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Abstract. Breast cancer (BC) remains the most common
cancer type diagnosed in women. Although targeted
therapies have improved patient survival for advanced BC,
these tumors frequently relapse due to drug resistance
mechanisms. A systems biology approach integrates DNA,
RNA  and  protein  alterations  generated  from
multidimensional platforms to better understand the
mechanisms that regulate the
Downstream functional analyses in pre-clinical studies might

metastatic  process.
integrate the role of these aberrations into the cell, leading
to discovery of new therapeutic targets. In the present report,
we review relevant findings associated with genomic,
transcriptomic and proteomic analyses and the contribution
of the systems biology concept to the interpretation of these
data in the metastatic context. Also, we highlight the
importance of re-designing clinical trials towards metastasis
prevention for improvement of personalized care.

In 2012, invasive BC is expected to account for 29%
(226,870) of all newly-diagnosed cancer cases and for 14%
(39,510) of all cancer deaths in women in USA (1). Although
targeted therapies have improved patient survival for
advanced BC, these tumors frequently relapse due to drug
resistance mechanisms. Some evidence have showed that 30-
50% of hormone receptor (HR)-positive BC cases do not
respond to tamoxifen therapy (2). HER2-overexpressing BC
patients might develop metastases and only 11-34% of
metastatic tumors respond to trastuzumab monotherapy (3).
Although triple-negative BC (TNBC) patients show about
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39% response to chemotherapy, presence of residual disease
is associated with early-risk of relapse (4, 5), for which the
effects of targeted therapies are currently under investigation
in clinical trials (6).

Metastasis is a process characterized by local invasion,
intravasion, transport of tumor cells to the parenchyma of
other organs, extravasation and establishment of secondary
lesions (7). Over the past decade, several reports have
provided the scientific community with insights about the
molecular mechanisms underlying this process. Evidence
indicate that metastasis can originate from genetic and
epigenetic alterations in the molecular profile of a
subpopulation of cells within the primary tumor, whose
behavior is modulated towards a more aggressive phenotype
(8). Genetic alterations occur primarily in the DNA sequence
(i.e. mutations) whereas epigenetic changes are related to the
structure of the chromatin and might involve DNA
methylation, histone modifications and non-coding RNAs,
including microRNAs (9).

A systems biology approach has been employed to
explore the functional relationships among genomic,
during BC
progression. In this context, integrative analyses enable
studying of the functional role of these aberrations at the
cellular level and, therefore, they might represent powerful
tools to identify new therapeutic targets as well as

transcriptomic and proteomic alterations

prognostic and predictive molecular markers that might be
useful to select patients who would beneficiate from a
specific treatment. Additionally, these analyses have also
been widely employed to identify new cancer biomarkers
for early diagnosis and monitoring of response to treatment.
Therefore, integrative analyses from multidimensional
“omics” technologies have been demonstrated to be
important for treating the patient in a personalized way,
which might increase the therapeutic efficacy and delay
tumor progression (10). Also, clinical trials must be re-
designed towards metastasis prevention (11), in order to
provide the patient with a personalized therapy in early
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stages of the disease, preventing progression of tumors with
high risk of developing metastatic disease.

In this review, we summarize the recent findings related
to the identification of potential molecular parameters of BC
progression towards metastasis, including the relevance of
the interactions of tumor cells with the microenvironment.
For these studies, the “omics” technologies have been widely
used in an attempt to explore the mechanisms involved in
these processes under a systems biology perspective, and,
therefore, they have led to the identification of molecular
markers required for predicting response to therapy.

Genomics of Metastatic BC
DNA alterations

DNA copy number. Several studies have correlated genetic
alterations present in primary tumors with the time in
developing metastasis, in an attempt to identify a set of genes
that predicts the metastatic ability of BC. Results from array
comparative genomic hybridization (aCGH) have demonstrated
that copy number alterations (CNA) of primary breast tumors
had a higher rate of copy number losses in patients who
developed axillary lymph node metastases, compared to those
who did not. Metastasizing tumors showed 186 amplified or
deleted regions compared to non-metastasizing tumors,
including those located on chromosomes 7p, 16q and 18q.
Additionally, the gene TSPANI (on 1p34.1) was deleted in
metastasizing tumors and might represent an important tumor
suppressor gene (12). Oligonucleotide-based Single-nucleotide
polymorphisms (SNP) array technology has higher resolution
compared to aCGH for mapping CNA and it has been used to
identify a copy number signature (CNS) that predicts patient
prognostic outcome. Considering those genes whose copy
number alterations were significantly concordant with changes
in gene expression, this methodology has enabled scientists to
define a set of 81 genes that was used to construct a CNS with
high accuracy in stratifying primary tumors in subgroups with
different times to metastatic relapse (13).

Comparative analyses between primary BCs and
metastasis represents other approaches for establishing a
copy number signature for BC progression. These analyses
have demonstrated that genetic alterations predisposing to
the metastatic potential might be detected in the primary
tumor. Compared to non-metastatic invasive ductal
carcinoma (IDC), both metastatic IDCs and their metastases
showed a unique pattern of copy number alterations,
including gains at 2p24-13, 2q22-33, 9q21-31, 12q21-23, 17
q23-25 and loses at 11q23-ter, 14q23-31, 20p11-ql12, 2q36-
ter, 8q24-ter, 9q33-ter, 2pl1-ql1, and 12q13 (14). Another
study has demonstrated frequent copy number variations
between axillary lymph node metastasis and primary tumors,
including aberrations at 6q15-16, a region containing the

298

gene PNRCI (a putative tumor suppressor) and at 9q31.3-
33.1, where the genes DBCI and DECI (regulators of
apoptosis) are located (15).

DNA mutations. Mutation analyses have been used to verify
the putative role of certain mutations in the function of known
oncogenes or tumor suppressor genes throughout metastasis.
Comparative analyses between primary and metastatic tumors
have shown high frequency of TP53 mutations during BC
metastasis to the brain. The results included mutations that
originated from primary tumor and were propagated by clonal
expansion or represented completely new alterations in brain
metastasis (16).

Single-nucleotide polymorphisms (SNPs) related to the
PI3K/Akt signaling pathway have generated interesting
findings about the role of these alterations during metastatic
progression. The role of this pathway in promoting tumor
progression might lead to the assumption that activating
mutations of this gene might occur more frequently in the
metastasis compared to the primary tumor. Nevertheless, the
proportion of patients with activating PIK3CA mutations
found exclusively in the metastasis was similar to that of
patients with activating mutations found uniquely in the
primary tumors, suggesting that PIK3CA mutations might
represent stochastic alterations rather than drivers of
metastatic progression (17). Inherited polymorphisms on
PTEN promoter (a suppressor of PI3K/Akt pathway) have
been associated with higher frequency of BC metastasis at
diagnosis. Additionally, the gene expression profile in breast
tumors from PTEN variants carriers, compared to non-
carriers showed a set of differentially expressed genes that
stratified the patients into two subgroups with different
recurrence-free survivals (18).

Genetic variants related to other genes exerting oncogenic
roles during BC progression have also been investigated. The
polymorphism rs6983267 at 8q24 has been associated with
a higher risk for metastasis in inflammatory BC, which
might be probably due to de-regulated expression of MYC,
since the variant has been suggested to be a cis-regulatory
enhancer element of this gene (19).

Interesting findings have been reported by Genome-wide
association studies (GWAS), which represent international
efforts to identify new markers of BC progression. This
approach is based on simultaneous analyses of SNPs in
different loci of the human genome and subsequent
evaluation of their association with BC risk and prognosis
(20). These analyses unraveled the association of the SNP
rs3784099 located on chromosome 14 in intron 7 of the
RADSILI gene with mortality and recurrence in BC patients.
Also, this gene is an established cancer susceptibility gene
and encodes a protein essential for DNA repair, which
highlights the relevance of these findings (21). Another
genome-wide association analysis identified three new BC
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susceptibility loci: rs10771399 (at 12pl11), rs1292011 (at
12q24), rs2823093 (at 21g21). Two of these alterations lie in
regions containing genes related to BC progression: PTHLH
(12p11), involved in bone metastasis in BC and NRIPI
(21921), a regulator or ER signaling and BC cell growth.
Although this study has focused on identifying new BC risk
loci, these data are suitable for further investigation for
elucidating whether these alterations might also be related to
metastatic progression (22).

Next-generation  sequencing (NGS). Next-generation
sequencing (NGS) represents a powerful tool to understing
cancer. Differently from array analyses and single-gene
sequencing, this approach has focused on whole-genome and
has been used to detect chromosomal re-arrangements,
somatic mutations and copy number alterations in solid
tumors, with a resolution of up to a single base amplification
or deletion (23).

This technology has been employed to compare
molecular changes between primary breast tumors and
brain metastases in order to understand the mechanisms
involved in the metastatic process. In a lobular breast
tumor, 32 mutations were found in the metastasis. Out of
these 32 alterations, 19 de novo mutations were detected,
since they were not detected in the primary tumor (24). In
a basal-like breast patient, 80% of copy number alterations
detected in metastasis overlapped with those found in the
primary tumor. Additionally, out of the 50 mutations
validated, 48 were detected in both primary tumor and
brain metastasis and only two de novo mutations (genes
SNEDI and FLNC) were detected exclusively in the
metastasis (25). Altogether, these studies revealed that
although additional copy number variations and mutations
might occur during the metastatic progression, most of the
alterations originated from the primary tumor, are
propagated in the metastasis.

Some works have attempted to minimize the bias
introduced by genetic tumor heterogeneity, which
complicates the understanding of molecular changes
associated with tumor evolution. Flow-sorted nuclei
technique from primary and metastatic tumors and single-
nucleus sequencing (SNS) have been employed to study the
population structure of a primary tumor. Copy number
variation analyses (CNV) showed that the tumor is composed
by distinct subpopulations that share genomic similarities but
have also diverged and contain unique attributes compared
to each other. Moreover, the results showed that a specific
subpopulation might travel to distant sites and expand to
establish a metastatic site. According to these data, the
authors proposed a mechanism of “punctuated clonal
evolution” for metastatic progression, whereby a single
clonal expansion forms the primary tumor and seeds the
metastasis (26).

DNA methylation. Methylation alterations between primary
tumors and metastases have also been reported for groups of
known cancer-related genes. A recent work revealed the higher
methylation proportion of 12 BC candidate genes in the
primary BC compared to normal tissue from the same patient.
Out of the 12 genes, BMP6, BRCAI and P16 showed higher
methylation proportions in the matched lymph node metastasis
compared to the normal tissues and, therefore, might represent
useful biomarkers for metastasis screening (27).
Genome-wide profiling of DNA methylation has been
performed in primary breast tumors and revealed genes whose
hypermethylation was significantly correlated with relapse-
free survival, including RECK, SFRP2 and ACADL. Tumor
specificity of methylation was confirmed for these genes by
sequencing of an independent set of normal/breast tumor
samples. Moreover, methylation of RECK has been observed
in other cancer types and its reduced expression has been
associated with worst prognosis (28). Genome-wide analysis
has also been employed to characterize the DNA methylation
profile of primary BCs with different metastatic potential. A
global breast CpG island methylator phenotype (B-CIMP) was
identified as an epigenetic profile associated with low risk of
metastasis. Parallel gene expression analyses identified genes
with both significant hypermethylation and down-regulation
in B-CIMP tumors, including those involved in epithelial-
mesenchymal transition (EMT), such as LYN, MMP7, KLK10
and WNT6. Also, the genes in the B-CIMP repression
signature showed genes whose differential expression
correlated with prognosis across several BC cohorts (29).

Gene expression profile

Gene expression profile of primary breast tumors has been
demonstrated to generate a specific gene signature associated
with prognostics and outcome. The 70-gene prognostic
signature established by van’t Veer et al. (30) represented a
pioneer strategy in identifying a set of gene predictors of
short time to develop distant metastases. These genes
outperformed conventional parameters for determining
tumors more likely to metastasize (i.e. as lymph node status),
since the patients had no tumor cells in their lymph nodes at
diagnosis (30). Another study analyzed 107 primary breast
tumors in patients who experienced relapse and revealed a
set of 69 differentially expressed genes among tumors that
relapsed specifically to the bone and tumors that relapsed
elsewhere. Enriched functional pathways associated with this
profile included genes that might participate in adhesion
processes required for bone invasion (RNDI, TSPANI,
ANXA9) and FGF signaling pathway (31).

Comparative analyses between primary tumors and
metastasis have revealed that the gene expression profile is
maintained throughout the metastatic progression, which
replicates the results generated from DNA analyses. For
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instance, the 70-gene prognostic signature associated with
poor prognosis in primary tumors (described above) was also
present in their matched metastases (32). Other works have
demonstrated genetic differences between primary tumors
and distant metastases. Although gene expression analyses
have uncovered few differences between primary tumors and
lymph node metastases, distant metastases were
distinguished from both groups by high expression of genes
involved in the VEGF signaling pathway, including
ANGPTL4 and ADM (33).

Proteomics

Protein expression profiling has been used in an attempt to
understand how genomic changes might integrate at the
protein function. Additionally, this approach might lead to
the identification of putative prognostic biomarkers. Mass
spectrometry was used to identify differential protein
expression between primary breast tumors associated with
lymph node-positive (LN+) and lymph node-negative (LN-)
states. The results were validated by tissue microarrays
(TMAs), which demonstrated that the expression levels of
HSP90B1 and DCN were significantly correlated with
presence of LN metastasis. Additionally, in an independent
cohort of BC patients, high expression of DCN was
associated with higher risk for lymph node metastasis and
worse overall survival whereas high expression of HSP90B1
was correlated with higher risk of developing distant
metastasis, decreased overall survival and predicted better
response to hormonal therapy (34).

Protein analyses have been described for 38 invasive ductal
carcinomas corresponding to NO, N1 and N2 stages of lymph
node metastasis. Differential protein expression for each stage
was established by comparing the cancerous to normal breast
tissue. As expression levels of caltireculin and tropomyosin
alpha-3 chain were commonly up-regulated in the three stages,
these proteins might represent potential biomarkers for
diagnosis and treatment for different stages of lymph node
metastasis. Other proteins showed altered expression in a
specific stage and, therefore, they might be used for
classification of N staging. Since up-regulation of PDIA3 was
only found in the stages N1 and N2, which correspond to BCs
that metastasized, this protein might represent a prognostic
marker to indicate the metastatic potential of BCs (35).

Genome-wide protein analyses have also been used to
identify proteins differentially expressed between triple-
negative BCs with different metastatic behaviors. Results have
demonstrated that lymph node-positive BC (high metastatic
potential) showed higher expression of Statl and the HLA II
gamma subunit CD74, compared to the lymph node negative
samples (low metastatic potential), and, therefore, these
proteins were considered potential therapeutic targets
specifically for treating metastatic triple-negative BCs (36).
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Integrative analyses

During tumor progression, accumulation of “driver”
mutations, i.e. those that are key mediators of this process,
might be paralleled by “passenger” mutations, which occur
only due to genomic instability and, therefore, are not related
to putative therapeutic targets (37). Considering that cancer
arises from an intricate network of DNA, RNA and protein
interactions, information generated from genomic,
transcriptomic and proteomic analyses might be integrated
to improve our ability of identifying molecular “drivers” that
exert key roles throughout tumor evolution and, therefore,
might represent potential candidates for drug sensitivity
prediction and targeted therapy.

In a large cohort of primary breast tumors, integrated
analyses of copy number and gene expression have
elucidated some mechanisms, whereby genome variation
leads to alterations of the tumor expression architecture. The
results revealed a limited number of genomic regions that
might contain putative driver genes and provided a novel
molecular stratification of BC subtypes. Estrogen-positive
tumors that showed 11q13/14 amplification correlated with
worse outcome compared to those that did not, which might
be due to some genes located in this region: CCND1, EMSY,
PAKI and RSF1 (38).

Multi-platform whole-genome microarray analyses has
integrated results from copy number variation, gene expression
profiling and methylation to identify differentially regulated
pathways between a highly metastatic BC cell line and its low
metastatic parental cell line. Networks analyses demonstrated
that the genes differentially regulated belonged to the EGFR,
TGFB1, NF-kb, ERK and MAPK pathways. The robustness of
this method was demonstrated by validation experiments,
which confirmed that hypermethylated genes correlated with
decreased expression in the metastatic, compared to the
parental cell line, including the gene stratifin (SFN).
Interestingly, this approach seemed to refine the results more
precisely, since some of these genes also correlated with
decreased copy number (EGFR) and, therefore, might represent
functionally important drivers of metastatic process (39).

Considering that proteins translate effects of genomic
alterations into the biological functions of the cell, analyses
integrating protein-protein interactions networks with gene-
gene co-expression networks might be an important tool to
reveal a BC metastasis-specific signature. Data from six
different studies have been used in a meta-analysis to build
interaction gene-gene networks, whereby pairs of genes
might be interconnected based on their correlation expression
measures. Moreover, these connections were maintained just
in case a protein-protein interaction related to the pair was
reported previously, which should improve the selection of
functionally more relevant subnetworks. The results
generated a consensus network, containing interconnected



Trape et al: Breast Cancer Metastasis and Individualized Therapy (Review)

genes involved in cell cycle regulation and commonly found
in subnetworks throughout all studies. Moreover, the genes
interacting in this network were highly expressed in poor
prognosis patients, and, therefore, they might represent
putative markers for predicting metastatic relapse (40).

The Cancer Genome Atlas (TCGA). Currently, international
initiatives have generated an avalanche of information that
has expanded the application of integrative analyses in
cancer research. Results generated from whole-genome
analyses have been submitted in The Cancer Genome Atlas
(TCGA) database, which includes copy number aberrations,
DNA methylation and mRNA expression (41). These data
might be available for integrative analyses of results
generated from a single technology platform.

Gene expression profiles of BC patients might be, in this
fashion, correlated with other types of genetic changes, such
as copy number alterations, reported in the TCGA database.
One study using this approach revealed that increased
expression of HSP9OAA1 and HSP90BB1 - two different
isoforms of the heat shock protein (HSP) 90 - might be
driven by chromosomal amplification and associated with
worse outcome in triple-negative and HER2-/ER+ BC
subtypes (42). Another study evidenced that results generated
from whole-genome methylation array analysis of primary
invasive breast carcinomas have been also validated using
independent datasets extracted from TCGA project. The
identification of molecular pathways differentially regulated
between ER+ and ER— BCs indicated that this approach
might lead to a better understanding about the distinctive
biological features between these subtypes (43). Therefore,
these studies highlight the therapeutic for relevance of
integrative analyses, since it allows identification of possible
mechanisms whereby a set of genes might contribute to a
more aggressive disease in particular cancer subtypes and
predict risk of recurrence, contributing to the design of
therapies specifically targeting these genes.

Predictive role in drug sensitivity. The identification of
molecular predictors of drug sensitivity represents an attempt
to increase the therapeutic efficacy in early stages of the
disease, which minimizes the chances of residual disease and
metastatic relapse after treatment. This strategy allows for
identification of the pathways that mediate tumor survival
and, therefore, selecting a drug specifically targeting certain
components of these pathways.

Molecular characterization of human cancer cell lines has
been described as a relevant tool to better understand the
mechanisms that render cancer cells susceptible to a particular
treatment. The Cancer Cell Line Encyclopedia (CCLE) is a
database that comprises information about mutational status,
copy number analyses and gene expression profiles of several
cell lines. Integrative analyses using these data might provide

insights regarding regulatory networks that drive tumor
progression and, when coupled with drug sensitivity assays,
they represent a robust method for identifing gene predictors
of therapeutic efficacy. A recent work using this approach
identified the SLFNII gene as a predictor of topotecan
sensitivity in BC as well as other cell lines (44).

MicroRNA target prediction. The identification of microRNA
targets has been extensively explored to unveil their regulatory
role in drug resistance and tumor progression towards
metastasis, since different microRNAs have been described to
exert oncogenic or tumor suppressor functions. Nevertheless,
microRNA target prediction remains challenging since a single
molecule regulates hundreds of genes. Therefore, some studies
have employed integrative analyses in human cancer cell lines
to overcome these difficulties, thereby improving our
knowledge on how microRNAs exert their biological functions.

In this context, DNA copy number analysis has been
demonstrated to be able to identify networks differentially
regulated between drug-sensitive and -resistant BC cells
when integrated to mRNA and microRNA expression
profiles. This strategy resulted in the identification of miR-
505 as a tumor suppressor, whose genomic region was found
to be deleted in doxorubicin-resistant cells. The suppressive
role of miR-505 seemed to be mediated by down-regulation
of Akt3 (an anti-apoptotic gene), a predicted target for this
microRNA as evidenced by mRNA profiling coupled with
downstream validation studies (45).

Integrative approaches combining target prediction
algorithms, microRNA screening and proteomic analyses have
uncovered the regulatory role of specific microRNAs in the
expression of proteins belonging to a particular oncogenic
signaling pathway. This approach led to the identification of
miR-124, miR-147 and miR-193a-3p as new tumor suppressors
of the EGFR signaling pathway in BC cells (46). Associated
with microRNA-regulated gene expression analyses, this
strategy also has revealed miR-18a, miR-18b, miR-206, miR-
193b and miR-302c¢ as potent ERa-regulating microRNAs,
since they repressed known estrogen-induced genes (47).

These data demonstrate the successful application of
integrative analyses for tumor microRNAs targeting
prediction in order to understand how they might exert their
biological functions in BC. These findings have therapeutic
implications, since they could guide the development of new
treatments based on microRNA expression in the future.

Functional genomics

Although integrative analyses have improved our ability to
identify significant molecular aberrations in BC patients,
results from these approaches require downstream functional
assays in order to distinguish “drivers” and “passengers”
events occurring throughout metastasis.
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In vitro models. Short-hairpin RNAs and small-interfering
RNAs (siRNAs) introduction in cell lines enable the use of
loss-and-gain of function to evaluate the biological roles of
the alterations observed in patients in the cellular context
(48). Considering that cyclin D1b expression is associated
with poor prognosis in BC patients, effects of its knockdown
by siRNA has confirmed its biological relevance, since it led
to increased apoptosis as well as inhibition of proliferation
and transformation of BC cells. The role of COX2 in brain
metastasis was evidenced upon its knockdown in human brain
endothelial cells (HBECs), which reduced the transmigration
of BC cells through the blood-brain barrier (BBB) (49).

Cell lines transfected with microRNAs have validated the
regulatory role of these molecules in several biological
processes. This approach confirmed miR-519c¢ as a putative
suppressor of ABCG2 expression, which contributes to
mitoxantrone resistance in BC cell lines (50). Ectopic
expression of miR-128 has evidenced its therapeutic role
since it improved chemotherapeutic sensitivity of breast
tumor-initiating cells (TICs) via repression of Bmi-1 and
ABCCS genes (51). The tumor suppressor role of miR-451
has been demonstrated since its overexpression restored the
growth-inhibitory effects of tamoxifen in endocrine-resistant
cells via suppression of 14-3-3C, a protein whose expression
correlates with early relapse of ER+ BCs (52).

Other studies have demonstrated the role of microRNAs in
metastatic progression. Transfection studies with miR-203
have demonstrated its ability to reduce migratory and invasive
properties of BC cell lines by suppressing SNAI2 expression,
which is a mediator of the epithelial-mesenchymal transition
(EMT) required for cellular acquisition of metastatic potential
(53). The expression of miR-200c has also been described as
a therapeutic approach to suppress EMT, since it decreases the
expression of genes related to cytoskeletal organization, such
as FHODI and PPM1 (54).

In vivo models. Although tri-dimensional cell culture systems
have improved the ability of mimicking the real situation in
vivo, animal models are definitely required for further
investigation, since they offer the opportunity to investigate
other important aspects related to tumor progression, such as
interaction of the tumor cells with the surrounding
microenvironment. In this context, in vivo models have been
demonstrated to be useful in identifying genes directly
related to the metastatic process.

For this purpose, pleural effusion of patients with
advanced disease might be injected into mice for consecutive
rounds of in vivo selection of cells that preferentially
infiltrate the brain. Gene expression profiling of these cells
and clinical tumors has identified COX2, EGFR and
ST6GALNACS as putative mediators of metastatic process.
Functional validation of these genes included the knockdown
of ST6GALNACY) in the brain metastatic cells, which resulted
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in inhibition of their adhesion to a monolayer of brain
endothelial cells in vitro (55).

In vivo models also represent a successful approach for
functional validation of genes potentially related to
metastasis. In mouse models of BC bone metastasis,
knockdown of the genes osteopontin (OPN), bone
sialoprotein (BSP) (56), resulted in reduced bone-metastatic
lesions. Silencing of heparan sulfate 6-O-sulfotransferase 2
(HS6ST2) indicated the therapeutic role of heparin-like
polysaccharides (57) in reducing bone metastasis by
interfering with TGFB-induced IL-11 expression. Another
xenograft model has elucidated the critical role of the Myc-
Skp2-Mizl transcriptional complex in RhoA-mediated cancer
metastasis, since the knockdown of each gene reduced RhoA
protein expression and BC metastasis to the lung (58).

Functional screening. In addition to their importance in
validation studies, in vitro and in vivo models also represent
relevant tools when used as the first attempt to identify new
therapeutic targets. For these studies, the identification of a
potential therapeutic target might be carried out by analyzing
the effects of specific microRNAs and interference RNA
(siRNA) transfections on cellular behavior.

Co-transfection of a microRNA library with a luciferase
reporter plasmid carrying the 3° UTR sequence of estrogen
receptor 0. (ERa) mRNA, has identified miR-22 as a pivotal
supressor of ERa-expression in a cell-based system (59).
Human BC cell lines transfected with a microRNA library
and subsequently treated with TRAIL have led to discovery
of microRNAs regulating TRAIL-induced apoptosis.
Caspase-3 activation assays indicated let-7c and miR-7 as
potential therapeutic targets since they enhanced TRAIL-
induced apoptosis (60).

Small-interfering library screening has suggested polo-like
kinase-1 (PLK1) as a potential therapeutic target for the
treatment of TNBC. Suppression of PLK1 by siRNA in a
TNBC cell line specifically reduced the tumor-initiating cells
(TIC) subpopulation, whose presence has been associated
with metastatic relapse of these tumors after chemotherapy
(61). Similar approaches have unraveled the role of lemur
tyrosine kinase-3 (LMTK3) as a potential mediator of ER+
activation in BC (62). Additionally, targeting of insulin
receptor (InsR) and insulin-like growth factor-I receptor
(IGF-IR) (63) has been reported as a novel strategy to reduce
resistance to endocrine therapy.

In vivo RNAi screening has been described as an
innovative methodology to identify new functionally relevant
tumor suppressors. In this approach, human mammary
epithelial cell lines transduced with a genome-wide shRNA
library are injected into mouse mammary fat pads and
genomic DNA sequencing of the tumors enables
identification of those genes whose silencing led to tumor
formation. The results revealed integration of shRNA
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targeting leukemia inhibitory factor receptor gene (LIFR) in
tumors from multiple mice, suggesting this gene as a putative
tumor suppressor (64).

Metastasis and microenvironment

Tumor-microenvironment interactions strengthen the invasive
potential of BC, promoting BC progression and metastasis.
Therefore, efforts have been made to discover molecular
mediators of these interactions, which might represent new
targets for anticancer therapy.
The hepatocyte growth factor (HGF) has been described as
an important mediator of angiogenesis, which is necessary
for BC progression. Primary breast endothelial cells
(BRENCS) have been demonstrated to induce EMT in breast
epithelial cells co-cultured in a 3D environment and these
interactions seemed partially mediated by HGF production
(65). Furthermore, HGF has also been described as a potent
regulator of resistance to antiangiogenic drugs, such as
VEGFR2 inhibitors. Accordingly, carbozantinib (a dual
VEGFR2/MET inhibitor) suppressed tumor growth and
metastases in a human BC xenograft model (66). The
establishment of bone metastases has been reported to be
mediated by HGF originating from the microenvironment,
which increases the invasive potential of bone-metastatic
cells by activation of the 3-catenin/Wnt pathway (67).
Other mediators of tumor-microenvironment interactions
include sphingosine-1-phosphate (S1P), a lipid produced by the
enzyme sphingosine kinase 1 (SphK1). Inhibitors of SphK1
have been described to suppress angiogenesis and
lymphangiogenesis in a murine model of BC metastasis (68).
Interestingly, both processes were inhibited not only around the
primary tumor but also in lymph nodes distant from the tumor.
Consequently, inhibition of SphK1 reduced the occurrence of
lymph node and lung metastases, suggesting S1P and SphK1
as potential therapeutic targets for metastatic disease.

Blood-based biomarkers

Frequently, biopsies from tumor tissue cannot be provided in
necessary amounts for detailed molecular characterization,
which restricts its use for monitoring the response of the
patient during the course of treatment. Moreover, the detection
of blood-based biomarkers represents an innovative approach
for diagnosis and prognosis, enabling for selection of those
patients who might benefit from an innovative therapy.

Circulating cell-free nucleic acids. The presence of nucleic acids
in the blood might be associated with apoptosis and necrosis of
tumor cells in the cancer microenvironment. Secretion has been
described as another source of cell-free DNA and active release
also might contribute to the amount of circulating nucleic acids.
Also, circulating tumor cells (CTCs) and tumor cells present in

micrometastases at distant sites (including bone marrow), are
thought to release nucleic acids into the blood (69).

Circulating cell-free DNA. Specific circulating cell-free DNA
alterations have been detected in the blood of metastatic BC
(MBC) patients, such as differential levels compared to
healthy individuals, epigenetic modifications and mutations
in tumor suppressors and oncogenes. Circulating DNA from
the plasma of MBC patients with amplified HER2 gene in
the primary tumor has been shown to predict the response of
these patients to trastuzumab in combination with
chemotherapy. Patients that had decreased levels of HER2
DNA in the plasma showed better response to treatment and
higher overall survival (70).

Serum levels of methylated gene promoter 14-3-3-0 have
been demonstrated to distinguish metastatic BC patients from
both healthy controls and disease-free patients, who did not
develop metastases. Moreover, MBC patients that had a
continuous decline of the levels of methylated 14-3-3-0 gene
were associated with better prognosis compared to those who
showed increased levels throughout successive cycles of
chemotherapy. These data suggest 14-3-3-¢ to be a putative
biomarker for metastasis screening and monitoring of
response to treatment (71).

In a recent study, blood-based DNA analyses have
demonstrated high accuracy for detecting PIK3CA mutations
present in the primary breast tumor of patients with
metastatic disease. Interestingly, this methodology also led
to the identification of PIK3CA alterations related to tumor
progression, since discordance for PIK3CA mutational status
was observed between primary early-stage tumor and the
blood testing after recurrence (72).

Sequencing of entire genes using blood DNA might be
required to improve the detection of progression-related
mutations, identifying biomarkers of disease progression and
monitoring of response to treatment. Tagged-amplicon deep
sequencing (TAm-Seq) of plasma DNA has been described as
a powerful technique for sequencing large genomic regions
in an attempt to identify and monitor mutations in tumor
suppressors and oncogenes. Plasma DNA sequencing of a
relapsed ovarian cancer patient led to the identification of a
de novo EGFR mutation, which had not been found in tumor
biopsies collected at the time of the initial surgery. Also, this
methodology enabled to determine the origin of metastatic
relapse in a patient with synchronous primary tumors. During
the treatment of a MBC patient, the detection of 10 plasma
tumor-specific mutations correlated with the clinical course,
since they showed marked decrease after systemic treatment
and increase in parallel to disease progression (73).

Circulating cell-free RNA. Tumor-associated mRNAs in

plasma have been associated with a more aggressive
phenotype. BC patients with cyclin DI mRNA expression
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detected in plasma at diagnosis have been associated with
shorter overall survival, identifying patients with poor
outcome in a group of good-prognosis tumors. Moreover, the
presence of cyclin DI mRNA also correlated with poor
response to tamoxifen therapy (74). Presence of Bmi-1
mRNA in the plasma of patients with primary breast
carcinomas has been associated with poor prognosis, since
Bmi-1 expression correlated with advanced stages of disease
and shorter overall survival (74).

Although results from blood-based microRNAs
biomarkers remains exploratory, their predictive value has
been highlighted in studies that have demonstrated
differential expression levels of specific microRNAs before
the treatment (baseline) in responder versus non-responder
patients. In this context, miR-210 has been described as a
putative predictor of HER2+ BC response to trastuzumab
(75), since patients that showed residual disease at the end
of the treatment showed higher baseline levels of this
microRNA compared to those that achieved complete
pathological response (pCR). Early-stage BC patients who
would benefit from neoadjuvant chemotherapy (NCT) might
be identified by analyzing the baseline levels of miR-122,
considering the differential expression of this microRNA
between patients who had metastatic relapse compared with
those who did not (76).

Protein expression profiling. The protein expression profile
also has led to the identification of putative serum
biomarkers. The screening of serum from 64 primary BC
patients unraveled a 2Il-candidate protein biomarker
signature associated with the risk of developing metastasis.
This list included several cytokines (IL-6, IL-18) involved
with cell migration, infiltration and angiogenesis, events
characteristic of metastatic behavior. The results were
validated in an independent cohort, since this signature led
to the classification of patients into high- versus low-risk for
progressing towards MBC (77). In another study, the levels
of 25 cytokines were assessed in serum from 200 BC
patients, with equal proportions of positive and negative
lymph nodes. The results revealed eotaxin, MCP-1 and IP-
10 as putative lymph node metastasis markers, since their
decreased expression levels were significantly correlated
with patients who had more positive lymph nodes. Other
cytokines were significantly correlated with the ER and
HER-2 status of the tumors, unraveling the role of
inflammation in the progression of BC (78).

Differently from this proteomic screenings, other studies
have focused on the protein expression analyses of specific
molecules. High serum HER-2 extracellular domain (ECD)
levels have been associated with a worse disease-free survival
and overall survival in primary operable BC patients, thus
representing a useful biomarker that might provide prognostic
and predictive information besides enabling the monitoring
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of the effects of therapy during the course of treatment (79).
Serum amyloid A (SAA) protein expression has been
demonstrated to gradually increase with tumor progression as
the levels of this protein were significantly higher in the blood
of BC stage IV patients compared to those in stage I.
Moreover, the expression of this protein also indicated
presence of lymph node metastases and distant metastases
(80). Assessment of apoptosis-related proteins in serum of BC
patients has demonstrated that pre-treatment MIF levels
tended to be higher in patients that did not respond to
neoajuvant chemotherapy, unraveling the predictive role of
this protein in BC (81).

Circulating tumor cells. The presence of circulating tumor
cells (CTCs) in the blood of BC patients has been also
investigated as a putative biomarker of disease progression,
response to therapy and might be applied to management of
early-stage disease, minimal residual disease (MRD) and
metastatic tumors. The prognostic value of CTCs as
biomarkers has been suggested in clinical trials. Baseline CTC
count in 267 metastatic BC patients on first-line chemotherapy
predicted progression-free survival (PFS) and overall survival
(0OS), since higher levels of CTCs at baseline levels and before
cycle 2 of chemotherapy were associated with worse PFS and
OS (82). Results from other studies indicated the predictive
value of CTCs in MBC patients undergoing different
therapies. Compared to low baseline CTC counts, high CTC
counts were associated with little benefit from endocrine
therapy, even if the patients were eligible for this treatment
based on the receptor status of their primary or metastatic
tumors. Similarly, patients with high CTC counts showed
small benefit from chemotherapy alone and demonstrated
greater benefit from combination therapy (83).

Some reports have showed that detection of methylated
genes might correlate with the presence of CTCs in the blood
of MBC patients and, therefore, high numbers of CTCs and
circulating methylated DNA might both be associated with
more aggressive cancer phenotypes (83). Methylated APC
and GSTPI genes also have been correlated with CTCs in
blood and associated with prognosis of patients with
advanced BC (84). These data suggest that CTCs might also
be analyzed in parallel to cell-free DNA and whether this
approach is more powerful to predict prognosis of MBCs,
compared to each strategy alone, remains to be explored.

Epithelial-to-mesenchymal transition (EMT). Circulating tumor
cells might show a dedifferentiated phenotype, corresponding
to the expression of epithelial-to-mesenchymal transition
(EMT) and stemness markers. These characteristics might
enhance the ability of CTCs to disseminate from primary breast
tumors in early stages of the disease and to survive to
conventional therapies, leading to treatment failure. The CTCs
from patients with primary breast tumors have been
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demonstrated to express PIK3a, Akt2 and Twistl (EMT
markers) as well as ALDHI1, Bmi-1 and CD44 (stemness
indicators). As these markers were also detected in lymph
node-negative patients, the detection of CTCs in the
bloodstream might be considered more accurate in predicting
dissemination of primary BC cells compared to lymph node
status (85). Comparison of other EMT-related markers
expression in CTCs (Twist and vimentin) between early-stage
and MBC patients have demonstrated that the EMT phenotype
is more prevalent in advanced stages of the disease, since
metastatic patients showed higher proportion of CTCs
expressing these markers compared to early-stage patients (86).

Altogether, these data support the idea of improving CTCs
capture efficiency by using a panel of mesenchymal markers
to detect these cells in the blood. Accordingly, a recent work
has demonstrated that circulating tumor cells might escape
from EpCAM-based methodology due to EMT (87).

Disseminated tumor cells (DTCs) in bone marrow. Detection
of disseminated tumor cells (DTCs) in the bone marrow
(BM) at diagnosis has been associated with poor prognosis in
BC patients. Nevertheless, BM aspiration is an invasive
method and, therefore, some studies have addressed the
feasibility of CTCs detection as an alternative approach to
indicate BM occult micrometastases. Some of these studies
have demonstrated low concordance between CTCs in
peripheral blood and DTCs in bone marrow, which might be
attributed to inaccurate procedures for selection of CTCs and
different mechanisms of dissemination between CTCs and
DCTs (87-89). Other studies demonstrated that both CTCs
and DCTs demonstrated similar accuracy in providing
clinically relevant information (90, 91). In conclusion, more
studies are required to bypass technical issues and to provide
a deeper knowledge about the mechanisms of cancer
dissemination. These results might provide a better
explanation about these discordances and confirm whether
CTCs might be applied as a replacement method for BM
aspiration to detect BM DTCs.

CTCs and treatment failure. Discordance between CTCs
expression and primary/metastatic sites has been described in
several studies, including ER and HER-2 expression, for
which the primary tumor or metastatic tissue were negative
and CTCs were positive (92, 93). Discordances have been also
found after comparing presence of ER and PR expression
between CTCs and the primary tumor. These results might be
explained by further clonal evolution of CTCs from the time
of diagnosis and acquisition of more EMT-like characteristics
compared to primary tumors/metastases (94). Therefore,
therapies initially based on the characteristics of the primary
tumor might not be effective in late stages of the disease, when
CTCs that escaped from therapy can further disseminate and
seed new metastases, leading to treatment failure.

Moreover, cellular heterogeneity has been described for
CTCs, with ER+ and ER- CTCs coexisting in the same
sample (94). Accordingly, single CTC transcriptional
profiling has unraveled the metastatic cell diversity of CTC
populations, which might guide a selection of a multidrug
regimen targeting different subpopulations of CTCs, since a
therapy designed for only one CTC population might
facilitate grow and spreading of other subpopulations for
advanced BC patients (95).

Future directions: a systems biology approach for
individualized therapy

BC progression involves a complex regulatory network that
enables tumor cells to disseminate from the primary tumor and
travel to distant organs, giving rise to lymph node and distant
metastases. Comparative genomic profiling of metastases and
primary tumors has provided insights about the molecular
mechanisms related to the aggressive phenotype of metastatic
cells. These results have indicated that metastases might result
from the clonal expansion of a subpopulation of cells within
the primary tumor whose invasive potential was acquired by
mutations, copy number aberrations (CNA) and epigenetic
modifications. Nevertheless, most of the mutations in a tumor
might be considered “passengers”, which makes difficult to
identify the “drivers” of BC metastasis.

A “systems biology” approach might be implemented to
integrate data generated from multidimensional platforms
(i.e. DNA, RNA and protein profiles) and improve our ability
to distinguish drivers from passenger alterations throughout
BC metastatic progression. Moreover, functional assays
might lead to a better understanding over how genomic and
proteomic alterations integrate into the biological functions
within a cancer cell. Consequently, this approach would
guide us to design rational therapeutic strategies for
specifically targeting molecular pathways, which are altered
in individual patients, expanding the concept of
“personalized therapy” for BC. The feasibility of these
analyses might improve our ability to select the patients who
would benefit from a certain therapy.

Combined with non-invasive methods of monitoring
response to therapy, such as blood-based biomarker analyses,
the personalized therapy requires increased implementation of
new drugs to be tested in clinical trials. Nevertheless, the
efficacy of these drugs in pre-clinical studies might not be
replicated in clinical trials if we do not change our way of
performing clinical research. Most of the drugs demonstrated
to be efficient in animal models might not show the same
efficacy in clinical trials because the patients enrolled in these
studies have already a more advanced disease. A new clinical
trial design is needed to test for metastasis prevention
compounds, since treatment of an established metastatic
disease has high risk of failure. Patients with high risk of
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developing metastases might be enrolled in clinical trials
focused on metastasis prevention instead of shrinkage of a pre-
existent metastatic tumor (11).

Conclusion

BCM involves a complex regulatory network composed by
DNA, RNA and protein interactions. For this reason, a
systems biology approach must integrate these results to
improve our understanding about the molecular mechanisms
that drive tumor progression. Functional assays have been
demonstrated to be robust methods to validate the results
generated from integrative genomics. Along with these
evidence, a re-design of clinical trials towards metastasis
prevention might be relevant for the development of
personalized therapy for metastatic disease in the future.
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