
Abstract. Background: The post-translational modification
of proteins, including glycosylation, is known to differ between
normal and tumour cells. In this study, the expression profile
of two glycosyltranferases, UDP-N-acetyl-D-galactosamine:
polypeptide N-acetylgalactosaminyltransferase-6 (ppGalNAc-
T6) and α6-sialyl-transferase-I (ST6GalNAc-I) was assessed,
in a cohort of women with breast cancer. Patients and
Methods: Breast cancer tissues (n=127) and normal
background tissues (n=33) were collected immediately after
excision during surgery. Following RNA extraction, reverse
transcription was carried out and transcript levels were
determined using real-time quantitative PCR and normalized
against glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
expression. Transcript levels within the breast cancer
specimens were compared to the normal background tissues
and analyzed against conventional pathological parameters
and clinical outcome over a 10 year follow-up period. Results:
Significantly higher levels of ppGalNAc-T6 were found in the
breast cancer specimens compared to the background tissue
(p=0.015). There was a non-significant trend for levels to
increase with the Nottingham Prognostic Index (NPI) and
TNM stage and those who died from breast cancer.
ST6GalNAc-I expression was associated with better prognosis,
reaching significance when comparing patients who remained
disease free to those with distant recurrence (p=0.0096). The
relationship approached significance when comparing NPI 2
to NPI 3 (p=0.058) and disease free patients to non-disease
free patients (p=0.052) or those who died of breast cancer
(p=0.060). For both enzymes a significant association with
ductal type was found. Conclusion: Expression of ppGalNAc-

T6 is significantly higher in breast cancer compared to
‘normal’/benign breast tissue samples. ST6GalNAc-I
expression in breast cancer is associated with better
prognosis.

Our appreciation of the extent to which tumour cells differ
from their normal counterparts has developed significantly
over the last two decades, driven largely by technological
improvements in analytical techniques. Genetic abnormalities
have been shown to contribute to the malignant phenotype
through their attendant transcriptional and translational
consequences. More recently, advances in molecular biology
have permitted the study of post-translational events, such as
glycosylation, which have the potential to significantly
modify protein structure. Such alterations can result in the
expression of a variety of tumour-associated carbohydrate
antigens (1). The glycoproteins of tumour cells, including
secreted or cell-membrane associated mucins, show
significant variation, particularly within the mucin-type O-
glycans, which harbour several cancer associated epitopes
including the Thomsen-Friedenreich (T) antigen, Thomsen-
nouveau (Tn) antigen, sialyl-Tn (STn) antigen and certain
Lewis antigens (2, 3). In addition to conferring structural
changes, patterns of glycosylation can have significant and
diverse implications for glycoprotein function, including:
signal transduction, antigenicity and interactions with
immune effector cells, cell-cell and cell-stroma adhesion,
angiogenesis, invasive potential and the metastatic
competence of tumour cells (4-8). Hence, the study of such
post-translational modifications could provide valuable
mechanistic insights, presenting opportunities for diagnostic,
prognostic and potentially therapeutic applications (9-11).

The complex and subtle molecular mechanisms which
influence cellular glycodynamics remain poorly understood.
Glycosylation patterns are influenced by a family of
glycosyltransferase enzymes, whose specificities, sequential
action, relative activity levels and intracellular localization are
of critical importance in determining a cell-specific O-
glycosylation profile (12). Mucin type O-glycosylation begins
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with the addition of GalNAc to serine and threonine amino
acids on the polypeptide by UDP-N-acetyl-D-galactosamine:
polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-
T’s) which are localised throughout the golgi (13, 14). The
resulting antigen, termed the Tn antigen, is then modified by
the addition of sugar residues. This process is catalysed by
further glycosyltransferases, through systems referred to as the
core 1 or core 2 pathways, in order to generate a variety of O-
glycans (15-17). Under normal conditions, the Tn moiety is
then masked by subsequent sugar residues. The differential
expression of ppGalNAc-T’s in cancer cells could lead to
increased initiation of O-linked glycosylation with normally
unoccupied potential glycosylation sites being glycosylated
and cancer-associated antigens, such as Tn, emerging on the
cell surface (18-21). Pathological exposure of such core region
carbohydrates in cancer may reflect the deregulation of
mechanisms responsible for the synthesis of the Tn antigen,
or equally important, those involved with its further
processing.

The ppGalNAc-T enzyme family has been implicated in
the aberrant glycodynamics of several neoplasms (1). Each
isoform has a different substrate specificity and expression
profile. Expression and distribution studies have found the
sixth member of the ppGalNAc-T family, ppGalNAc-T6, to
be very restricted in normal tissue, but present in oral
squamous carcinomas (22, 23). Although completely absent
in healthy breast tissue, the enzyme has a high degree of
homology with ppGalNAc-T3, the mRNA of which has been
identified in cell lines derived from mammary gland
adenocarcinomas (24). Freire et al. (25) concluded that
ppGalNAc-T6 showed the greatest specificity for breast
cancer, as confirmed by Brooks et al. (26).

In breast carcinomas there is a tendency for the addition
of shorter O-glycans (27), which are themselves associated
with increased sialylation (28), resulting in the
overexpression of sialylated antigens at the surface of cancer
cells. The sialyltransferases represent a group of enzymes
which catalyze the biosynthesis of sialylated glycans (29).
One potential substrate for this group of enzymes is the Tn
antigen. Sialic acid is added in α2-6 linkage to GalNAc by
α6-sialyltransferase (ST6GalNAc) (30). Of the two isoforms
of this enzyme, α6-sialyltransferase I (ST6GalNAc-I) is
believed to be the principal STn synthase in vivo (31). The
carbohydrate antigen STn is a tumour associated
disaccharide carried by mucins or within mucin like domains
of several glycoproteins, including cell surface associated
mucin 1 (MUC1), cluster differentiation 44 (CD44) and
integrin subunits (32-35). STn expression is normally
restricted to the lumen of secretory tissues and is absent from
the breast (36). However, in breast cancer ST6GalNAc-I
RNA is correlated with STn expression (17). STn is
expressed in approximately one-quarter to one-third of breast
carcinomas and is associated with metastatic competence,

poor response to chemotherapy and poor prognosis (37-41).
STn expression has also been reported in several other
carcinomas including gastric, pancreatic, colorectal, ovarian
and cervical (42-47). STn is often associated with lymph
node involvement, distant metastasis, and a decreased
survival of patients with gastric (48-51) or colorectal cancer
(52-54). However, the molecular mechanisms through which
STn enhances the malignant phenotype have yet to be
elucidated.

In this study, the expression profile of ppGalNAc-T6 and
ST6GalNAc-I was assessed in a cohort of women with breast
cancer. Transcript levels were evaluated against established
pathological parameters and clinical outcome over a 10 year
follow-up period.

Patients and Methods

Patients and samples. Institutional guidelines, including ethical
approval and informed consent, were followed. Breast cancer tissues
(n=127) and normal background tissues (n=33) were collected
immediately after excision during surgery and stored at –80˚C until
use. A consultant pathologist examined haematoxylin and eosin
stained frozen sections to verify the presence of tumour cells in the
collected samples. Normal tissue was derived from the background
breast parenchyma of breast cancer patients within the study group.
Medical notes and histology reports were used to extract the clinico-
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Table I. Clinical and pathological data.

Parameter Number

Node status
Node positive 54
Node negative 73

Tumour grade
1 24
2 43
3 58

Tumour type
Ductal 98
Lobular 14
Medullary 2
Tubular 2
Mucinous 4
Others 7

TNM staging
1 70
2 40
3 7
4 4

Outcome
Disease free 90
Alive with metastasis 7
With local recurrence 5
Died of breast cancer 16
Died of unrelated disease 9

Note: Missing values reflect discarded/uninterpretable values.



pathological data (Table I). A customized database was established
to record the data.

Materials. RNA extraction kits and reverse transcription kits were
obtained from Sigma-Aldrich Ltd (Poole, Dorset, England, UK).
The PCR primers were designed using Beacon Designer (Palo Alto,
CA, USA) and synthesized by Sigma-Aldrich. Custom made hot-
start Master mix for quantitative PCR was obtained from Abgene
(Surrey, England, UK) (55, 56).

Tissue processing, RNA extraction and cDNA synthesis. Frozen
sections of tissue were cut at a thickness of 5-10 mm and kept for
routine histological analysis. An additional 15-20 sections were
mixed and homogenized using a hand-held homogenizer in ice-cold
RNA extraction solution. The concentration of RNA was determined
using UV spectrophotometry. Reverse transcription was carried out
using a reverse transcription kit with an anchored olig (dT) primer
supplied by Abgene, using 1 mg of total RNA in a 96-well plate.
The quality of cDNA was verified using β-actin primers (Table II).

Quantitative analysis of glycosyltransferases. The level of
ppGalNAc-T6 and ST6GalNAc-I transcripts from the above prepared
DNA were determined using real-time quantitative PCR based on the
Amplifluor technology, modified from a method reported previously
(56). The PCR primers were designed using Beacon Designer
software, but to the reverse primer an additional sequence, known as
the Z sequence (5’-ACTGAACCTGACCGTACA-3’) which is
complementary to the universal Z probe (Intergen Inc., Oxford, UK)
was added. The product expands one intron. The primers used for
each glycosyltransferase are detailed in Table II. The reaction was
carried out using Hotstart Q-master mix (Abgene), 10 pmol of
specific forward primer, 1 pmol reverse primer which had the Z
sequence, 10 pmol of FAM (fluorogenic reporter dye,
carboxyfluorescein) tagged probe (Intergen Inc.), and cDNA from
50 ng of RNA. The reaction was carried out using the IcyclerIQ
(Bio-Rad Ltd, Hemel Hempstead, England, UK), which is equipped
with an optic unit that allows real-time detection of 96 reactions,

under the following conditions: 94˚C for 12 min and 50 cycles of
94˚C for 15 sec, 55˚C for 40 sec, and 72˚C for 20 sec. The levels of
the transcript were generated from a standard that was
simultaneously amplified with the samples. The levels of ppGalNAc-
T6 and ST6GalNAc-I expression were then normalized against the
housekeeping gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), which was already quantified in these specimens, to
correct for varying amounts of epithelial tissue between samples
(57). The primers used for GAPDH are detailed in Table II. With
every PCR run, a negative control without a template and a known
cDNA reference sample as a positive control, were included.

Statistical analysis. The Mann-Whitney U-test and two-sample t-
test were used for statistical analysis. The ppGalNAc-T6 and
ST6GalNAc-I transcript levels within the breast cancer specimens
were compared to normal background tissues and analyzed against
conventional pathological parameters and clinical outcome over a
10 year follow-up period. In each case the true copy number was
used for statistical analysis and hence the samples were not
classified as positive or negative. The statistical analysis was carried
out using Minitab version 14.1 (Minitab Ltd. Coventry, England,
UK) using a custom written macro (Stat 2005.mtw). For purposes
of the Kaplan-Meier survival analysis, the samples were divided
arbitrarily into two groups, ‘high transcript level’ or ‘low transcript
level’, for each glycosyltransferase enzyme. The cut-off was guided
by the Nottingham Prognostic Index (NPI) value, with which the
value of the moderate prognostic group was used as the dividing
line at the start of the test. Survival analysis was performed using
SPSS version 12.0.1 (SPSS Inc. Chicago, IL, USA).

Results

ppGalNAc-T6. The ppGalNAc-T6 expression profiles were
normalised against GAPDH (Table III). ppGalNAc-T6 was
found to be expressed in both normal/benign breast tissue
and breast cancer specimens. Significantly higher levels were
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Table II. Primers.

Primers for ppGalNAc-T6
ACTGAACCTGACCGTACAGAAATGTCACCGAAGGATT GALNT6Zr1
GGATGGACAGCTACAAGAAG GALNT6F1
ATGTTTGTTCCTGACCTGAC GALNT6F2
ACTGAACCTGACCGTACAGTACATGATGAGGGGCTTC GALNT6Zr2

Primers for ST6GalNAc-I
ACTGAACCTGACCGTACATAAAGCCGTAGAAGGATGTC ST6GalZr1
GCCAGGAGATAGACAGTCAC ST6GalF1
ACCCAGACTTTCTCCGATAC ST6GalF2
ACTGAACCTGACCGTACAGGCGGTATATCCTCCAGT ST6GalZr2

Primers for GAPDH
CTGAGTACGTCGTGGAGTC GAPDHF2
ACTGAACCTGACCGTACACAGAGATGATGACCCTTTTG GAPDHZr2

Primers for beta-actin
ATGATATCGCCGCGCTCGTC
CGCTCGGTGAGGATCTTCA



found in the breast cancer specimens compared to the
background tissue (mean copy number=10.0 vs. 0.067,
p=0.015). Although there was a trend for levels to increase
with NPI and TNM stage and those who died from breast
cancer, this did not reach statistical significance.

In addition, a significant association with ductal type was
found (mean copy number=9.8 vs. 0.050, p=0.041).
However, no relationship with tumour grade or oestrogen
receptor (ER) status was observed.

The overall survival curve for women with tumours which
were classified as having ‘high levels’ of ppGalNAc-T6
transcript was not found to differ significantly from that of
their ‘low level’ counterparts, Figure 1 (p=0.38).

ST6GalNAc-I. The ST6GalNAc-I expression profiles were
normalised against GAPDH (Table III). ST6GalNAc-I was
found to be expressed in both normal/benign breast tissue
and breast cancer specimens. Although higher in the former,
this did not reach statistical significance. Higher levels were
found to be associated with better prognosis, this reached
statistical significance when comparing patients who
remained disease free to those with distant recurrence (mean
copy number=1640 vs. 0.111, p=0.0096). The relationship
approached significance when comparing NPI 2 to NPI 3
(mean copy number=2388 vs. 148, p=0.058) and disease free
patients to non-disease free patients (mean copy
number=1640 vs. 381, p=0.052) or those who died of breast
cancer (mean copy number=1640 vs. 398, p=0.060).

In addition, a significant association with ductal type was
found (mean copy number=1397 vs. 51, p=0.014). However,
no relationship with tumour grade or ER status was
observed. Within the ductal carcinoma subgroup, high
expression remained associated with favourable prognosis
and reached statistical significance when comparing patients
who remained disease free to those with distant recurrence
(mean copy number=1855 vs. 0.138, p=0.018).

The overall survival curve for women with tumours which
were classified as having ‘high levels’ of ST6GalNAc-I
transcript was not found to differ significantly from that of
their ‘low level’ counterparts, Figure 2 (p=0.8).

Discussion

In the present study, ppGalNAc-T6 expression was identified
in both normal/benign breast tissue and breast cancer
specimens. However, significantly higher levels were found
in the breast cancer specimens compared to the background
tissue. The specificity of ppGalNAc-T6 for breast cancer has
been demonstrated by Freire et al. (25), who identified
expression in all 3 human breast cancer cell lines evaluated
and 88% of primary breast cancers. These findings have
been confirmed by Brooks et al. (26) who also identified an
increased range of ppGalNAc-T’s in malignant cell lines,
compared to their ‘normal’/benign counterparts. Berois et al.
(12), demonstrated ppGalNAc-T6 expression in 81% of a
series of breast carcinomas and 91% of ductal carcinoma in-
situ (DCIS), in contrast to only 20% of benign lesions and
none of the five normal breast tissue samples. Furthermore,
a significant association with T1 stage was found, suggesting
that up-regulation may represent an early event. Expression
was shown to continue in aggressive and metastatic lesions,
however, no correlation with nodal status or histological
grade was identified (12). ppGalNAc-T6 has also been
demonstrated in bone marrow aspirates from breast cancer
patients, where expression was significantly associated with
early recurrence (25). Hence, ppGalNAc-T6 could offer
prognostic utility in addition to conventional markers. In this
study, although the ppGalNAc-T6 levels tended to increase
with NPI and TNM stage and in those who died from breast
cancer, no significant differences were identified in the
overall survival curve for women with tumours which were
classified as having ‘high levels’ of ppGalNAc-T6 transcript
compared to their ‘low level’ counterparts, Figure 1.

In the present study, ST6GalNAc-I expression was found
to be associated with better prognosis, this reached statistical
significance when comparing patients who remained disease
free to those with distant recurrence and approached
significance when comparing NPI 2 to NPI 3 and disease
free patients to non-disease free patients or those who died
of breast cancer. However, the relationship between
ST6GalNAc-I and STn expression could not be examined as
the latter was not evaluated. At first glance, the observed
relationship between ST6GalNAc-I expression and patient
outcome did not appear to be consistent with the established
association between STn expression and poor patient
prognosis. ST6GalNAc-I has been demonstrated to be the
major STn synthase in vitro and evidence supports an
equivalent role in vivo (31). However, some authors have
failed to find an association between ST6GalNAc I and STn
expression levels. Despite the fact that STn has been found
to be expressed in colonic cancer, rather than normal colonic
tissue, the level of ST6GalNAc-I was comparable between
the two (58, 59). This suggests that the relationship between
ST6GalNAc-I and STn expression may be complicated by
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Table III. Summary of expression profiles for the overall cohort,
followed by subgroup analysis for tumour specimens and benign
specimens. Values represent the true copy number of mRNA transcripts
(normalised against GAPDH) and are expressed as mean (range,
median).

Overall Tumour Benign

ppGalNAc-T6 7.68 9.98 0.0666
(0-353.40, 0) (0-353.40, 0) (0-1.792, 0)

ST6GalNAc-I 1656 1227 3257
(0-76648, 15) (0-31742, 14) (0-76648, 11)



other mechanisms. In keeping with this, Tn and STn
expression in cervical cancer specimens, colon cancer and
melanoma derived cell lines have recently been found to be
associated with loss-of-function somatic mutations in the
Cosmc gene. This single exon gene encodes a molecular
chaperone required for formation of the active T-synthase
(42). Hence, specific genetic mutations within glycosylation
pathways can directly influence expression of these antigens
across a range of different neoplasms.

Breast cancer cell lines transfected with ST6GalNAc-I show
significantly altered patterns of O-glycosylation and exhibit
enhanced tumourigenicity, in terms of decreased adhesion,
increased migration and increased growth (33, 58, 61-63).
Similarly, STn expression is associated with decreased cell
adhesion on extracellular matrix components and increased
cell migration (33). STn bearing mucins may also interfere
with cancer cell recognition by the immune system and natural
killer cell function, perhaps protecting blood borne metastatic
cells from degradation (64). Furthermore, anti-STn-mAb/STn-
bearing protein immunocomplexes enhance vascular
endothelial growth factor secretion by tumour-infiltrating
macrophages, improving angiogenesis (65). STn expression

has also been associated with the invasiveness of ovarian
carcinomas, with enhanced expression in the invasive front
(66-68). Davidson et al. also found that the expression of STn
of distant metastases appeared to be significantly lower than
that of the primary ovarian tumour, suggesting that such
changes may be transient and play a greater role at particular
stages of the metastatic pathway, for example, facilitating the
dissociation of cancer cells from the primary tumours.

STn expression has been associated with poor prognosis
in a range of solid human carcinomas and appears to identify
patients that may be relatively refractory to conventional
treatment (52, 53, 69). The selective expression of STn has
been considered for its therapeutic utility (70-74). Cancer
vaccine studies have also identified STn as a potential target
in breast and ovarian carcinomas (75, 76). In addition to the
differential expression of STn between normal tissue and
carcinomas, altered expression has also been observed in
pre-malignant lesions of the gastrointestinal tract, such as
intestinal metaplasia (50), adenomatous polyps (77) and
chronic ulcerative colitis (78). Hence, STn is likely to have
an important role to play in the development and progression
of the malignant phenotype.
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Figure 1. Overall survival curve for ppGalNAc-T6. Figure 2. Overall survival curve for ST6GalNAc-I.



Limitations of the present study included the use of
background parenchyma from breast cancer patients to provide
‘normal tissue’ for comparison. Ideally, such material should be
derived from patients without breast cancer in order to avoid any
‘field change’ which may exist within cancer bearing tissues.
Although the sample size and follow-up period were substantial,
it is possible that a larger cohort may have influenced several
results which approached, but failed to reach, statistical
significance. Finally, in addition to the measurement of mRNA
transcript levels, quantitative analysis of enzyme, Tn and STn
expression should be undertaken to ensure concordance.

Conclusion
The expression of ppGalNAc-T6 is significantly higher in
breast carcinomas compared to ‘normal’/benign breast tissue
samples and ST6GalNAc-I expression is significantly
associated with better prognosis. Further studies are required
to elucidate their contribution the development and
progression of the malignant phenotype.
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