Skip to main content

MicroRNAs in Human Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 774))

Abstract

Mature microRNAs (miRNAs) are single-stranded RNA molecules of 20–23-nucleotide (nt) length that control gene expression in many cellular processes. These molecules typically reduce the translation and stability of mRNAs, including those of genes that mediate processes in tumorigenesis, such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and invasion. miRNA targeting is initiated through specific base-pairing interactions between the 5′ end (“seed” region) of the miRNA and sites within coding and untranslated regions (UTRs) of mRNAs; target sites in the 3′ UTR lead to more effective mRNA destabilization. Since miRNAs frequently target hundreds of mRNAs, miRNA regulatory pathways are complex. To provide a critical overview of miRNA dysregulation in cancer, we first discuss the methods currently available for studying the role of miRNAs in cancer and then review miRNA genomic organization, biogenesis, and mechanism of target recognition, examining how these processes are altered in tumorigenesis. Given the critical role miRNAs play in tumorigenesis processes and their disease specific expression, they hold potential as therapeutic targets and novel biomarkers.

An erratum to this chapter is available at 10.1007/978-94-007-5590-1_17

T. T. is cofounder of and scientific advisor to Alnylam Pharmaceuticals and scientific advisor to Regulus Therapeutics.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-5590-1_17

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  2. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    CAS  PubMed  Google Scholar 

  3. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    CAS  PubMed  Google Scholar 

  4. Wightman B, Burglin TR, Gatto J et al (1991) Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 5:1813–1824

    CAS  PubMed  Google Scholar 

  5. Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    CAS  PubMed  Google Scholar 

  6. Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    CAS  PubMed  Google Scholar 

  7. Lau NC, Lim LP, Weinstein EG et al (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    CAS  PubMed  Google Scholar 

  8. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    CAS  PubMed  Google Scholar 

  9. Garofalo M, Croce CM (2010) microRNAs: master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol 51:25–43

    Google Scholar 

  10. Medina PP, Slack FJ (2008) microRNAs and cancer: an overview. Cell Cycle 7:2485–2492

    CAS  PubMed  Google Scholar 

  11. Ventura A, Jacks T (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136:586–591

    CAS  PubMed  Google Scholar 

  12. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Calin GA, Liu CG, Sevignani C et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101:11755–11760

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    CAS  PubMed  Google Scholar 

  15. Aravin A, Tuschl T (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579:5830–5840

    CAS  PubMed  Google Scholar 

  16. Creighton CJ, Reid JG, Gunaratne PH (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10:490–497

    CAS  PubMed  Google Scholar 

  17. Meyer SU, Pfaffl MW, Ulbrich SE (2010) Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity? Biotechnol Lett 32(12):1777–1788

    CAS  PubMed  Google Scholar 

  18. Lawrie CH, Soneji S, Marafioti T et al (2007) MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 121:1156–1161

    CAS  PubMed  Google Scholar 

  19. Weng L, Wu X, Gao H et al (2010) MicroRNA profiling of clear cell renal cell carcinoma by whole-genome small RNA deep sequencing of paired frozen and formalin-fixed, paraffin-embedded tissue specimens. J Pathol 222:41–51

    CAS  PubMed  Google Scholar 

  20. Xi Y, Nakajima G, Gavin E et al (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13:1668–1674

    CAS  PubMed  Google Scholar 

  21. Barad O, Meiri E, Avniel A et al (2004) MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14:2486–2494

    CAS  PubMed  Google Scholar 

  22. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    CAS  PubMed  Google Scholar 

  23. Thomson JM, Parker JS, Hammond SM (2007) Microarray analysis of miRNA gene expression. Methods Enzymol 427:107–122

    CAS  PubMed  Google Scholar 

  24. Nelson PT, Baldwin DA, Scearce LM et al (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161

    CAS  PubMed  Google Scholar 

  25. Bissels U, Wild S, Tomiuk S et al (2009) Absolute quantification of microRNAs by using a universal reference. RNA 15:2375–2384

    CAS  PubMed  Google Scholar 

  26. Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14:844–852

    CAS  PubMed  Google Scholar 

  27. Fiedler SD, Carletti MZ, Christenson LK (2010) Quantitative RT-PCR methods for mature microRNA expression analysis. Methods Mol Biol 630:49–64

    CAS  PubMed  Google Scholar 

  28. Mestdagh P, Van Vlierberghe P, De Weer A et al (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10:R64

    PubMed Central  PubMed  Google Scholar 

  29. Smith RD, Brown B, Ikonomi P et al (2003) Exogenous reference RNA for normalization of real-time quantitative PCR. Biotechniques 34:88–91

    CAS  PubMed  Google Scholar 

  30. Taulli R, Bersani F, Foglizzo V et al (2009) The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J Clin Invest 119:2366–2378

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Berezikov E, Thuemmler F, van Laake LW et al (2006) Diversity of microRNAs in human and chimpanzee brain. Nat Genet 38:1375–1377

    CAS  PubMed  Google Scholar 

  32. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific microRNAs. Dev Cell 5:351–358

    CAS  PubMed  Google Scholar 

  33. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Witten D, Tibshirani R, Gu SG et al (2010) Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol 8:58

    PubMed Central  PubMed  Google Scholar 

  35. Vigneault F, Sismour AM, Church GM (2008) Efficient microRNA capture and bar-coding via enzymatic oligonucleotide adenylation. Nat Methods 5:777–779

    CAS  PubMed  Google Scholar 

  36. Hafner M, Renwick N, Brown M et al (2011) RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 17:1697–1712

    CAS  PubMed  Google Scholar 

  37. Git A, Dvinge H, Salmon-Divon M et al (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16:991–1006

    CAS  PubMed  Google Scholar 

  38. Ugras S, Brill E, Jacobsen A et al (2011) Small RNA sequencing and functional characterization reveals microRNA-143 tumor suppressor activity in liposarcoma. Cancer Res 71:5659–5669

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Farazi TA, Horlings HM, Ten Hoeve JJ et al (2011) MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res 71:4443–4453

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Berninger P, Gaidatzis D, van Nimwegen E et al (2008) Computational analysis of small RNA cloning data. Methods 44:13–21

    CAS  PubMed  Google Scholar 

  42. Robinson MD, McCarthy DJ, Smyth GK (2010) EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    CAS  PubMed  Google Scholar 

  43. Nelson PT, Baldwin DA, Kloosterman WP et al (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12:187–191

    CAS  PubMed  Google Scholar 

  44. Pena JT, Sohn-Lee C, Rouhanifard SH et al (2009) miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat Methods 6:139–141

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Sempere LF, Christensen M, Silahtaroglu A et al (2007) Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67:11612–11620

    CAS  PubMed  Google Scholar 

  46. Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426:845–849

    CAS  PubMed  Google Scholar 

  47. Griffiths-Jones S, Saini HK, van Dongen S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Kozomara A, Griffiths-Jones S (2010) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    PubMed Central  PubMed  Google Scholar 

  49. Chiang HR, Schoenfeld LW, Ruby JG et al (2010) Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24:992–1009

    CAS  PubMed  Google Scholar 

  50. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Tagawa H, Seto M (2005) A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 19:2013–2016

    CAS  PubMed  Google Scholar 

  52. Mavrakis KJ, Wolfe AL, Oricchio E et al (2010) Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 12:372–379

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Huse JT, Brennan C, Hambardzumyan D et al (2009) The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23:1327–1337

    CAS  PubMed  Google Scholar 

  54. Gauwerky CE, Huebner K, Isobe M et al (1989) Activation of MYC in a masked t(8;17) translocation results in an aggressive B-cell leukemia. Proc Natl Acad Sci U S A 86:8867–8871

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Etiemble J, Moroy T, Jacquemin E et al (1989) Fused transcripts of c-myc and a new cellular locus, hcr in a primary liver tumor. Oncogene 4:51–57

    CAS  PubMed  Google Scholar 

  56. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  57. Chang TC, Wentzel EA, Kent OA et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752

    CAS  PubMed Central  PubMed  Google Scholar 

  58. He L, He X, Lowe SW et al (2007) microRNAs join the p53 network – another piece in the tumour-suppression puzzle. Nat Rev Cancer 7:819–822

    CAS  PubMed  Google Scholar 

  59. Hatley ME, Patrick DM, Garcia MR et al (2010) Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18:282–293

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Huang TH, Wu F, Loeb GB et al (2009) Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem 284:18515–18524

    CAS  PubMed  Google Scholar 

  61. O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    PubMed  Google Scholar 

  62. He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    CAS  PubMed  Google Scholar 

  63. Han L, Witmer PD, Casey E et al (2007) DNA methylation regulates MicroRNA expression. Cancer Biol Ther 6:1284–1288

    CAS  PubMed  Google Scholar 

  64. Saito Y, Jones PA (2006) Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 5:2220–2222

    CAS  PubMed  Google Scholar 

  65. Saito Y, Liang G, Egger G et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    CAS  PubMed  Google Scholar 

  66. Lehmann U, Hasemeier B, Christgen M et al (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214:17–24

    CAS  PubMed  Google Scholar 

  67. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  68. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148

    CAS  PubMed  Google Scholar 

  70. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    CAS  PubMed  Google Scholar 

  73. Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    CAS  PubMed  Google Scholar 

  74. Kwak PB, Iwasaki S, Tomari Y (2010) The microRNA pathway and cancer. Cancer Sci 101(11):2309–2315

    CAS  PubMed  Google Scholar 

  75. Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10:389–402

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Yi R, Pasolli HA, Landthaler M et al (2009) DGCR8-dependent microRNA biogenesis is essential for skin development. Proc Natl Acad Sci U S A 106:498–502

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Cheloufi S, Dos Santos CO, Chong MM et al (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465:584–589

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Yang JS, Maurin T, Robine N et al (2010) Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A 107:15163–15168

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Babiarz JE, Ruby JG, Wang Y et al (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22:2773–2785

    CAS  PubMed  Google Scholar 

  81. Berezikov E, Chung WJ, Willis J et al (2007) Mammalian mirtron genes. Mol Cell 28:328–336

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903

    CAS  PubMed Central  PubMed  Google Scholar 

  83. van Kouwenhove M, Kedde M, Agami R (2011) MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11:644–656

    PubMed  Google Scholar 

  84. Hagan JP, Piskounova E, Gregory RI (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16:1021–1025

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Kawahara Y, Zinshteyn B, Chendrimada TP et al (2007) RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep 8:763–769

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    CAS  PubMed  Google Scholar 

  87. Kumar MS, Lu J, Mercer KL et al (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

    CAS  PubMed  Google Scholar 

  88. Kumar MS, Pester RE, Chen CY et al (2009) Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 23:2700–2704

    CAS  PubMed  Google Scholar 

  89. Lambertz I, Nittner D, Mestdagh P et al (2010) Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death Differ 17:633–641

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Paroo Z, Ye X, Chen S et al (2009) Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 139:112–122

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Melo SA, Ropero S, Moutinho C et al (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41:365–370

    CAS  PubMed  Google Scholar 

  92. Garre P, Perez-Segura P, Diaz-Rubio E et al (2010) Reassessing the TARBP2 mutation rate in hereditary nonpolyposis colorectal cancer. Nat Genet 42:817–818; author reply 818

    CAS  PubMed  Google Scholar 

  93. Valastyan S, Weinberg RA (2010) Metastasis suppression: a role of the Dice(r). Genome Biol 11:141

    PubMed Central  PubMed  Google Scholar 

  94. Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14:1539–1549

    CAS  PubMed  Google Scholar 

  95. Piskounova E, Viswanathan SR, Janas M et al (2008) Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem 283:21310–21314

    CAS  PubMed  Google Scholar 

  96. Rybak A, Fuchs H, Smirnova L et al (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10:987–993

    CAS  PubMed  Google Scholar 

  97. Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320:97–100

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Viswanathan SR, Powers JT, Einhorn W et al (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41:843–848

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Viswanathan SR, Daley GQ (2010) Lin28: a microRNA regulator with a macro role. Cell 140:445–449

    CAS  PubMed  Google Scholar 

  100. Fukuda T, Yamagata K, Fujiyama S et al (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9:604–611

    CAS  PubMed  Google Scholar 

  101. Suzuki HI, Yamagata K, Sugimoto K et al (2009) Modulation of microRNA processing by p53. Nature 460:529–533

    CAS  PubMed  Google Scholar 

  102. Davis BN, Hilyard AC, Lagna G et al (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200):56–61

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Trabucchi M, Briata P, Garcia-Mayoral M et al (2009) The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459:1010–1014

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Melo SA, Moutinho C, Ropero S et al (2010) A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18:303–315

    CAS  PubMed  Google Scholar 

  105. Ender C, Meister G (2010) Argonaute proteins at a glance. J Cell Sci 123:1819–1823

    CAS  PubMed  Google Scholar 

  106. Parker JS (2010) How to slice: snapshots of Argonaute in action. Silence 1:3

    PubMed Central  PubMed  Google Scholar 

  107. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    CAS  PubMed  Google Scholar 

  108. Linsley PS, Schelter J, Burchard J et al (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27:2240–2252

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Zhao Y, Ransom JF, Li A et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:303–317

    CAS  PubMed  Google Scholar 

  110. Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    CAS  PubMed  Google Scholar 

  111. Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    CAS  PubMed  Google Scholar 

  112. Baek D, Villen J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Selbach M, Schwanhausser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    CAS  PubMed  Google Scholar 

  114. Grimson A, Farh KK, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Hausser J, Landthaler M, Jaskiewicz L et al (2009) Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets. Genome Res 19:2009–2020

    CAS  PubMed  Google Scholar 

  116. Karginov FV, Conaco C, Xuan Z et al (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104:19291–19296

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Krützfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    PubMed  Google Scholar 

  118. Landthaler M, Gaidatzis D, Rothballer A et al (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14:2580–2596

    CAS  PubMed  Google Scholar 

  119. Guo H, Ingolia NT, Weissman JS et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Mu P, Han YC, Betel D et al (2009) Genetic dissection of the miR-17 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23:2806–2811

    CAS  PubMed  Google Scholar 

  121. Wu S, Huang S, Ding J et al (2010) Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29:2302–2308

    CAS  PubMed  Google Scholar 

  122. Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    CAS  PubMed  Google Scholar 

  123. Chin LJ, Ratner E, Leng S et al (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68:8535–8540

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Jiang S, Zhang HW, Lu MH et al (2010) MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 70:3119–3127

    CAS  PubMed  Google Scholar 

  125. Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    CAS  PubMed  Google Scholar 

  126. Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Mayr C, Bartel DP (2009) Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Bhattacharyya SN, Habermacher R, Martine U et al (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124

    CAS  PubMed  Google Scholar 

  130. Kim HH, Kuwano Y, Srikantan S et al (2009) HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23:1743–1748

    CAS  PubMed  Google Scholar 

  131. Kedde M, Strasser MJ, Boldajipour B et al (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–1286

    CAS  PubMed  Google Scholar 

  132. Kedde M, van Kouwenhove M, Zwart W et al (2010) A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12:1014–1020

    CAS  PubMed  Google Scholar 

  133. Volinia S, Galasso M, Costinean S et al (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20:589–599

    CAS  PubMed  Google Scholar 

  134. Mestdagh P, Lefever S, Pattyn F et al (2011) The microRNA body map: dissecting microRNA function through integrative genomics. Nucleic Acids Res 39(20):e136

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Keller A, Leidinger P, Bauer A et al (2011) Toward the blood-borne miRNome of human diseases. Nat Methods 8(10):841–843

    CAS  PubMed  Google Scholar 

  136. Calin GA, Cimmino A, Fabbri M et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105:5166–5171

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18:505–516

    CAS  PubMed  Google Scholar 

  138. Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8:843–852

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Osada H, Takahashi T (2011) let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 102:9–17

    CAS  PubMed  Google Scholar 

  140. O’Day E, Lal A (2010) MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 12:201

    PubMed Central  PubMed  Google Scholar 

  141. Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17:215–220

    CAS  PubMed  Google Scholar 

  142. Finnerty JR, Wang WX, Hebert SS et al (2010) The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 402:491–509

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Uziel T, Karginov FV, Xie S et al (2009) The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci U S A 106:2812–2817

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Poliseno L, Salmena L, Riccardi L et al (2010) Identification of the miR-106b∼25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3:ra29

    PubMed Central  PubMed  Google Scholar 

  146. Jazbutyte V, Thum T (2010) MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets 11:926–935

    CAS  PubMed  Google Scholar 

  147. Sander S, Bullinger L, Klapproth K et al (2008) MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112:4202–4212

    CAS  PubMed  Google Scholar 

  148. Kota J, Chivukula RR, O’Donnell KA et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Visone R, Pallante P, Vecchione A et al (2007) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26:7590–7595

    CAS  PubMed  Google Scholar 

  150. Kim H, Huang W, Jiang X et al (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci U S A 107:2183–2188

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Cole KA, Attiyeh EF, Mosse YP et al (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Li N, Fu H, Tie Y et al (2009) miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275:44–53

    CAS  PubMed  Google Scholar 

  153. Gregory PA, Bracken CP, Bert AG et al (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7:3112–3118

    CAS  PubMed  Google Scholar 

  154. Nakada C, Matsuura K, Tsukamoto Y et al (2008) Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol 216:418–427

    CAS  PubMed  Google Scholar 

  155. Du Y, Xu Y, Ding L et al (2009) Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 44:556–561

    CAS  PubMed  Google Scholar 

  156. Adam L, Zhong M, Choi W et al (2009) miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15:5060–5072

    CAS  PubMed  Google Scholar 

  157. Bendoraite A, Knouf EC, Garg KS et al (2009) Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecol Oncol 116:117–125

    PubMed Central  PubMed  Google Scholar 

  158. Park SM, Gaur AB, Lengyel E et al (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907

    CAS  PubMed  Google Scholar 

  159. Hu X, Macdonald DM, Huettner PC et al (2009) A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol 114:457–464

    CAS  PubMed  Google Scholar 

  160. Gandellini P, Folini M, Longoni N (2009) miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res 69:2287–2295

    CAS  PubMed  Google Scholar 

  161. Schaefer A, Jung M, Mollenkopf HJ et al (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126:1166–1176

    CAS  PubMed  Google Scholar 

  162. Wiklund ED, Bramsen JB, Hulf T et al (2011) Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 128:1327–1334

    CAS  PubMed  Google Scholar 

  163. Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    CAS  PubMed  Google Scholar 

  164. Wu H, Zhu S, Mo YY (2009) Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 19:439–448

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Feber A, Xi L, Luketich JD et al (2008) MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 135:255–260; discussion 260

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Iorio MV, Visone R, Di Leva G et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707

    CAS  PubMed  Google Scholar 

  167. Negrini M, Calin GA (2008) Breast cancer metastasis: a microRNA story. Breast Cancer Res 10:203

    PubMed Central  PubMed  Google Scholar 

  168. Ferretti E, De Smaele E, Po A et al (2009) MicroRNA profiling in human medulloblastoma. Int J Cancer 124:568–577

    CAS  PubMed  Google Scholar 

  169. Laios A, O’Toole S, Flavin R et al (2008) Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer 7:35

    PubMed Central  PubMed  Google Scholar 

  170. Ma L, Young J, Prabhala H et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247–256

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Sun Y, Wu J, Wu SH et al (2009) Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Res Treat 118:185–196

    CAS  PubMed  Google Scholar 

  172. Kumar MS, Erkeland SJ, Pester RE et al (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci 105:3903–3908

    CAS  PubMed  Google Scholar 

  173. Xiao C, Srinivasan L, Calado DP et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9:405–414

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:86–90

    CAS  PubMed  Google Scholar 

  175. Costinean S, Zanesi N, Pekarsky Y et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 103:7024–7029

    CAS  PubMed Central  PubMed  Google Scholar 

  176. O’Connell RM, Rao DS, Chaudhuri AA et al (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205:585–594

    PubMed Central  PubMed  Google Scholar 

  177. Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69:7495–7498

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Camps C, Buffa FM, Colella S et al (2008) hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14:1340–1348

    CAS  PubMed  Google Scholar 

  179. Foekens JA, Sieuwerts AM, Smid M et al (2008) Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci 105:13021–13026

    CAS  PubMed  Google Scholar 

  180. Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    CAS  PubMed  Google Scholar 

  181. Valastyan S, Benaich N, Chang A et al (2009) Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev 23:2592–2597

    CAS  PubMed  Google Scholar 

  182. Cano A, Nieto MA (2008) Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends Cell Biol 18:357–359

    CAS  PubMed  Google Scholar 

  183. Yu F, Yao H, Zhu P et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123

    CAS  PubMed  Google Scholar 

  184. Lewis MA, Quint E, Glazier AM et al (2009) An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet 41:614–618

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Mencia A, Modamio-Hoybjor S, Redshaw N et al (2009) Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet 41:609–613

    CAS  PubMed  Google Scholar 

  186. Gottwein E, Cai X, Cullen BR (2006) Expression and function of microRNAs encoded by Kaposi’s sarcoma-associated herpesvirus. Cold Spring Harb Symp Quant Biol 71:357–364

    CAS  PubMed  Google Scholar 

  187. de Pontual L, Yao E, Callier P (2011) Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat Genet 43(10):1026–1030

    PubMed Central  PubMed  Google Scholar 

  188. Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    CAS  PubMed  Google Scholar 

  189. Raveche ES, Salerno E, Scaglione BJ et al (2007) Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 109:5079–5086

    CAS  PubMed  Google Scholar 

  190. Chi SW, Zang JB, Mele A et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Johnson CD, Esquela-Kerscher A, Stefani G et al (2007) The let-7 MicroRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722

    CAS  PubMed  Google Scholar 

  193. Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    CAS  PubMed  Google Scholar 

  194. Esau C, Kang X, Peralta E et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361–52365

    CAS  PubMed  Google Scholar 

  195. Krutzfeldt J, Kuwajima S, Braich R et al (2007) Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 35:2885–2892

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Elmen J, Lindow M, Silahtaroglu A et al (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36:1153–1162

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Esau C, Davis S, Murray SF et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    CAS  PubMed  Google Scholar 

  198. Elmen J, Lindow M, Schutz S et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899

    CAS  PubMed  Google Scholar 

  199. Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16:2043–2050

    CAS  PubMed  Google Scholar 

  200. Lanford RE, Hildebrandt-Eriksen ES, Petri A et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Iddo Ben-Dov for sharing his unpublished data and Miguel Brown and Aleksandra Mihailovic for assistance with figure generation. We thank Markus Hafner, Kemal Akat, and Neil Renwick for their help with editing the manuscript. T.F. is supported by Grant #UL1 TR000043 from the National Center for Research Resources and the National Center for Advancing Translational Sciences (NCATS), NIH. J.I.H. is supported by the Deutsche Forschungsgemeinschaft. T.T. is an HHMI investigator, and work in his laboratory was supported by NIH grant MH08442, RC1CA145442 and the Starr Cancer Foundation. We apologize to those investigators whose work we could not cite due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Tuschl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Farazi, T.A., Hoell, J.I., Morozov, P., Tuschl, T. (2013). MicroRNAs in Human Cancer. In: Schmitz, U., Wolkenhauer, O., Vera, J. (eds) MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology, vol 774. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5590-1_1

Download citation

Publish with us

Policies and ethics