Skip to main content

Rho GTPases and Cancer Cell Transendothelial Migration

  • Protocol
  • First Online:
Book cover Rho GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 827))

Abstract

Small Rho GTPases are major regulators of actin cytoskeleton dynamics and influence cell shape and migration. The expression of several Rho GTPases is often up-regulated in tumors and this frequently correlates with a poor prognosis for patients. Migration of cancer cells through endothelial cells that line the blood vessels, called transendothelial migration or extravasation, is a critical step during the metastasis process. The use of siRNA technology to target specifically each Rho family member coupled with imaging techniques allows the roles of individual Rho GTPases to be investigated. In this chapter we describe methods to assess how Rho GTPases affect the different steps of cancer cell transendothelial cell migration in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolf, K., Wu, Y.I., Liu, Y., Geiger, J., Tam, E., Overall, C., Stack, M.S., and Friedl, P. (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9, 893–904.

    Google Scholar 

  2. Friedl, P., and Gilmour, D. (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10, 445–57.

    Google Scholar 

  3. Giampieri, S., Manning, C., Hooper, S. Jones, L., Hill, C.S., and Sahai, E. (2009) Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11, 1287–96.

    Google Scholar 

  4. Li, C.Y., Shan, S., Huang, Q., and Dewhirst, M.W. (2000) Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92, 143–7.

    Google Scholar 

  5. Dadiani, M., Kalchenko, V., Yosepovich, A., Margalit, R., Hassid, Y., Degani, H., and Seger, D. (2006) Real-time imaging of lymphogenic metastasis in orthotopic human breast cancer. Cancer Res 66, 8037–41.

    Google Scholar 

  6. Wyckoff, J.B., Jones, J.G., Condeelis, J.S. and Segall, J.E. (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60, 2504–11.

    Google Scholar 

  7. Ito, S., Nakanishi, H., Ikehara, Y. Kato, T., Kasai, Y., Ito, K., Akiyama, S., Nakao, A., and Tatematsu, M. (2001) Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line. Int J Cancer 93, 212–7.

    Google Scholar 

  8. Naumov, G.N., Wilson, S.M., MacDonald, I.C. Schmidt, E.E., Morris, V.L., Groom, A.C., Hoffman, R.M., and Chambers, A.F. (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112, 1835–42.

    Google Scholar 

  9. Im, J.H., Fu, W., Wang, H., Bhatia, S.K., Hammer, D.A., Kowalska, M.A., and Muschel, R.J. (2004) Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 64, 8613–9.

    Google Scholar 

  10. Tsuji, K., Yamauchi, K., Yang, M., Jiang, P., Bouvet, M., Endo, H., Kanai, Y., Yamashita, K., Moossa, A.R., and Hoffman, R.M. (2006) Dual-color imaging of nuclear-cytoplasmic dynamics, viability, and proliferation of cancer cells in the portal vein area. Cancer Res 66, 303–6.

    Google Scholar 

  11. Chambers, A.F., Groom, A.C., and MacDonald, I.C. (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2, 563–72.

    Google Scholar 

  12. Nguyen, D.X., Bos, P.D., and Massague, J. (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9, 274–84.

    Google Scholar 

  13. Joyce, J.A., and Pollard, J.W. (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9, 239–52.

    Google Scholar 

  14. Vega, F.M., and Ridley, A.J. (2008) Rho GTPases in cancer cell biology. FEBS Lett 582, 2093–101.

    Google Scholar 

  15. Madsen, C.D., and Sahai, E. (2010) Cancer dissemination--lessons from leukocytes. Dev Cell 19, 13–26.

    Google Scholar 

  16. Dimitroff, C.J., Descheny, L., Trujillo, N., Kim, R., Nguyen, V., Huang, W., Pienta, K.J., Kutok, J.L., and Rubin, M.A. (2005) Identification of leukocyte E-selectin ligands, P-selectin glycoprotein ligand-1 and E-selectin ligand-1, on human metastatic prostate tumor cells. Cancer Res 65, 5750–60.

    Google Scholar 

  17. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S.N., Barrera, J.L., Mohar, A., Verástegui, E., and Zlotnik, A. (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–6.

    Google Scholar 

  18. Cardones, A.R., Murakami, T., and Hwang, S.T. (2003) CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via beta(1) integrin. Cancer Res 63, 6751–7.

    Google Scholar 

  19. Kusama, T., Mukai, M., Tatsuta, M., Nakamura, H., and Inoue, M. (2006) Inhibition of transendothelial migration and invasion of human breast cancer cells by preventing geranylgeranylation of Rho. Int J Oncol 29, 217–23.

    Google Scholar 

  20. Schweitzer, K.M., Vicart,P., Delouis, C. Paulin, D., Dräger, A.M., Langenhuijsen, M.M., and Weksler, B.B. (1997) Characterization of a newly established human bone marrow endothelial cell line: distinct adhesive properties for hematopoietic progenitors compared with human umbilical vein endothelial cells. Lab Invest 76, 25–36.

    Google Scholar 

  21. Aird, W.C. (2003) Endothelial cell heterogeneity. Crit Care Med 31, S221–30.

    Google Scholar 

  22. Kaighn, M.E., Narayan, K.S., Ohnuki, Y., Lechner, J.F., and Jones, L.W. (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17, 16–23.

    Google Scholar 

  23. Webber, M.M., Bello, D., and Quader, S. (1997) Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines. Prostate 30, 58–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne J. Ridley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reymond, N., Riou, P., Ridley, A.J. (2012). Rho GTPases and Cancer Cell Transendothelial Migration. In: Rivero, F. (eds) Rho GTPases. Methods in Molecular Biology, vol 827. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-442-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-442-1_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-441-4

  • Online ISBN: 978-1-61779-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics