation

Publish with us

Policies and ethics