Skip to main content

Roles of the Nucleoporin Tpr in Cancer and Aging

  • Chapter
  • First Online:
Book cover Cancer Biology and the Nuclear Envelope

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

Tpr is a prominent architectural component of the nuclear pore complex that forms the basket-like structure on the nucleoplasmic side of the pore. Tpr, which stands for translocated promoter region, was originally described in the context of oncogenic fusions with the receptor tyrosine kinases Met, TRK, and Raf. Tpr has been since implicated in a variety of nuclear functions, including nuclear transport, chromatin organization, regulation of transcription, and mitosis. More recently, Tpr function has been linked to events including p53 signaling and premature aging in Hutchinson–Gilford Progeria Syndrome (HGPS). Here we provide an overview of the various processes that involve Tpr, and discuss how the levels and localization of a single protein can affect diverse pathways in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Anaphase promoting complex

EGF:

Epidermal growth factor

HEZ:

Heterochromatin exclusion zone

HGF:

Hepatocyte growth factor

HOS:

Human osteogenic sarcoma

HGPS:

Hutchinson–Gilford progeria syndrome

MSL:

Male-specific lethal

MNNG:

N-methyl-N′-nitronitrosoguanidine

NES:

Nuclear export signal

NLS:

Nuclear localization signal

NPC:

Nuclear pore complex

NUP:

Nucleoporin

SAC:

Spindle assembly checkpoint

TPR:

Translocated promoter region

References

  1. Ribbeck K, Gorlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20(6):1320–1330. doi:10.1093/emboj/20.6.1320

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Yang W, Gelles J, Musser SM (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci U S A 101(35):12887–12892. doi:10.1073/pnas.0403675101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Rabut G, Doye V, Ellenberg J (2004) Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6(11):1114–1121. doi:10.1038/ncb1184, ncb1184 [pii]

    Article  PubMed  CAS  Google Scholar 

  4. D’Angelo MA, Hetzer MW (2008) Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 18(10):456–466. doi:10.1016/j.tcb.2008.07.009, S0962-8924(08)00213-4 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158(5):915–927. doi:10.1083/jcb.200206106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Hoelz A, Debler EW, Blobel G (2011) The structure of the nuclear pore complex. Annu Rev Biochem 80:613–643. doi:10.1146/annurev-biochem-060109-151030

    Article  PubMed  CAS  Google Scholar 

  7. Goldberg MW, Allen TD (1993) The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. J Cell Sci 106(Pt 1):261–274

    PubMed  CAS  Google Scholar 

  8. Jarnik M, Aebi U (1991) Toward a more complete 3-D structure of the nuclear pore complex. J Struct Biol 107(3):291–308

    Article  PubMed  CAS  Google Scholar 

  9. Goldberg MW, Allen TD (1992) High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J Cell Biol 119(6):1429–1440

    Article  PubMed  CAS  Google Scholar 

  10. Hase ME, Kuznetsov NV, Cordes VC (2001) Amino acid substitutions of coiled-coil protein Tpr abrogate anchorage to the nuclear pore complex but not parallel, in-register homodimerization. Mol Biol Cell 12(8):2433–2452

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Krull S, Thyberg J, Bjorkroth B, Rackwitz HR, Cordes VC (2004) Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol Biol Cell 15(9):4261–4277. doi:10.1091/mbc.E04-03-0165, E04-03-0165 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Cordes VC, Hase ME, Muller L (1998) Molecular segments of protein Tpr that confer nuclear targeting and association with the nuclear pore complex. Exp Cell Res 245(1):43–56. doi:10.1006/excr.1998.4246, S0014-4827(98)94246-X [pii]

    Article  PubMed  CAS  Google Scholar 

  13. Hase ME, Cordes VC (2003) Direct interaction with nup153 mediates binding of Tpr to the periphery of the nuclear pore complex. Mol Biol Cell 14(5):1923–1940. doi:10.1091/mbc.E02-09-0620, 14/5/1923 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Fontoura BM, Dales S, Blobel G, Zhong H (2001) The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR. Proc Natl Acad Sci U S A 98(6):3208–3213. doi:10.1073/pnas.061014698, 98/6/3208 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Frosst P, Guan T, Subauste C, Hahn K, Gerace L (2002) Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J Cell Biol 156(4):617–630. doi:10.1083/jcb.200106046, jcb.200106046 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Paddy MR (1998) The Tpr protein: linking structure and function in the nuclear interior? Am J Hum Genet 63(2):305–310. doi:10.1086/301989, S0002-9297(07)61471-2 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Dultz E, Zanin E, Wurzenberger C, Braun M, Rabut G, Sironi L, Ellenberg J (2008) Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J Cell Biol 180(5):857–865. doi:10.1083/jcb.200707026, jcb.200707026 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Bodoor K, Shaikh S, Salina D, Raharjo WH, Bastos R, Lohka M, Burke B (1999) Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci 112(Pt 13):2253–2264

    PubMed  CAS  Google Scholar 

  19. Ben-Efraim I, Frosst PD, Gerace L (2009) Karyopherin binding interactions and nuclear import mechanism of nuclear pore complex protein Tpr. BMC Cell Biol 10:74. doi:10.1186/1471-2121-10-74, 1471-2121-10-74 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  20. Snow CJ, Dar A, Dutta A, Kehlenbach RH, Paschal BM (2013) Defective nuclear import of Tpr in Progeria reflects the Ran sensitivity of large cargo transport. J Cell Biol 201(4):541–557. doi:10.1083/jcb.201212117

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8(7):507–517. doi:10.1038/nrg2122, nrg2122 [pii]

    Article  PubMed  CAS  Google Scholar 

  22. Luthra R, Kerr SC, Harreman MT, Apponi LH, Fasken MB, Ramineni S, Chaurasia S, Valentini SR, Corbett AH (2007) Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem 282(5):3042–3049. doi:10.1074/jbc.M608741200, M608741200 [pii]

    Article  PubMed  CAS  Google Scholar 

  23. Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, Wilm M, Stunnenberg HG, Saumweber H, Akhtar A (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21(6):811–823. doi:10.1016/j.molcel.2006.02.007, S1097-2765(06)00089-X [pii]

    Article  PubMed  CAS  Google Scholar 

  24. Krull S, Dorries J, Boysen B, Reidenbach S, Magnius L, Norder H, Thyberg J, Cordes VC (2010) Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J 29(10):1659–1673. doi:10.1038/emboj.2010.54, emboj201054 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. David-Watine B (2011) Silencing nuclear pore protein Tpr elicits a senescent-like phenotype in cancer cells. PLoS One 6(7):e22423. doi:10.1371/journal.pone.0022423

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Shibata S, Matsuoka Y, Yoneda Y (2002) Nucleocytoplasmic transport of proteins and poly(A) + RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells 7(4):421–434, 525 [pii]

    Article  PubMed  CAS  Google Scholar 

  27. Bangs P, Burke B, Powers C, Craig R, Purohit A, Doxsey S (1998) Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J Cell Biol 143(7):1801–1812

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Coyle JH, Bor YC, Rekosh D, Hammarskjold ML (2011) The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway. RNA 17(7):1344–1356. doi:10.1261/rna.2616111, rna.2616111 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Rajanala K, Nandicoori VK (2012) Localization of nucleoporin Tpr to the nuclear pore complex is essential for Tpr mediated regulation of the export of unspliced RNA. PLoS One 7(1):e29921. doi:10.1371/journal.pone.0029921, PONE-D-11-17401 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Vinciguerra P, Iglesias N, Camblong J, Zenklusen D, Stutz F (2005) Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J 24(4):813–823. doi:10.1038/sj.emboj.7600527, 7600527 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116(1):63–73, S0092867403010262 [pii]

    Article  PubMed  CAS  Google Scholar 

  32. Park M, Dean M, Cooper CS, Schmidt M, O’Brien SJ, Blair DG, Vande Woude GF (1986) Mechanism of met oncogene activation. Cell 45(6):895–904, 0092-8674(86)90564-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  33. Luraghi P, Schelter F, Kruger A, Boccaccio C (2012) The MET oncogene as a therapeutical target in cancer invasive growth. Front Pharmacol 3:164. doi:10.3389/fphar.2012.00164

    Article  PubMed Central  PubMed  Google Scholar 

  34. Liang TJ, Reid AE, Xavier R, Cardiff RD, Wang TC (1996) Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J Clin Invest 97(12):2872–2877. doi:10.1172/JCI118744

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Rodrigues GA, Park M (1993) Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol 13(11):6711–6722

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Peschard P, Park M (2007) From Tpr-Met to Met, tumorigenesis and tubes. Oncogene 26(9):1276–1285. doi:10.1038/sj.onc.1210201, 1210201 [pii]

    Article  PubMed  CAS  Google Scholar 

  37. Rodrigues GA, Park M, Schlessinger J (1997) Activation of the JNK pathway is essential for transformation by the Met oncogene. EMBO J 16(10):2634–2645. doi:10.1093/emboj/16.10.2634

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Mak HH, Peschard P, Lin T, Naujokas MA, Zuo D, Park M (2007) Oncogenic activation of the Met receptor tyrosine kinase fusion protein, Tpr-Met, involves exclusion from the endocytic degradative pathway. Oncogene 26(51):7213–7221. doi:10.1038/sj.onc.1210522

    Article  PubMed  CAS  Google Scholar 

  39. Soman NR, Correa P, Ruiz BA, Wogan GN (1991) The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci U S A 88(11):4892–4896

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Yu J, Miehlke S, Ebert MP, Hoffmann J, Breidert M, Alpen B, Starzynska T, Stolte Prof M, Malfertheiner P, Bayerdorffer E (2000) Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer 88(8):1801–1806

    Article  PubMed  CAS  Google Scholar 

  41. Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, Pierotti MA (1997) Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer 19(2):112–123. doi:10.1002/(SICI)1098-2264(199706)19:2<112::AID-GCC7>3.0.CO;2-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  42. King HW, Tempest PR, Merrifield KR, Rance AJ (1988) tpr homologues activate met and raf. Oncogene 2(6):617–619

    PubMed  CAS  Google Scholar 

  43. Gough SM, Slape CI, Aplan PD (2011) NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 118(24):6247–6257. doi:10.1182/blood-2011-07-328880

    Google Scholar 

  44. Kohler A, Hurt E (2010) Gene regulation by nucleoporins and links to cancer. Mol Cell 38(1):6–15. doi:10.1016/j.molcel.2010.01.040, S1097-2765(10)00172-3 [pii]

    Article  PubMed  Google Scholar 

  45. Xu S, Powers MA (2009) Nuclear pore proteins and cancer. Semin Cell Dev Biol 20(5):620–630. doi:10.1016/j.semcdb.2009.03.003, S1084-9521(09)00041-X [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Stukenberg PT, Macara IG (2003) The kinetochore NUPtials. Nat Cell Biol 5(11):945–947. doi:10.1038/ncb1103-945, ncb1103-945 [pii]

    Article  PubMed  CAS  Google Scholar 

  47. Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8(5):379–393. doi:10.1038/nrm2163

    Article  PubMed  CAS  Google Scholar 

  48. Lee SH, Sterling H, Burlingame A, McCormick F (2008) Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev 22(21):2926–2931. doi:10.1101/gad.1677208, 22/21/2926 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Nakano H, Funasaka T, Hashizume C, Wong RW (2010) Nucleoporin translocated promoter region (Tpr) associates with dynein complex, preventing chromosome lagging formation during mitosis. J Biol Chem 285(14):10841–10849. doi:10.1074/jbc.M110.105890, M110.105890 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Freedman DA, Levine AJ (1998) Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18(12):7288–7293

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Funasaka T, Tsuka E, Wong RW (2012) Regulation of autophagy by nucleoporin Tpr. Sci Rep 2:878. doi:10.1038/srep00878

    Article  PubMed Central  PubMed  Google Scholar 

  52. Vomastek T, Iwanicki MP, Burack WR, Tiwari D, Kumar D, Parsons JT, Weber MJ, Nandicoori VK (2008) Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction. Mol Cell Biol 28(22):6954–6966. doi:10.1128/MCB.00925-08, MCB.00925-08 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Pouyssegur J, Volmat V, Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 64(5–6):755–763

    Article  PubMed  CAS  Google Scholar 

  54. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279–3290. doi:10.1038/sj.onc.1210421

    Article  PubMed  CAS  Google Scholar 

  55. Csoka AB, English SB, Simkevich CP, Ginzinger DG, Butte AJ, Schatten GP, Rothman FG, Sedivy JM (2004) Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell 3(4):235–243. doi:10.1111/j.1474-9728.2004.00105.x, ACE105 [pii]

    Article  PubMed  CAS  Google Scholar 

  56. Kelley JB, Datta S, Snow CJ, Chatterjee M, Ni L, Spencer A, Yang CS, Cubenas-Potts C, Matunis MJ, Paschal BM (2011) The defective nuclear lamina in Hutchinson-Gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9. Mol Cell Biol 31(16):3378–3395. doi:10.1128/MCB.05087-11, MCB.05087-11 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR, Sanchez LM, Zhou Z, Rodriguez FJ, Stewart CL, Vega JA, Tryggvason K, Freije JM, Lopez-Otin C (2005) Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437(7058):564–568. doi:10.1038/nature04019

    Article  PubMed  CAS  Google Scholar 

  58. Nagai M, Yoneda Y (2013) Downregulation of the small GTPase ras-related nuclear protein accelerates cellular ageing. Biochim Biophys Acta 1830(3):2813–2819. doi:10.1016/j.bbagen.2012.11.002819. doi:10.1016/j.bbagen.2012.11.001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryce M. Paschal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Snow, C.J., Paschal, B.M. (2014). Roles of the Nucleoporin Tpr in Cancer and Aging. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_14

Download citation

Publish with us

Policies and ethics