Skip to main content

Therapeutic Targeting of Glutamine Metabolism in Colorectal Cancer

  • Chapter
  • First Online:
Book cover Colon Cancer Diagnosis and Therapy

Abstract

Colorectal cancer is one of the most commonly diagnosed incurable multifactorial malignancies in the world. To date, there are no promising noninvasive therapeutic tools that have achieved CRC prognosis, survival, and recurrence in clinical settings. We are now very familiar with the most famed term “metabolic reprogramming” that cancer cells preferably employ to meet their rapid bioenergetic and ATP synthesis requirements. Glutamine is the most abundant amino acid in human blood plasma and is known for its significant pleotropic role in the metabolic network.

Here, we exposed the metabolic distortion associated with the metabolism of glutamine in the CRC. Classically, findings have shown that dysregulated glutamine metabolism is significantly associated with CRC growth, survival, metastases, and recurrence. As a result, blocking signaling pathways, enzymes, and transporters associated with glutamine metabolism could be a gold standard strategy to hijack the development of CRC. We hope that this strategy will help to systematically target, manage, and cure CRC.

Yashwant Kumar Ratre and Henu Kumar Verma contributed equally to this work as first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

968:

5-[3-Bromo-4-(dimethylamino)phenyl]-2,3,5,6-tetrahydro-2,2-dimethyl-benzo[a]phenanthridin-4(1H)-one

ABCA1:

ATP-binding cassette transporter A1

ACSL1:

Adipose acyl-CoA synthetase-1

AGPAT1:

1-Acylglycerol-3-phosphate o-acyltransferase 1

ALL:

Acute lymphoblastic leukemia

ALT:

Alanine aminotransferase

AOA:

Aminooxyacetate

AST:

Aspartate aminotransferase

ATP:

Adenosine triphosphate

BCH:

2-Aminobicyclo-(2,2,1)-heptane-2-carboxylic acid

BPTES:

Bis-2-(5-phenylacetamido-1,3,4-thiadiazol2-yl)ethyl sulfide

CAD:

Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase

CB-839:

Telaglenastat

COX2:

Cyclooxygenase-2

CRC:

Colorectal cancer

DNA:

Deoxyribonucleic acid

E2F:

E2 promoter binding factor

EAA:

Essential amino acid

EAAT:

Excitatory amino acid transporter

EGCG:

Epigallocatechin gallate

FADH2:

Flavin adenine dinucleotide

FASN:

Fatty acid synthase

FBP1:

Fructose-1,6-bisphosphatase

FDA:

US Food and Drug Administration

GABA:

Gamma aminobutyric acid

GFAT:

Glutamine fructose-6-phosphate amidotransferase

GLN:

Glutamine

GLS:

Glutaminase

GLU:

Glutamate

GLUD:

Glutamate dehydrogenase

GLUT1:

Glucose transporter 1

GOT2:

Glutamate-oxalate transaminase

GPNA:

L-γ-Glutamyl-p-nitroanilide

GPT2:

Glutamate-pyruvate transaminase

GSH:

Glutathione

HIF-2α:

Hypoxia-inducible factor-2

HK:

Hexokinase

HND:

Hartnup disorder

HSF1:

Heat shock factor 1

JPH203:

(S)-2-amino-3-(4-((5-amino-2-phenylbenzo[d]oxazol-7-yl)methoxy)-3,5-dichlorophenyl

KRAS:

Kirsten rat sarcoma viral oncogene

LDH:

Lactate dehydrogenase

L-DON:

6-Diazo-5-oxo-L-norleucine

MCT4:

Monocarboxylate transporter 4

miRNA:

MicroRNA

MPC1:

Mitochondrial pyruvate carrier 1

mTOR:

Mammalian target of rapamycin

NAD:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate oxidase

NEAA:

Non-essential amino acid

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NH3:

Ammonia

OXPHOS:

Oxidative phosphorylation

p53:

Tumor suppressor 53

PET:

Positron emission tomography

PHGDH:

Phosphoglycerate dehydrogenase

PKCζ:

Protein kinase C zeta

PKM2:

Pyruvate kinase muscle isozyme M2

PPARG:

Peroxisome proliferator-activated receptor gamma

PSAT1:

Phosphoserine aminotransferase 1

R162:

2-Allyl-1-hydroxy-9,10-anthraquinone

Rb:

Retinoblastoma

ROS:

Reactive oxygen species

SAM:

S-Adenosylmethionine

SCD1:

Stearoyl-coenzyme A desaturase 1

SIRT4:

Sirtuin-4

SLC1:

Solute carrier 1

SLC1A5:

Solute carrier family 1 member 5

SLC38:

Solute carrier 38

SLC38A1:

Solute carrier family 38 member 1

SLC38A2:

Solute carrier family 38 member 2

SLC38A3:

Solute carrier family 38 member 3

SLC38A5:

Solute carrier family 38 member 5

SLC38A7:

Solute carrier family 38 member 7

SLC6:

Solute carrier 6

SLC6A14:

Solute carrier family 6 member 14

SLC6A19:

Solute carrier family 6 member 19

SLC7:

Solute carrier 7

SLC7A5:

Solute carrier family 7 member 5

SLC7A6:

Solute carrier family 7 member 6

SLC7A7:

Solute carrier family 7 member 7

SLC7A8:

Solute carrier family 7 member 8

SLC7A9:

Solute carrier family 7 member 9

SSZ:

Sulfasalazine

TCA:

Tricarboxylic acid

TNM:

Tumor node metastasis

V-9302:

2-Amino-4-bis(aryloxybenzyl)aminobutanoic acids

α-KG:

Alpha-ketoglutarate

References

  • Ahluwalia, G., Grem, J., Hao, Z., & Cooney, D. (1990). Metabolism and action of amino acid analog anti-cancer agents. Pharmacology & Therapeutics, 46(2), 243–271.

    Article  CAS  Google Scholar 

  • Alberghina, L., & Gaglio, D. (2014). Redox control of glutamine utilization in cancer. Cell Death & Disease, 5(12), e1561.

    Article  CAS  Google Scholar 

  • Altman, B. J., Stine, Z. E., & Dang, C. V. (2016). From Krebs to clinic: Glutamine metabolism to cancer therapy. Nature Reviews. Cancer, 16(10), 619–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M., & Melino, G. (2014). Serine and glycine metabolism in cancer. Trends in Biochemical Sciences, 39(4), 191–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arensman, M. D., Yang, X. S., Leahy, D. M., et al. (2019). Cystine–glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity. Proceedings of the National Academy of Sciences, 116(19), 9533–9542.

    Article  CAS  Google Scholar 

  • Arnold, D., Lueza, B., Douillard, J. Y., et al. (2017). Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Annals of Oncology, 28(8), 1713–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balsa-Martinez, E., & Puigserver, P. (2015). Cancer cells hijack gluconeogenic enzymes to fuel cell growth. Molecular Cell, 60(4), 509–511.

    Article  CAS  PubMed  Google Scholar 

  • Barollo, S., Bertazza, L., Watutantrige-Fernando, S., et al. (2016). Overexpression of L-type amino acid transporter 1 (LAT1) and 2 (LAT2): Novel markers of neuroendocrine tumors. PLoS One, 11(5), e0156044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bezan, A., Mrsic, E., Krieger, D., et al. (2015). The preoperative AST/ALT (De Ritis) ratio represents a poor prognostic factor in a cohort of patients with nonmetastatic renal cell carcinoma. The Journal of Urology., 194(1), 30–35.

    Article  PubMed  Google Scholar 

  • Bott, A. J., Peng, I. C., Fan, Y., et al. (2015). Oncogenic Myc induces expression of glutamine synthetase through promoter demethylation. Cell Metabolism, 22(6), 1068–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bott, A. J., Maimouni, S., & Zong, W.-X. (2019). The pleiotropic effects of glutamine metabolism in cancer. Cancers (Basel)., 11(6), 770.

    Article  CAS  PubMed Central  Google Scholar 

  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424.

    Google Scholar 

  • Bröer, A., Rahimi, F., & Bröer, S. (2016). Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. The Journal of Biological Chemistry., 291(25), 13194–13205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown, R. E., Short, S. P., & Williams, C. S. (2018). Colorectal cancer and metabolism. Current Colorectal Cancer Reports., 14(6), 226–241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns, J. S., & Manda, G. (2017). Metabolic pathways of the Warburg effect in health and disease: Perspectives of choice, chain or chance. International Journal of Molecular Sciences, 18(12), 2755.

    Article  PubMed Central  CAS  Google Scholar 

  • Cheng, L., Lu, W., Kulkarni, B., et al. (2010). Analysis of chemotherapy response programs in ovarian cancers by the next-generation sequencing technologies. Gynecologic Oncology, 117(2), 159–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, Y., & Park, K. (2018). Targeting glutamine metabolism for cancer treatment. Biomolecules & Therapeutics, 26(1), 19–28.

    Google Scholar 

  • Cormerais, Y., Giuliano, S., LeFloch, R., Front, B., Durivault, J., Tambutté, E., et al. (2016). Genetic disruption of the multifunctional CD98/LAT1 complex demonstrates the key role of essential amino acid transport in the control of mTORC1 and tumor growth. Cancer Research, 76(15), 4481–4492.

    Article  CAS  PubMed  Google Scholar 

  • Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R., & Newsholme, P. (2018). Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients, 10(11), 1564.

    Article  PubMed Central  CAS  Google Scholar 

  • Csibi, A., Fendt, S.-M., Li, C., et al. (2013). The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell, 153(4), 840–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Marchi, T., Timmermans, M. A., Sieuwerts, A. M., et al. (2017). Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer. Scientific Reports, 7(1), 2099–2099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeBerardinis, R. J., & Chandel, N. S. (2016). Fundamentals of cancer metabolism. Science Advances, 2(5), e1600200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeBerardinis, R. J., & Cheng, T. (2010). Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 29(3), 313–324.

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis, R. J., Mancuso, A., Daikhin, E., et al. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences, 104(49), 19345–19350.

    Article  CAS  Google Scholar 

  • Dixon, S. J., Patel, D. N., Welsch, M., Skouta, R., Lee, E. D., Hayano, M., et al. (2014). Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife, 3, e02523.

    Google Scholar 

  • Dong, J., Xiao, D., Zhao, Z., et al. (2017). Epigenetic silencing of microRNA-137 enhances ASCT2 expression and tumor glutamine metabolism. Oncogenesis, 6(7), e356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, Y., Tu, R., Liu, H., & Qing, G. (2020). Regulation of cancer cell metabolism: Oncogenic MYC in the driver’s seat. Signal Transduction and Targeted Therapy, 5(1), 124–124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eads, J., Krishnamurthi, S., Saltzman, J., Bajor, D., Vinayak, S., Barnholtz-Sloan, J., et al. (2018). Phase I clinical trial of the glutaminase inhibitor CB-839 plus capecitabine in patients with advanced solid tumors. Journal of Clinical Oncology, 36(15_suppl), 2562–2562.

    Google Scholar 

  • Egler, R. A., Ahuja, S. P., & Matloub, Y. (2016). L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. Journal of Pharmacology and Pharmacotherapeutics, 7(2), 62–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, S., Zhao, Y., Li, X., et al. (2013). Genetic variants in SLC7A7 are associated with risk of glioma in a Chinese population. Experimental Biology and Medicine (Maywood, N.J.), 238(9), 1075–1081.

    Article  CAS  Google Scholar 

  • Ferlay, J., Colombet, M., Soerjomataram, I., et al. (2018). Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer (Oxford, England : 1990), 103, 356–387.

    Article  CAS  Google Scholar 

  • Gao, P., Tchernyshyov, I., Chang, T.-C., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green, C. R., Wallace, M., Divakaruni, A. S., et al. (2016). Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nature Chemical Biology, 12(1), 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Grewal, S., Defamie, N., Zhang, X., et al. (2009). SNAT2 amino acid transporter is regulated by amino acids of the SLC6 gamma-aminobutyric acid transporter subfamily in neocortical neurons and may play no role in delivering glutamine for glutamatergic transmission. The Journal of Biological Chemistry., 284(17), 11224–11236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross, M. I., Demo, S. D., Dennison, J. B., et al. (2014). Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Molecular Cancer Therapeutics, 13(4), 890–901.

    Article  CAS  PubMed  Google Scholar 

  • Häfliger, P., Graff, J., Rubin, M., Stooss, A., Dettmer, M., Altmann, K., et al. (2018). The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model. Journal of Experimental & Clinical Cancer Research, 37(1).

    Google Scholar 

  • Hägglund, M. G., Sreedharan, S., Nilsson, V. C., et al. (2011). Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. The Journal of Biological Chemistry, 286(23), 20500–20511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao, Y., Samuels, Y., Li, Q., et al. (2016). Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nature Communications, 7(1), 11971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara, Y., Minami, Y., Yoshimoto, S., et al. (2020). Anti-tumor effects of an antagonistic mAb against the ASCT2 amino acid transporter on KRAS-mutated human colorectal cancer cells. Cancer Medicine, 9(1), 302–312.

    Article  CAS  PubMed  Google Scholar 

  • Hassanein, M., Qian, J., Hoeksema, M. D., et al. (2015). Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. International Journal of Cancer, 137(7), 1587–1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayase, S., Kumamoto, K., Saito, K., et al. (2017). L-type amino acid transporter 1 expression is upregulated and associated with cellular proliferation in colorectal cancer. Oncology Letters, 14(6), 7410–7416.

    PubMed  PubMed Central  Google Scholar 

  • Hensley, C. T., Wasti, A. T., & DeBerardinis, R. J. (2013). Glutamine and cancer: Cell biology, physiology, and clinical opportunities. The Journal of Clinical Investigation., 123(9), 3678–3684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosios, A. M., Hecht, V. C., Danai, L. V., et al. (2016). Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Developmental Cell, 36(5), 540–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, W., Zhang, C., Wu, R., Sun, Y., Levine, A., & Feng, Z. (2010). Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences, 107(16), 7455–7460.

    Article  CAS  Google Scholar 

  • Huang, F., Zhang, Q., Ma, H., Lv, Q., & Zhang, T. (2014). Expression of glutaminase is upregulated in colorectal cancer and of clinical significance. International Journal of Clinical and Experimental Pathology, 7(3), 1093–1100.

    PubMed  PubMed Central  Google Scholar 

  • Jiang, Y., Cao, Y., Wang, Y., et al. (2017). Cysteine transporter SLC3A1 promotes breast cancer tumorigenesis. Theranostics., 7(4), 1036–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, L., Alesi, G. N., & Kang, S. (2016). Glutaminolysis as a target for cancer therapy. Oncogene, 35(28), 3619–3625.

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy, P., Gyimesi, G., Kanai, Y., & Hediger, M. A. (2018). Amino acid transporters revisited: New views in health and disease. Trends in Biochemical Sciences, 43(10), 752–789.

    Article  CAS  PubMed  Google Scholar 

  • Katt, W. P., Lukey, M. J., & Cerione, R. A. (2017). A tale of two glutaminases: Homologous enzymes with distinct roles in tumorigenesis. Future Medicinal Chemistry, 9(2), 223–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, C., Gao, R., Yan, X., & Qin, H. (2018). Research progression of blood and fecal metabolites in colorectal cancer. IJS Oncology, 3(1), e51.

    Article  Google Scholar 

  • Korangath, P., Teo, W., Sadik, H., Han, L., Mori, N., Huijts, C., et al. (2015). Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clinical Cancer Research, 21(14), 3263–3273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Vecchia, S., & Sebastián, C. (2020). Metabolic pathways regulating colorectal cancer initiation and progression. Seminars in Cell & Developmental Biology, 98, 63–70.

    Article  CAS  Google Scholar 

  • Larsen, C., & Dashwood, R. (2010). (−)-Epigallocatechin-3-gallate inhibits met signaling, proliferation, and invasiveness in human colon cancer cells. Archives of Biochemistry and Biophysics, 501(1), 52–57.

    Google Scholar 

  • Li, T., & Le, A. (2018). Glutamine metabolism in cancer. Adv. Exp. Med. Biol., 1063, 13–32.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Song, P., Jiang, T., Dai, D., Wang, H., Sun, J., et al. (2018). Heat shock factor 1 epigenetically stimulates glutaminase-1-dependent mTOR activation to promote colorectal carcinogenesis. Molecular Therapy, 26(7), 1828–1839.

    Google Scholar 

  • Lieu, E. L., Nguyen, T., Rhyne, S., & Kim, J. (2020). Amino acids in cancer. Experimental & Molecular Medicine, 52(1), 15–30.

    Article  CAS  Google Scholar 

  • Liu, G., Zhu, J., Yu, M., et al. (2015). Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. Journal of Translational Medicine, 13(1), 144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Y., Zhao, T., Li, Z., Wang, L., Yuan, S., & Sun, L. (2018). The role of ASCT2 in cancer: A review. European Journal of Pharmacology, 837, 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Lorin, S., Tol, M. J., Bauvy, C., et al. (2013). Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy, 9(6), 850–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Wang, W., Wang, J., et al. (2013). Overexpression of arginine transporter CAT-1 is associated with accumulation of L-arginine and cell growth in human colorectal cancer tissue. PLoS One, 8(9), e73866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luengo, A., Gui, D. Y., & Vander Heiden, M. G. (2017). Targeting metabolism for cancer therapy. Cell Chemical Biology, 24(9), 1161–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugano, R., Ramachandran, M., & Dimberg, A. (2020). Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 77(9), 1745–1770.

    Article  CAS  PubMed  Google Scholar 

  • Lukey, M. J., Wilson, K. F., & Cerione, R. A. (2013). Therapeutic strategies impacting cancer cell glutamine metabolism. Future Medicinal Chemistry, 5(14), 1685–1700.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, G., Kemeny, N., & Casper, E. (1982). Phase II evaluation of DON (6-Diazo-5-Oxo-L-Norleucine) in patients with advanced colorectal carcinoma. American Journal of Clinical Oncology, 5(5), 541–543.

    Article  CAS  PubMed  Google Scholar 

  • Ma, H., Wu, Z., Peng, J., et al. (2018). Inhibition of SLC1A5 sensitizes colorectal cancer to cetuximab. International Journal of Cancer, 142(12), 2578–2588.

    Article  CAS  PubMed  Google Scholar 

  • Ma, M., Chen, G., Wang, P., Lu, W., Zhu, C., Song, M., et al. (2015). Xc− inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism. Cancer Letters, 368(1), 88–96.

    Google Scholar 

  • Maffione, A. M., Lopci, E., Bluemel, C., Giammarile, F., Herrmann, K., & Rubello, D. (2015). Diagnostic accuracy and impact on management of (18)F-FDG PET and PET/CT in colorectal liver metastasis: A meta-analysis and systematic review. European Journal of Nuclear Medicine and Molecular Imaging, 42(1), 152–163.

    Article  CAS  PubMed  Google Scholar 

  • Matés, J. M., Segura, J. A., Martín-Rufián, M., Campos-Sandoval, J. A., Alonso, F. J., & Márquez, J. (2013). Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Current Molecular Medicine, 13(4), 514–534.

    Article  PubMed  Google Scholar 

  • Mayers, J. R., & Vander Heiden, M. G. (2015). Famine versus feast: Understanding the metabolism of tumors in vivo. Trends in Biochemical Sciences, 40(3), 130–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyo, M., Konno, M., Nishida, N., et al. (2016). Metabolic adaptation to nutritional stress in human colorectal cancer. Scientific Reports, 6, 38415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller, C., Al-Batran, S., Jaeger, E., Schmidt, B., Bausch, M., Unger, C., & Sethuraman, N. (2008). A phase IIa study of PEGylated glutaminase (PEG-PGA) plus 6-diazo-5-oxo-L-norleucine (DON) in patients with advanced refractory solid tumors. Journal of Clinical Oncology, 26(15_suppl), 2533–2533.

    Article  Google Scholar 

  • Muto, Y., Furihata, T., Kaneko, M., Higuchi, K., Okunushi, K., Morio, H., et al. (2018). Different response profiles of gastrointestinal cancer cells to an L-type amino acid transporter inhibitor, JPH203. Anticancer Research, 39(1), 159–165.

    Article  CAS  Google Scholar 

  • Nakazawa, M. S., Eisinger-Mathason, T. S. K., Sadri, N., et al. (2016). Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nature Communications, 7(1), 10539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, H. T., & Duong, H. Q. (2018). The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncology Letters, 16(1), 9–18.

    PubMed  PubMed Central  Google Scholar 

  • Nguyen, T.-L., & Durán, R. V. (2018). Glutamine metabolism in cancer therapy. Cancer Drug Resistance., 1(3), 126–138.

    Google Scholar 

  • Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., et al. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 136(3), 521–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda, K., Hosoda, N., Endo, H., et al. (2010). L-type amino acid transporter 1 inhibitors inhibit tumor cell growth. Cancer Science, 101(1), 173–179.

    Article  CAS  PubMed  Google Scholar 

  • Park, J. H., Richards, C. H., McMillan, D. C., Horgan, P. G., & Roxburgh, C. S. D. (2014). The relationship between tumour stroma percentage, the tumour microenvironment and survival in patients with primary operable colorectal cancer. Annals of Oncology, 25(3), 644–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlova, N. N., & Thompson, C. B. (2016). The emerging hallmarks of cancer metabolism. Cell Metabolism, 23(1), 27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pochini, L., Scalise, M., Galluccio, M., & Indiveri, C. (2014). Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health. Frontiers in Chemistry, 2, 61–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reynolds, M. R., Lane, A. N., Robertson, B., et al. (2014). Control of glutamine metabolism by the tumor suppressor Rb. Oncogene, 33(5), 556–566.

    Article  CAS  PubMed  Google Scholar 

  • Richard, S., & Martinez, M. V. (2015). Sensitization to oxaliplatin in HCT116 and HT29 cell lines by metformin and ribavirin and differences in response to mitochondrial glutaminase inhibition. Journal of Cancer Research and Therapeutics, 11(2), 336–340.

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Aliaga, I., & Wagner, C. A. (2016). Regulation and function of the SLC38A3/SNAT3 glutamine transporter. Channels (Austin, Tex.), 10(6), 440–452.

    Article  Google Scholar 

  • Russi, S., Verma, H. K., Laurino, S., et al. (2019). Adapting and surviving: Intra and extra-cellular remodeling in drug-resistant gastric cancer cells. International Journal of Molecular Sciences, 20(15), 3736.

    Article  CAS  PubMed Central  Google Scholar 

  • Satoh, K., Yachida, S., Sugimoto, M., et al. (2017). Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proceedings of the National Academy of Sciences, 114(37), E7697–E7706.

    Article  CAS  Google Scholar 

  • Scalise, M., Pochini, L., Galluccio, M., Console, L., & Indiveri, C. (2017). Glutamine transport and mitochondrial metabolism in cancer cell growth. Frontiers in Oncology, 7, 306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scalise, M., Pochini, L., Console, L., Losso, M. A., & Indiveri, C. (2018). The human SLC1A5 (ASCT2) amino acid transporter: From function to structure and role in cell biology. Frontiers in Cell and Development Biology, 6, 96–96.

    Article  Google Scholar 

  • Scalise, M., Pochini, L., Galluccio, M., Console, L., & Indiveri, C. (2020). Glutamine transporters as pharmacological targets: From function to drug design. Asian Journal of Pharmaceutical Sciences, 15(2), 207–219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulte, M., Fu, A., Zhao, P., Li, J., Geng, L., Smith, S., et al. (2018). Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nature Medicine, 24(2), 194–202.

    Google Scholar 

  • Scopelliti, A. J., Font, J., Vandenberg, R. J., Boudker, O., & Ryan, R. M. (2018). Structural characterisation reveals insights into substrate recognition by the glutamine transporter ASCT2/SLC1A5. Nature Communications, 9(1), 38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sever, R., & Brugge, J. S. (2015). Signal transduction in cancer. Cold Spring Harbor Perspectives in Medicine, 5(4), a006098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheikh, T., Patwardhan, P., Cremers, S., & Schwartz, G. (2017). Targeted inhibition of glutaminase as a potential new approach for the treatment of NF1 associated soft tissue malignancies. Oncotarget, 8(55), 94054–94068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, S. L., Fu, S. J., Chen, B., et al. (2014). Preoperative aspartate aminotransferase to platelet ratio is an independent prognostic factor for hepatitis B-induced hepatocellular carcinoma after hepatic resection. Annals of Surgical Oncology, 21(12), 3802–3809.

    Article  PubMed  Google Scholar 

  • Shen, L., Qian, C., Cao, H., Wang, Z., Luo, T., & Liang, C. (2018). Upregulation of the solute carrier family 7 genes is indicative of poor prognosis in papillary thyroid carcinoma. World Journal of Surgical Oncology, 16(1), 235–235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sirniö, P., Väyrynen, J. P., Klintrup, K., et al. (2019). Alterations in serum amino-acid profile in the progression of colorectal cancer: Associations with systemic inflammation, tumour stage and patient survival. British Journal of Cancer, 120(2), 238–246.

    Article  PubMed  CAS  Google Scholar 

  • Son, J., Lyssiotis, C. A., Ying, H., et al. (2013). Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 496(7443), 101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, Z., Wei, B., Lu, C., Li, P., & Chen, L. (2017). Glutaminase sustains cell survival via the regulation of glycolysis and glutaminolysis in colorectal cancer. Oncology Letters, 14(3), 3117–3123.

    Google Scholar 

  • Song, M., Kim, S., Im, C., & Hwang, H. (2018). Recent development of small molecule glutaminase inhibitors. Current Topics in Medicinal Chemistry, 18(6), 432–443.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X., & Zhu, M. J. (2018). Butyrate inhibits indices of colorectal carcinogenesis via enhancing α-ketoglutarate-dependent DNA demethylation of mismatch repair genes. Molecular Nutrition & Food Research, 62(10), e1700932.

    Article  CAS  Google Scholar 

  • Suzuki, S., Tanaka, T., Poyurovsky, M. V., et al. (2010). Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7461–7466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, K., Sasayama, T., Irino, Y., Takata, K., Nagashima, H., Satoh, N., et al. (2015). Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. Journal of Clinical Investigation, 125(4), 1591–1602.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toda, K., Kawada, K., Iwamoto, M., Inamoto, S., Sasazuki, T., Shirasawa, S., et al. (2016). Metabolic alterations caused by KRAS mutations in colorectal cancer contribute to cell adaptation to glutamine depletion by upregulation of asparagine synthetase. Neoplasia, 18(11), 654–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toda, K., Nishikawa, G., Iwamoto, M., et al. (2017). Clinical role of ASCT2 (SLC1A5) in KRAS-mutated colorectal cancer. International Journal of Molecular Sciences, 18(8), 1632.

    Article  PubMed Central  CAS  Google Scholar 

  • Ueda, S., Hayashi, H., Miyamoto, T., et al. (2019). Anti-tumor effects of mAb against L-type amino acid transporter 1 (LAT1) bound to human and monkey LAT1 with dual avidity modes. Cancer Science, 110(2), 674–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez, A., Kamphorst, J. J., Markert, E. K., Schug, Z. T., Tardito, S., & Gottlieb, E. (2016). Cancer metabolism at a glance. Journal of Cell Science, 129(18), 3367–3373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma, H. K., Kampalli, P. K., Lakkakula, S., Chalikonda, G., Bhaskar, L., & Pattnaik, S. (2019). A retrospective look at anti-EGFR agents in pancreatic cancer therapy. Current Drug Metabolism, 20(12), 958–966.

    Article  CAS  PubMed  Google Scholar 

  • Verma, H. K., Ratre, Y. K., Mazzone, P., Laurino, S., & LVKS, B. (2020a). Micro RNA facilitated chemoresistance in gastric cancer: A novel biomarkers and potential therapeutics. Alexandria Journal of Medicine, 56(1), 81–92.

    Article  Google Scholar 

  • Verma, H. K., Falco, G., & Bhaskar, L. V. K. S. (2020b). Molecular signaling pathways involved in gastric cancer chemoresistance. In Theranostics approaches to gastric and colon cancer. Singapore: Springer.

    Google Scholar 

  • Vernieri, C., Casola, S., Foiani, M., Pietrantonio, F., de Braud, F., & Longo, V. (2016). Targeting cancer metabolism: Dietary and pharmacologic interventions. Cancer Discovery, 6(12), 1315–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa, E., Ali, E. S., Sahu, U., & Ben-Sahra, I. (2019). Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers (Basel)., 11(5), 688.

    Article  CAS  PubMed Central  Google Scholar 

  • Wang, Q., Beaumont, K., Otte, N., Font, J., Bailey, C., van Geldermalsen, M., et al. (2014). Targeting glutamine transport to suppress melanoma cell growth. International Journal of Cancer, 135(5), 1060–1071.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., & Holst, J. (2015). L-type amino acid transport and cancer: Targeting the mTORC1 pathway to inhibit neoplasia. American Journal of Cancer Research, 5(4), 1281–1294.

    PubMed  PubMed Central  Google Scholar 

  • Wang, K., Cao, F., Fang, W., et al. (2013). Activation of SNAT1/SLC38A1 in human breast cancer: Correlation with p-Akt overexpression. BMC Cancer, 13(1), 343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y.-Q., Wang, H.-L., Xu, J., et al. (2018). Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nature Communications, 9(1), 545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson, K. F., Erickson, J. W., Antonyak, M. A., & Cerione, R. A. (2013). Rho GTPases and their roles in cancer metabolism. Trends in Molecular Medicine, 19(2), 74–82.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, P. M., Danenberg, P. V., Johnston, P. G., Lenz, H. J., & Ladner, R. D. (2014). Standing the test of time: Targeting thymidylate biosynthesis in cancer therapy. Nature Reviews. Clinical Oncology, 11(5), 282–298.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, L., Mou, J., Shao, B., et al. (2019). Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death & Disease, 10(2), 40–40.

    Article  CAS  Google Scholar 

  • Xie, J., Li, P., Gao, H.-F., Qian, J.-X., Yuan, L.-Y., & Wang, J.-J. (2014). Overexpression of SLC38A1 is associated with poorer prognosis in Chinese patients with gastric cancer. BMC Gastroenterology, 14, 70–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie, C., Jin, J., Bao, X., et al. (2016). Inhibition of mitochondrial glutaminase activity reverses acquired erlotinib resistance in non-small cell lung cancer. Oncotarget, 7(1), 610–621.

    Article  PubMed  Google Scholar 

  • Yang, L., Venneti, S., & Nagrath, D. (2017). Glutaminolysis: A hallmark of cancer metabolism. Annual Review of Biomedical Engineering, 19, 163–194.

    Article  CAS  PubMed  Google Scholar 

  • Zare-Bandamiri, M., Fararouei, M., Zohourinia, S., Daneshi, N., & Dianatinasab, M. (2017). Risk factors predicting colorectal cancer recurrence following initial treatment: A 5-year cohort study. Asian Pacific Journal of Cancer Prevention, 18(9), 2465–2470.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Ma, J., Zhang, S., et al. (2015). A prognostic analysis of 895 cases of stage III colon cancer in different colon subsites. International Journal of Colorectal Disease, 30(9), 1173–1183.

    Article  PubMed  Google Scholar 

  • Zhao, J., Zhou, R., Hui, K., Yang, Y., Zhang, Q., Ci, Y., et al. (2016). Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells. Oncotarget, 8(12), 18832–18847.

    Article  PubMed Central  Google Scholar 

  • Zhou, D., Shao, L., & Spitz, D. R. (2014). Reactive oxygen species in normal and tumor stem cells. Advances in Cancer Research, 122, 1–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, F.-F., Xie, W., Chen, S.-Q., et al. (2017). SLC38A1 promotes proliferation and migration of human colorectal cancer cells. Journal of Huazhong University of Science and Technology [Medical Sciences], 37(1), 30–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ratre, Y.K. et al. (2021). Therapeutic Targeting of Glutamine Metabolism in Colorectal Cancer. In: Vishvakarma, N.K., Nagaraju, G.P., Shukla, D. (eds) Colon Cancer Diagnosis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-64668-4_15

Download citation

Publish with us

Policies and ethics