Skip to main content

Rapid Generation of miRNA Inhibitor Leads by Bioinformatics and Efficient High-Throughput Screening Methods

  • Protocol
  • First Online:
Book cover Drug Target miRNA

Abstract

The discovery of microRNAs (miRNAs) has opened an entire new avenue for drug development. These short (15–22 nucleotides) noncoding RNAs, which function in RNA silencing and posttranscriptional regulation of gene expression, have been shown to critically affect numerous pathways in both development and disease progression. Current miRNA drug development focuses on either reintroducing the miRNA into cells through the use of a miRNA mimic or inhibiting its function via use of a synthetic antagomir. Although these methods have shown some success as therapeutics, they face challenges particularly with regard to cellular uptake and for use as systemic reagents. We recently presented a novel mechanism of inhibiting miR-544 by directed inhibition of miRNA biogenesis. We found that inhibition of DICER processing of miR-544 through the use of a small molecule abolished miR-544 function in regulating adaptation of breast cancer cells to hypoxic stress. Herein, we describe a protocol that utilizes bioinformatics to first identify lead small molecules that bind to DICER cleavage sites in pre-miRNAs and then employ an efficient, high-throughput fluorescent-based screening system to determine the inhibitory potential of the lead compounds and their derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Lu Z, Wientjes MG, Au JLS (2010) Delivery of siRNA therapeutics: barriers and carriers. AAPS J 12(4):492–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burnett John C, Rossi John J (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16(6):861–865

    Article  CAS  PubMed  Google Scholar 

  5. Velagapudi SP, Gallo SM, Disney MD (2014) Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat Chem Biol 10(4):291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haga CL et al (2015) Small molecule inhibition of miR-544 biogenesis disrupts adaptive responses to hypoxia by modulating ATM-mTOR signaling. ACS Chem Biol 10(10):2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haga CL, Phinney DG (2012) MicroRNAs in the imprinted DLK1-DIO3 region repress the epithelial-to-mesenchymal transition by targeting the TWIST1 protein signaling network. J Biol Chem 287(51):42695–42707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eddy SR (2004) How do RNA folding algorithms work? Nat Biotechnol 22(11):1457–1458

    Article  CAS  PubMed  Google Scholar 

  9. Lorenz R et al (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mathews DH (2014) RNA secondary structure analysis using RNAstructure. Curr Protoc Bioinformatics Chapter 12:Unit 12.6

    Google Scholar 

  11. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seetin MG, Mathews DH (2012) RNA structure prediction: an overview of methods. Methods Mol Biol 905:99–122

    CAS  PubMed  Google Scholar 

  13. Bernhart SH (2011) RNA structure prediction. Methods Mol Biol 760:307–323

    Article  CAS  PubMed  Google Scholar 

  14. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue):D154–D158

    CAS  PubMed  Google Scholar 

  15. Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62

    Article  CAS  PubMed  Google Scholar 

  16. Chaires JB (2003) A competition dialysis assay for the study of structure-selective ligand binding to nucleic acids. Curr Protoc Nucleic Acid Chem Chapter 8:Unit 8.3

    PubMed  Google Scholar 

  17. Tse WC, Boger DL (2005) A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Curr Protoc Nucleic Acid Chem 8:85

    Google Scholar 

  18. Puglisi JD, Tinoco I Jr (1989) Absorbance melting curves of RNA. Methods Enzymol 180:304–325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Department of Defense CDMRP Grant W81XWH-16-1-0029 to D.G.P. and M.D.D.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew D. Disney Ph.D. or Donald G. Phinney Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Haga, C.L., Velagapudi, S.P., Childs-Disney, J.L., Strivelli, J., Disney, M.D., Phinney, D.G. (2017). Rapid Generation of miRNA Inhibitor Leads by Bioinformatics and Efficient High-Throughput Screening Methods. In: Schmidt, M. (eds) Drug Target miRNA. Methods in Molecular Biology, vol 1517. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6563-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6563-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6561-8

  • Online ISBN: 978-1-4939-6563-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics