Skip to main content

What Is a B-Cell Epitope?

  • Protocol
  • First Online:
Book cover Epitope Mapping Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 524))

Summary

The antigenicity of proteins resides in different types of antigenic determinants known as continuous and discontinuous epitopes, cryptotopes, neotopes, and mimotopes. All epitopes have fuzzy boundaries and can be identified only by their ability to bind to certain antibodies. Antigenic cross-reactivity is a common phenomenon because antibodies are always able to recognize a considerable number of related epitopes. This places severe limits to the specificity of antibodies. Antigenicity, which is the ability of an epitope to react with an antibody, must be distinguished from its immunogenicity or ability to induce antibodies in a competent vertebrate host. Failure to make this distinction partly explains why no successful peptide-based vaccines have yet been developed. Methods for predicting the epitopes of proteins are discussed and the reasons for the low success rate of epitope prediction are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Getzoff, E. D., Tainer, J. A., Lerner, R. A., and Geyson, H. M. (1988) The chemistry and mechanism of antibody binding to protein antigens. Adv. Immunol. 43, 1–98.

    Article  PubMed  CAS  Google Scholar 

  2. Cunningham, B. C., and Wells, J. A. (1993) Comparison of a structural and a functional epitope. J. Mol. Biol. 234, 554–563.

    Article  PubMed  CAS  Google Scholar 

  3. DeLano, W. L. (2002) Unraveling hot spots in binding interfaces: progress and challenges. Curr. Opin. Struct. Biol. 12, 14–20.

    Article  PubMed  CAS  Google Scholar 

  4. Laver, W. G., Air, G. M., Webster, R. G., and Smith-Gill, S. J. (1990) Epitopes on protein antigens: misconceptions and realities. Cell 61, 553–556.

    Article  PubMed  CAS  Google Scholar 

  5. Van Regenmortel, M. H. V. (2006) Immunoinformatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of synthetic peptide vaccines. J. Mol. Recognit. 19, 183–187.

    Article  PubMed  CAS  Google Scholar 

  6. Van Regenmortel, M. H. V. (1999) Molecular dissection of protein antigens and the prediction of epitopes, in Synthetic Peptides as Antigens Van Regenmortel, M. H. V., and Muller, S. eds., Elsevier, Amsterdam, The Netherlands, pp. 1–78.

    Google Scholar 

  7. Lerner, R. A. (1984) Antibodies of predetermined specificity in biology and medicine. Adv. Immunol. 36, 1–44.

    Article  PubMed  CAS  Google Scholar 

  8. Darst, S. A., Roberston, C. R., and Berzofsky, J. A. (1988) Adsorption of the protein antigen myoglobin affects the binding of conformation-specific monoclonal antibodies. Biophys. J. 53, 533–539.

    Article  PubMed  CAS  Google Scholar 

  9. Rosen, R. (1991) Life Itself. Columbia Univ Press, New-York.

    Google Scholar 

  10. Quesniaux, V. F. J., Schmitter, D., Schreier, M., and Van Regenmortel, M. H. V. (1990) Monoclonal antibodies to Cyclosporine are representative of the major antibody populations present in antisera of immunized mice. Mol. Immunol. 27, 227–236.

    Article  PubMed  CAS  Google Scholar 

  11. Barlow, D. J., Edwards, M. S., and Thornton, J. M. (1986) Continuous and discontinuous protein antigenic determinants. Nature 322, 747–748.

    Article  PubMed  CAS  Google Scholar 

  12. Van Regenmortel, M. H. V. (1996) Mapping epitope structure and activity: from one-dimensional prediction to four-dimensional description of antigenic specificity. Methods 9, 465–472.

    Article  PubMed  CAS  Google Scholar 

  13. Leinikki, P., Lehtinen, M., Hyöty, H., Parkkonen, P., Kantanen, M. L, and Hakulinen, J. (1993) Synthetic peptides as diagnostic tools in virology. Adv. Virus Res. 42, 149–186.

    Article  PubMed  CAS  Google Scholar 

  14. Walter, G. (1986) Production and use of antibodies against synthetic peptides. J. Immunol. Methods 88, 149–161.

    Article  PubMed  CAS  Google Scholar 

  15. Muller, S. (1999) Use of antipeptide antibodies in molecular and cellular biology, in Synthetic Peptides as Antigens (Van Regenmortel, M. H. V., and Muller, S. eds., Elsevier, Amsterdam, The Netherlands, pp. 215–235.

    Chapter  Google Scholar 

  16. Van Regenmortel, M. H. V. (1999) Molecular design versus empirical discovery in peptide-based vaccines. Coming to terms with fuzzy recognition sites and ill-defined structure–function relationships in immunology. Vaccine 18, 216–221.

    Article  PubMed  CAS  Google Scholar 

  17. Hans, D., Young, P. R., and Fairlie, D. P. (2006) Current status of short synthetic peptides as vaccines. Med. Chem. 2, 627–646.

    PubMed  CAS  Google Scholar 

  18. Van Regenmortel, M. H. V. (1992) The conformational specificity of viral epitopes. FEMS Microbiol. Lett. 100, 483–488.

    Article  CAS  Google Scholar 

  19. Shepard, J. F., Secor, G. A., and Purcifull, D. E. (1974) Immunochemical cross-reactivity between the dissociated capsid proteins of PVY group plant viruses. Virology 58, 464–475.

    Article  PubMed  CAS  Google Scholar 

  20. Dougherty, W., Willis, L., and Johnston, R. E. (1985) Topographic analysis of tobacco etch virus capsid protein epitopes. Virology 144, 66–72.

    Article  PubMed  CAS  Google Scholar 

  21. Boeye, A., and Rombaut, B. (1992) The proteins of poliovirus. Prog. Med. Virol. 62, 139–166.

    Google Scholar 

  22. Bothner, B., Dong, X. F., Bibbs, L., Johnson, J. E., and Suizdak, G. (1998) Evidence of viral capsid dynamics using limited proteolysis and mass spectrometry. J. Biol. Chem. 273, 673–676.

    Article  PubMed  CAS  Google Scholar 

  23. Zolla-Pazner, S. (2004) Identifying epitopes of HIV-1 that induce protective antibodies. Nat. Rev. Immunol. 4, 199–210.

    Article  PubMed  CAS  Google Scholar 

  24. Geysen, H. M., Rodda, S. J., and Mason, T. J. (1986) A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol. Immunol. 23, 709–715.

    Article  PubMed  CAS  Google Scholar 

  25. Folgori, A., Tafi, R., Meola, A., Felici, F., Galfre, G., Cortese, R., Monaci, P., and Nicosia, A. (1994) A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO J. 13, 2236–2243.

    PubMed  CAS  Google Scholar 

  26. Delmastro, P., Meola, A., Monaci, P., Cortese, R., and Galfrè, G. (1997) Immunogenicity of filamentous phage displaying peptide mimotopes after oral administration. Vaccine 15, 1276–1285.

    Article  PubMed  CAS  Google Scholar 

  27. Laune, D., Molina, F., Ferrieres, G., Mani, J. C., Cohen, P., and Simon, D. (1997) Systematic exploration of the antigen binding activity of synthetic peptides isolated from the variable regions of immunoglobulins. J. Biol. Chem. 272, 30937–30944.

    Article  PubMed  CAS  Google Scholar 

  28. Van Regenmortel, M. H. V. (1998) Mimotopes, continuous paratopes and hydropathic complementarity: novel approximations in the description of immunological specificity. J. Disper. Sci. Technol. 19, 1199–1219.

    Article  CAS  Google Scholar 

  29. Blalok, J. (1990) Complementarity of peptides specified by “sense” and “antisense” strands of DNA. Trends Biotechnol. 8, 140–144.

    Article  Google Scholar 

  30. Tropsha, A., Kizler, J. S., and Chaiken, I. M. (1992) Making sense of antisense: a review of experimental data and developing ideas on sense–antisense recognition. J. Mol. Recognit. 5, 43–54.

    Article  PubMed  CAS  Google Scholar 

  31. Boquet, D., Déry, O., Forbert, Y., Grassi, J., and Couraud, J. Y. (1995) Is hydropathic complementarity involved in antigen–antibody binding? Mol. Immunol. 32, 303–308.

    Article  PubMed  CAS  Google Scholar 

  32. Hanin, V., Déry, O., Boquet, D., Sagot, M. A., Crémion, C., Courand, J. Y., and Grassi, J. (1997) Importance of hydropathic complementarity for the binding of the neuropeptide substance P to a monoclonal antibody: equilibrium and kinetic studies. Mol. Immunol. 34, 829–838.

    Article  PubMed  CAS  Google Scholar 

  33. Van Regenmortel, M. H. V. (2001) Antigenicity and immunogenicity of synthetic peptides. Biologicals 29, 209–213.

    Article  PubMed  CAS  Google Scholar 

  34. Meloen, R. H., Puijk, W. C., and Slootstra, J. W. (2000) Mimotopes: realization of an unlikely concept. J. Mol. Recognit. 13, 352–359.

    Article  PubMed  CAS  Google Scholar 

  35. Mullen, L. M., Nair, S. P., Ward, J. M., Rycroft, A. N., and Henderson, B. (2006) Phage display in the study of infectious diseases. Trends Microbiol. 14, 141–147.

    Article  PubMed  CAS  Google Scholar 

  36. Larralde, O. G., Martinez, R., Camacho, F., Amin, N., Aguilar, A., Talavera, A., Stott, D. I., and Perez, E. M. (2007) Identification of hepatitis A virus mimotopes by phage display: antigenicity and immunogenicity. J. Virol. Methods 140, 49–58.

    Article  PubMed  CAS  Google Scholar 

  37. Van Regenmortel, M. H. V. (1998) From absolute to exquisite specificity. Reflections on the fuzzy nature of species, specificity and antigenic sites. J. Immunol. Methods 218, 37–48.

    Article  Google Scholar 

  38. Schroer, J. A., Bender, T., Feldmann, T., and Kim, K. J. (1983) Mapping epitopes on the insulin molecule using monoclonal antibodies. Eur. J. Immunol. 13, 693–700.

    Article  PubMed  CAS  Google Scholar 

  39. Benjamin, D. C., Berzofsky, J. A., East, I. J., Gurd, F. R. N., Hannum, C., Leach, S. J., Margoliash, E., Michael, J. G., Miller, A., Prager, E. M., Reichlin, M., Sercaz, E. E., Smith-Gill, S. J., Todd, P. E., and Wilson, A. C. (1984) The antigenic structure of proteins: a reappraisal. Ann. Rev. Immunol. 2, 67–101.

    Article  CAS  Google Scholar 

  40. Berzofsky, J. A. (1985) Intrinsic and extrinsic factors in protein antigenic structure. Science 229, 932–940.

    Article  PubMed  CAS  Google Scholar 

  41. Moodie, S. L., Mitchell, J. B. O., and Thornton, J. M. (1996) Protein recognition of adenylate: an example of a fuzzy recognition template. J. Mol. Biol. 263, 486–500.

    Article  PubMed  CAS  Google Scholar 

  42. Muller, S., Plaué, S., Couppez, M., and Van Regenmortel, M. H. V. (1986) Comparison of different methods for localizing antigenic regions in histone H2A. Mol. Immunol. 23, 593–561.

    Article  PubMed  CAS  Google Scholar 

  43. Berzofsky, J. A., Schechter, A. N. (1981) The concepts of crossreactivity and specificity in immunology. Mol. Immunol. 18, 751–763.

    Article  PubMed  CAS  Google Scholar 

  44. Mäkelä, O. (1965) Single lymph node cells producing heteroclitic bacteriophage antibody. J. Immunol. 95, 378–386.

    PubMed  Google Scholar 

  45. Al Moudallal, Z., Briand, J. P., and Van Regenmortel, M. H. V. (1982) Monoclonal antibodies as probes of the antigenic structure of tobacco mosaic virus. EMBO J. 1, 1005–1010.

    PubMed  CAS  Google Scholar 

  46. Underwood, P. A. (1985) Theoretical considerations of the ability of monoclonal antibodies to detect antigenic differences between closely related variants, with particular reference to heterospecific reactions. J. Immunol. Methods 85, 295–307.

    Article  PubMed  CAS  Google Scholar 

  47. Harper, M., Lema, F., Boulot, G., and Poljak, R. J. (1987) Antigen specificity and cross-reactivity of monoclonal anti-lysozyme antibodies. Mol. Immunol. 24, 97–108.

    Article  PubMed  CAS  Google Scholar 

  48. Frison, E. A., and Stace-Smith, R. (1992) Cross-reacting and heterospecific monoclonal antibodies produced against arabis mosaic nepovirus. J. Gen. Virol. 73, 2525–2530.

    Article  PubMed  CAS  Google Scholar 

  49. Van Regenmortel MHV (1982). Serology and Immunochemistry of Plant Viruses. Academic Press, New-York.

    Google Scholar 

  50. Loor, F. (1971) On the existence of heterospecific antibodies in sera from rabbits immunized against tobacco mosaic virus determinants. Immunology 21, 557–564.

    PubMed  CAS  Google Scholar 

  51. Sengbusch, P., and Wittmann, H. G. (1965) Serological and physicochemical properties of the wild strain and two mutants of tobacco mosaic virus with the same amino acid exchange in different positions of the protein chain. Biochem. Biophys. Res. Commun. 18, 780–787.

    Article  Google Scholar 

  52. Roberts, V. A., Getzoff, E. D., and Tainer, J. A. (1993) Structural basis of antigenic cross-reactivity, in Structure of Antigens, Vol. 2 (Van Regenmortel, M. H. V., ed.), CRC, Boca Raton, FL, pp. 31–53.

    Google Scholar 

  53. James, L. C., Roversi, P., and Tawfik, D. S. (2003) Antibody multispecificity mediated by conformational diversity. Science 299, 1362–1367.

    Article  PubMed  CAS  Google Scholar 

  54. Medawar, P. B., and Medawar, J. S. (1978) The Life Science. Granada Publishing, London.

    Google Scholar 

  55. Mazumder, P. H. (1995). Species and Specificity. Cambridge University Press, Cambridge. 6.Mazumder, P. H. (1995). Species and Specificity. Cambridge University Press, Cambridge.

    Google Scholar 

  56. Landsteiner, K. (1947). The Specificity of Serological Reactions. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  57. Foote, J., and Eisen, H. N. (1995) Kinetic and affinity limits on antibodies produced during immune responses. Proc. Natl. Acad. Sci. USA 92, 1254–1256.

    Article  PubMed  CAS  Google Scholar 

  58. Braden, B. C., and Poljak, R. J. (1995) Structural features of the reactions between antibodies and protein antigens. FASEB J. 9, 9–16.

    PubMed  CAS  Google Scholar 

  59. Van Oss, C. J. (1995) Hydrophobic, hydrophilicand other interactions in epitope-paratope binding. Mol. Immunol. 32, 199–211.

    Article  PubMed  CAS  Google Scholar 

  60. Ghosh, G., and Cambell, A. M. (1986) Multispecific monoclonal antibodies. Immunol. Today 7, 217–222.

    Article  CAS  Google Scholar 

  61. Zimmermann, D., and Van Regenmortel, M. H. V. (1989) Spurious cross-reactions between plant viruses and monoclonal antibodies can be overcome by saturating ELISA plates with milk proteins. Arch. Virol. 106, 15–22.

    Article  PubMed  CAS  Google Scholar 

  62. Zwick, M. B. (2005) The membrane-proximal external region of HIV-1 gp41: a vaccine target worth exploring. AIDS 19, 1725–1737.

    Article  PubMed  Google Scholar 

  63. Wilson, I. A., and Stanfield, R. L. (1994) Antigen–antibody interactions: new structures and new conformational changes. Curr. Opin. Struct. Biol. 4, 857–867.

    Article  PubMed  CAS  Google Scholar 

  64. Halperin, I., Ma, B., Wolfson, H., and Nussinov, R. (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47, 409–443.

    Article  PubMed  CAS  Google Scholar 

  65. Hopp, T. P., and Woods, K. R. (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA 78, 3824–3828.

    Article  PubMed  CAS  Google Scholar 

  66. Westhof, E., Altschuh, D., Moras, D., Bloomer, A. C., Mondragon, A., Klug, A., and Van Regenmortel, M. H. (1984) Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature 311, 123–126.

    Article  PubMed  CAS  Google Scholar 

  67. Thornton, J. M., Edwards, M. S., Taylor, W. R., and Barlow, D. J. (1986) Location of ‘continuous’ antigenic determinants in the protruding regions of proteins. EMBO J. 5, 409–413.

    PubMed  CAS  Google Scholar 

  68. Novotny, J., Bruccoleri, R. E., Carlson, W. D., Handschumacher, M., and Haber, E. (1987) Antigenicity of myohemerythrin. Science 238, 1584–1586.

    Article  PubMed  CAS  Google Scholar 

  69. Pellequer, J. L., Westhof, E., and Van Regenmortel, M. H. (1991) Predicting the location of continuous epitopes in proteins from their primary structures. Methods Enzymol. 203, 176–201.

    Article  PubMed  CAS  Google Scholar 

  70. Ponomarenko, J. V.,Van Regenmortel, M. H. V., (2009). B cell epitope prediction. In: Structural Bioinformatics, 2nd edition (Bourne, P. E., and Gu J., eds). John Wiley, Hoboken, NJ. pp 849–879.

    Google Scholar 

  71. Odorico, M., and Pellequer, J. L. (2003) BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. J. Mol. Recognit. 16, 20–22.

    Article  PubMed  CAS  Google Scholar 

  72. Blythe, M. J., and Flower, D. R. (2005) Benchmarking B cell epitope prediction: under-performance of existing methods. Protein Sci. 14, 246–248.

    Article  PubMed  CAS  Google Scholar 

  73. Greenbaum, J. A., Andersen, P. H., Blythe, M., Bui, H. H., Cachau, R. E., Crowe, J., Davies, M., Kolaskar, A. S., Lund, O., Morrison, S., Mumey, B., Ofran, Y., Pellequer, J. L., Pinilla, C., Ponomarenko, J. V., Raghava, G. P., van Regenmortel, M. H., Roggen, E. L., Sette, A., Schlessinger, A., Sollner, J., Zand, M., and Peters, B. (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J. Mol. Recognit. 20, 75–82.

    Article  PubMed  CAS  Google Scholar 

  74. Van Regenmortel, M. H. V., and Pellequer, J. L. (1994) Predicting antigenic determinants in proteins: looking for unidimensional solutions to a three-dimensional problem? Pept. Res. 7, 224–228.

    PubMed  CAS  Google Scholar 

  75. Haste Andersen, P., Nielsen, M., and Lund, O. (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. 15, 2558–2567.

    Article  PubMed  Google Scholar 

  76. Bublil, E. M., Freund, N. T., Mayrose, I., Penn, O., Roitburd-Berman, A., Rubinstein, N. D., Pupko, T., and Gershoni, J. M. (2007) Stepwise prediction of conformational discontinuous B-cell epitopes using the Mapitope algorithm. Proteins 68, 294–304.

    Article  PubMed  CAS  Google Scholar 

  77. Timmerman, P., Beld, J., Puijk, W. C., and Meloen, R. H. (2005) Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. ChemBioChem 6, 821–824.

    Article  PubMed  CAS  Google Scholar 

  78. Alexander, H., Alexander, S., Getzoff, E. D., Tainer, J. A., Geysen, H. M., and Lerner, R. A. (1992) Altering the antigenicity of proteins. Proc. Natl. Acad. Sci. USA 89, 3352–3356.

    Article  PubMed  CAS  Google Scholar 

  79. Shepherd, N. E., Hoang, H. N., Abbenante, G., and Fairlie, D. P. (2004) Single turn peptide alpha helices with exceptional stability in water. J. Am. Chem. Soc. 127, 2974–2983.

    Article  Google Scholar 

  80. Sundaram, R., Lynch, M. P., Rawale, S. V., Sun, Y., Kazanji, M., and Kaumaya, P. T. (2004) De novo design of peptide immunogens that mimic the coiled coil region of human T-cell leukemia virus type-1 glycoprotein 21 transmembrane subunit for induction of native protein reactive neutralizing antibodies. J. Biol. Chem. 279, 24141–24151.

    Article  PubMed  CAS  Google Scholar 

  81. Uversky, V. N., Oldfield, C. J., and Dunker, A. K. (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J. Mol. Recognit. 18, 343–384.

    Article  PubMed  CAS  Google Scholar 

  82. Thornton, J. M., and Sibanda, B. L. (1983) Amino and carboxy-terminal regions in globular proteins. J. Mol. Biol. 167, 443–460.

    Article  PubMed  CAS  Google Scholar 

  83. Pellequer, J. L., Westhof, E., and Van Regenmortel, M. H. V. (1994) Epitope predictions from the primary structure of proteins, in Peptide Antigens: A Practical Approach (Wisdom, G. B., ed.), JRL, Oxford, UK, pp. 7–25.

    Google Scholar 

  84. Van Regenmortel, M. H. V. (2007) The rational design of biological complexity: a deceptive metaphor. Proteomics 7, 965–975.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc H.V. Van Regenmortel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Van Regenmortel, M.H. (2009). What Is a B-Cell Epitope?. In: Schutkowski, M., Reineke, U. (eds) Epitope Mapping Protocols. Methods in Molecular Biology™, vol 524. Humana Press. https://doi.org/10.1007/978-1-59745-450-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-450-6_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-17-6

  • Online ISBN: 978-1-59745-450-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics