TY - JOUR T1 - Long Non-coding RNAs and their Role in Metastasis JF - Cancer Genomics - Proteomics JO - Cancer Genomics Proteomics SP - 143 LP - 160 VL - 14 IS - 3 AU - ULRICH H. WEIDLE AU - FABIAN BIRZELE AU - GWEN KOLLMORGEN AU - RÜDIGER RÜGER Y1 - 2017/05/01 UR - http://cgp.iiarjournals.org/content/14/3/143.abstract N2 - The perception of long non-coding RNAs as chunk RNA and transcriptional noise has been steadily replaced by their role as validated targets for a diverse set of physiological processes in the past few years. However, for the vast majority of lncRNAs their precise mode of action and physiological function remain to be uncovered. A large body of evidence has revealed their essential role in all stages of cancirogenesis and metastasis. In this review we focus on the role of lncRNAs in metastasis. We grouped selected lncRNAs into three categories based on in vitro and in vivo mode of action-related studies and clinical relevance for metastasis. Grouped according to their mode of action, in category I we discuss lncRNAs such as CCAT2, DREH, LET, NKILA, treRNA, HOTAIR, H19, FENDRR, lincROR, MALAT, GClnc1, BCAR4, SCHLAP1 and lncRNA ATP, all lncRNAs with in vitro and in vivo metastasis-related data and clinical significance. In category II we discuss lncRNAs CCAT1, PCAT1, PTENgp1, GPLINC, MEG3, ZEB2-AS, LCT13, ANRIL, NBAT1 and lncTCF7 all characterized by their mode of action in vitro and clinical significance, but pending or preliminary in vivo data. Finally, under category III, we discuss lncRNAs BANCR, FRLnc1, SPRY4-IT1 and LIMT with partially or poorly-resolved mode of action and varying degree of validation in clinical metastasis. Finally we discuss metastasis-related translational aspects of lncRNAs. ER -