CANCER GENOMICS & PROTEOMICS 4: 27-34 (2007)
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Abstract. Intensive efforts have been underway to identify
common genetic factors that influence health and disease
including cancer using genomewide association studies
(GWAS). Our experiences have shown that while it is more
advantageous to have large detailed data sets, the amount of
information generated by GWAS also present major challenges
for statistical analyses. While prospects for the oncoming flood
of GWAS is exciting, the tools for conducting and evaluating
these studies are still in early developmental stages creating
some investigator uncertainty and prompting conferences and
workshops specifically devoted to these topics. In this review,
we summarize important steps for planning the statistical
analysis involving genome-wide data from single nucleotide
polymorphisms (SNPs). This review is purposely meant to be
relatively short and of practical use for the space constraints of
typical federal grant proposals.

The National Institutes of Health (NIH) have issued a
number of announcements to advance genome-wide
association studies (GWAS) to identify common genetic
factors that influence health and disease. Recent successes
suggest that the information derived from such studies will
help to develop new approaches to reduce disease burden
and promote health (37). In a recent request for
information (NIH, NOT-OD-06-094), a GWAS was defined
as “any study of genetic variation across the entire human
genome that is designed to identify genetic associations with
observable traits (such as blood pressure or weight), or the
presence or absence of a disease or condition”. We are
fortunate to have had early opportunities to design and
participate in several large -scale GWAS, including the NIH
National Genomic and Proteomic Network for Preterm
Birth Research (RFA-HD-04-002). Our experiences have
shown that while it is more advantageous to have large
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detailed data sets, the amount of information generated by
GWAS also present major challenges for statistical analyses.
While prospects for the oncoming flood of GWAS are
exciting, the tools for conducting and evaluating these
studies are still in early developmental stages creating some
investigator uncertainty and prompting conferences and
workshops specifically devoted to these topics (12, 36, 42).
In this review, we summarize important steps for planning
the statistical analysis involving genome-wide data from
single nucleotide polymorphisms (SNPs). This review is
purposely meant to be relatively short and of practical use
for the space constraints of typical federal grant proposals.

Descriptive Statistics and Data Quality Control

As in any statistical analysis, it is important to scrutinize the
data and assess the quality before a formal statistical
inference is performed. In addition to genotype data, all
GWAS are expected to have detailed demographic and
outcome data. Descriptive statistics for the outcome
variables and covariates should be prepared and examined.
For genotype calls, the associated software system, such as
Affymetrix’s GTYPE <http://www.affymetrix.com>, usually
has some built-in quality assurance functions. Steps should
be taken to assess concordance with Hardy-Weinberg
equilibrium (HWE) and to scrutinize pedigree data for
Mendelian inheritance errors. Potential non-random
missing data also warrant attention for high-throughput
SNP platforms. Copy number variation can lead to odd
patterns of errors, and we need to examine missing data in
genomic regions where such variation is present to resolve
the errors. Inconsistencies and errors as a result of SNP
genotyping should be resolved and corrected prior to
starting any analysis. Some widely available software
packages such as Merlin estimate error probabilities,
adherence to HWE, and other preflight analyses.

Sample Size and Power
Sample size and power estimation are necessary in study
planning and design, although investigators may tend to

underestimate the uncertainty. In nearly all grant
applications, investigators are tempted to assure a high level
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of power (at least 80%). The frustration and failures of
identifying susceptible genes for complex diseases are widely
recognized with some exceptions (14). One of the major
reasons is that there is generally little information with
regard to the underlying genetic mechanisms. To consider
the complexity and assure the power of GWAS, the NIH is
promoting data sharing and the establishment of public
databases to increase sample size. While investigators must
acknowledge the inherent uncertainties and depict a
realistic picture of what one study can accomplish, we
illustrate here with an example as to how the sample size
and power calculation may be presented. Because there is
usually little information for genetic mechanisms, we
recommend that investigators adopt conservative
approaches for power estimation, including the Bonferroni
method to correct for genome-wide type I error. In
addition, we recommend use of different analytic strategies
(described in depth below). The Bonferroni method is
conventionally depicted as the most conservative approach
to dealing with multiple comparisons, but our simulation
based on HapMap data suggests that perhaps it is not as
conservative as generally portrayed. The Bonferroni method
provides a reasonable approximation even when the number
of SNPs is in the range of 5,000 to 250,000 provided that
they are reasonably spaced. However, if we use far more
than 250,000 SNPs, the Bonferroni method could be over
conservative because it appears that 250,000 is near the limit
of statistically independent SNPs in the human genome
according to our unpublished simulation.

Reduction of the number of tests. The obvious challenge with
performing a test for each SNP is the large number of tests.
The other problem is the potentially limited information in
a SNP. Thus, it is natural and necessary to reduce the
number of tests by either (a) selecting a subset of SNPs, and
(b) considering haplotypes. For the purpose of our
discussion, we use for comparison a GWAS for a complex
disease (caused by an unknown number of environmental
and genetic factors), recruitment of 1,000 cases and 1,000
controls, and a marker panel of 500,000 SNPs (currently
available as the 500,000 randomly selected SNPs on the
Affymetrix GeneChip®) (20).

One approach for reducing the total number of tests is to
select a subset of SNPs using a two-stage strategy (29). In
stage 1, half the cohort, 500 cases and 500 controls, are
genotyped with the entire 500K SNP panel. After an interim
analysis, in stage 2 the remaining 1,000 subjects are then
genotyped and analyzed, presumably with a small subset of
the first panel to validate candidates identified in stage 1.
However, even with optimal control of type I error and
power this strategy does not necessarily lead to substantial
increased power over a single stage strategy. This is the first
myth of a two-stage study design. The second myth is cost
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effectiveness. With the standardized large array SNP
genotyping platforms now available, producing customized
gene chips against specific targets is no longer a cost saving
strategy unless the number of candidate SNPs is very small,
e.g., in the tens. Therefore, there is no cost saving incentive
to examine a smaller set of SNPs, unless the investigators
have the ability to design and produce a chip that is denser
than the standard chip in regions of interest. With the
rapidly evolving technology, the density and cost of SNPs
may not be a major factor until very late in the process. For
most studies that have little information to begin with, it is
too early to consider a formal multiple stage design in the
planning, although a follow-up study should be in place
when highly promising SNPs emerge.

Selection of TagSNPs is another approach to reducing
the number of SNPs for analysis. Using strong linkage
disequilibrium in the dense SNPs may dramatically reduce
the number of SNPs and hence the number of significance
tests (4, 8, 25, 43). We will discuss below some of the
existing approaches to selecting TagSNPs.

There is a general consensus that, if done appropriately,
haplotype based analysis is more effective than single SNP
based analysis. Thus it is important to conduct haplotype
based association analysis in addition to SNP based analysis.
It is reasonable to expect that the number of haplotypes to
be examined would be far smaller than the number of SNPs,
and the same study is likely to have enhanced power to
assess the haplotypes under the assumption that haplotype
relative risks and frequencies are comparable with those of
a SNP. In reality, we do not know the exact situation. Most
likely, haplotype relative risks and frequencies are higher
than those for a SNP, leading to further improvement of the
power and underscoring the rationale for haplotype based
association analysis.

Sample size estimates. First, we examine the power to
assess a SNP with 1000 cases and 1000 controls. For
clarity, we can conceptually collapse the possible three
genotypes (AA, AB, or BB) into two levels (high and low
risk). All computations are based on the “Power” program
(9, 18). Figure 1 displays the required sample size as a
function of the risk genotype frequency for testing the
association between the SNP and the disease. In this
example, a sample size of 2,000 (1,000 cases and 1,000
controls) has sufficient power (>80% at alpha 0.0001) to
identify a single polymorphism with frequency ranging .05-
.12, and conferring a moderate OR of 1.7-2.0. This is
comparable power to detect the ApoE4 allele conferring
risk for age at onset of Parkinson disease (frequency =
.05-.35, OR= 1.8) (16).

In Table I, we use Parkinson disease among 65 years of
age or older and age-related macular degeneration (AMD)
(14) as examples to examine the required sample sizes in
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Figure 1. The required sample size is plotted against the genotype frequency of a single SNP in order to detect a specified OR (odds ratio) (1.7 or 2). The
risk in the population is assumed to be 2%. The type I error is controlled at 0.0001 and power at 80%.

Table 1. Examples of clinically relevant polymorphisms. The type I error is controlled at 0.0001 and power at 80%. The mode of inheritance is assumed

to be dominant.

Disease Allele Risk OR Frequency # of required cases Reference
Parkinson Disease ApoE4 15% 0.05 3588 (16)
0.20 1128
0.35 839
AMD CFH 50% 0.36 99 (5, 14)
genetic studies of common diseases. For clarity, we assume ~ SNP-based Analysis

the mode of inheritance is dominant. When the prevalence
is high and risk allele is relatively common, a relatively small
study would have sufficient power. However, in most
studies, 1,000 cases and 1,000 controls would be reasonable
sample sizes.

We mentioned earlier that haplotype based association
tests may be more powerful than individual SNP based
association tests. Morris (22) considered a variety of
reasonable settings and reported that a sample of 1000
cases and 1000 controls is adequate to identify associations
for moderate GRRs (genotype relative risk) in the range
of 1.5. Here, GRR is the fold increase in risk for having a
disease over the general population due to having a
disease allele genotype. We refer to Morris (22) for the
details.

We recommend that the analysis proceed in several steps:
first examine a single SNP-based association, next a single
gene based association, and finally gene-gene interactions
within a biological pathway.

Testing a single SNP-based association. The analysis can be
done through the standard logistic regression model by
defining two dummy variables for three possible genotypes
that produces the estimates for odds ratios (OR) and their
confidence levels. This analysis is applicable regardless of
the number of SNPs to be tested, although the overall p-
value must reflect the number of tests.

Although we suggested the most conservative and simple
approach — Bonferroni correction — in the power estimation,
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potentially more powerful statistical strategies should be
considered in the analysis to take advantage of advanced
statistical techniques. For example, we can determine the
statistical significance empirically through permutation test.
The permutation can be done by randomly and repeatedly
permuting the disease status in the cases and controls so that
the disease status is expected not to be associated with any
SNPs, except by chance. In other words, on the basis of our
observed data, we can generate the data under the null
hypothesis, which allow us to empirically obtain the
distribution of the testing statistic under the null hypothesis
and hence produce a genome-wide measure of significance.
Another analytic approach for dealing with a large number of
significance tests is the use of the false discovery rate (FDR).
Instead of controlling for the genome-wide type I error, FDR
focuses on the proportion of false positive results in the set of
rejected null hypotheses (3). The same permutation procedure
can be used to estimate the p-values for all SNPs. After
sorting all p-values, a cut-off for the p-values is determined to
achieve a given level of FDR such as 5%.

Another way to increase the power of an association test is to
use and examine haplotype blocks by identifying TagSNPs. This
will reduce the number of SNPs to be tested and retain as much
information as possible. To this end, we can employ existing
methods to identify haplotype blocks and TagSNPs. Since many
dense SNPs are in strong linkage disequilibrium (4, 7, 25),
haplotype blocks can be constructed based on marker-marker
linkage disequilibrium estimates (1) and TagSNPs can be
selected from the haplotype blocks to represent the
polymorphisms within a block. It is noteworthy that the number
of tagSNPs depends on LD patterns in a particular sample.

Haplotype-based association. Because SNPs are di-allelic, the
information in an individual SNP may be limited. The
informativeness of the markers, and hence the power of
association tests, can be increased by using haplotypes of
several SNPs. Furthermore, because each new allele is
associated with its own chromosomal history, haplotype-
based analyses are warranted to detect unique chromosomal
segments that harbor disease-predisposing alleles (7). We
should examine differences in estimated haplotype
frequencies among cases and controls. Before the
differences can be compared, we will need to construct the
haplotypes and estimate their frequencies because
haplotypes are not directly observable. While this is still an
active research area including the development of molecular
haplotyping methods, there are many published approaches
for determining haplotypes and haplotype blocks as
reviewed by Niu (24). A general approach for choosing
haplotype is to identify TagSNPs that are in strong LD.
For a small number of specified SNPs (4 to 10), a
population-based approach can be used to find the
haplotypes that maximize the likelihood function through
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the expectation-maximization (EM) algorithm under the
assumption of HWE (6). How do we choose a particular set
of SNPs for haplotype analysis? One approach is to focus
on certain genomic regions or candidate genes and choose,
say, 8 TagSNPs from each region or candidate gene.
Another approach is to use moving windows. For example,
Jawaheer and colleagues used a three-SNP moving window
to detect the association between human leukocyte antigens
and rheumatoid arthritis (13).

As described above, haplotypes can be constructed with
these well-chosen TagSNPs or through moving windows of a
few adjacent SNPs. Once the haplotypes and their frequencies
are estimated using methods and software, such as PHASE
(35), they can be treated as predictors in a logistic regression
model (31, 44,). Other methods are also available (7) to
compare the distribution profiles of haplotypes between cases
and controls. Without considering covariates, the data become
a 2 x k table, where k is the number of estimated haplotypes.
Note that the TagSNPs and their haplotypes (and consequently
the frequencies of the haplotypes) can only be determined
after the data are collected, and hence it is premature to
consider specific individual haplotypes. Broadly speaking,
however, due to the haplotype uncertainties, the power
calculation depends on many unknown quantities. Even
though the number of haplotypes to be considered is relatively
large, as discussed above, the use of haplotypes may still
increase the power over the use of individual SNPs. A common
sense approach to gauging the power of the haplotype analysis
is by collapsing haplotypes into two major types (a wild type/a
risk variant), and then the locus of interest would essentially
become a di-allelic locus. In other words, it can be treated no
differently from an individual SNP as presented above.

After the SNP-based and haplotype-based associations are
performed, it is important to achieve a certain synergy in the
two types of analysis. The common sense wisdom is that no
association testing in epidemiological studies alone can
distinguish between the true-positive and false-positive signals
obtained in a multistage genome-wide scan. Approaches that
have been suggested include comparative sequence analysis
(2, 33), linkage analysis of expression data (21), or
computational approaches to predicting function (17, 23, 39,
45), before launching into labor-intensive tests (36).

We should note some caveats in haplotype analyses. The
possibilities and construction of haplotypes can lead to
higher degrees of freedom in tests that tend to reduce
power. Some study strategies such as the use of moving
windows may lead to effectively the same number of tests as
for single SNP analysis, but they may constrain the
information to be utilized.

Testing gene-gene interactions. Statistical analysis of GWAS
has an undeniable aspect of “exploratory” nature. This is
especially true for investigating gene-gene interactions and
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Figure 2. The required sample size is plotted against the genotype frequency of the 1st SNP in order to detect a specified level of interaction between two
SNP genotypes. ORs of Ist and 2nd SNP, as the main effect terms, are 1.2 and 1.5, respectively, and the 2nd SNP genotype frequency is set at 0.2. The

type I error is controlled at 0.0001 and power at 80%.

pathways. Unless we have solid prior evidence, any power
calculation of gene-gene interactions in a GWAS is likely
off target and not useful. However, it is important to take
this exploratory step and generate sound hypotheses. After
gene-gene interactions are examined, pathways can be
identified according to the genes that interact with each
other, and then perhaps expression arrays may further
explore the functions of those genes that may underlie the
cause for the disease.

Here, let us examine the power to assess the interaction
of two SNPs with 1,000 cases and 1,000 controls. Figure 2
displays the required sample size as a function of the risk
genotype frequency of the 1st SNP for testing the first
hypothesis. A variety of the interaction effects,

OR(1,1)

0=
OR(1,0)0R(0,1)

are considered, where the 2nd SNP genotype frequency is

set at 0.2. Figure 3 is similar to Figure 2, except that a few

possibilities of the genotype frequencies of the second SNP

are considered and 6=8.

Based on Figure 2, a sample size of 500 cases and 500
controls would have sufficient power (>80%) to detect
gene-gene interactions between two polymorphisms with
moderate OR (1.2 and 1.5) and moderate interaction (6=6).

It can be seen from figure 3 that a sample size of 500
cases and 500 controls is sufficient to detect a strong
interaction effect (§=8) between any two polymorphisms,

where each polymorphism has a moderate OR of 1.5 and
the frequency of the 2nd polymorphism ranges from 0.4-0.5.

In addition to Figure 2 and Figure 3, the work of
Gauderman (10) assures that a study of 1,000 cases and
1,000 controls would have sufficient power to identify gene-
gene interactions of a reasonable scale. According to their
Table 1, a sample of 500 cases and controls has 80% power
at a significance level of 0.05 to detect gene-gene
interactions with OR’s of about 2.2, for measuring departure
from a purely multiplicative model when they considered two
asthma genes, GSTMI and GSTT]I, as examples.

Marchini et al. (19) examined the power of three
strategies for analyzing gene-gene interactions in GWAS:
strategy I, locus-by-locus search (requiring at least one locus
meeting the significant criterion); strategy II, search over all
pairs of loci; and strategy III, a two-stage strategy in which
all loci meeting some low threshold in a single-locus search
are subsequently examined for a significant full model fit.
They considered 300K markers, 2,000 cases and 2,000
controls, and three multilocus disease models. They noted
that there are many configurations in which the interaction-
based search strategies are more powerful than searching
locus-by-locus. It would be useful and interesting to examine
those interactions revealed by all strategies. Even though
some positive results may be missed, given the explorative
nature of these analyses, a conservative approach is
appropriate and any number of true positive findings would
be a success.
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Figure 3. The required sample size is plotted against the genotype frequency of the Ist SNP in order to detect an interaction effect, 6, of 8 between two
SNP genotypes. ORs of Ist and 2nd SNP, as the main effect terms, are 1.5, and the 2nd SNP genotype frequency varies from 0.2 to 0.5. The type I error

is controlled at 0.0001 and power at 80%.

Testing gene-environment interactions. The number of
environment covariates to be considered is considerably fewer
than the number of genes. We can use a modified strategy
based on strategy III described by Marchini et al. (19),
described above. That is, we begin with all genes meeting
some low threshold in a single-gene search, and then pair

them with the environment factors to assess their interactions.
Population Substructures

It is well-known that population substructure, sometimes
referred to as cryptic substructure, can provide spurious
results for case-control association tests. For example,
association studies of type II diabetes in Pima Indians (who
have high rates of diabetes) were flawed because Pima
individuals with a high degree of Caucasian ancestry had
lower diabetes susceptibility. Thus, any marker loci that
were at higher frequency in the Pima than in Caucasians
were “associated” with the disease (10, 11, 15, 27). There
have been many discussions on this issue. Some researchers
believe that this phenomenon might have been over-stated
(34). Further, Risch (28) pointed out that population
stratification has been invoked numerous times as the cause
for an observed high false-positive rate in association studies
using candidate genes, yet it has rarely been demonstrated
as the culprit (32). In a relatively recent extensive simulation
study, Setakis concluded that explicit allowance for cryptic
substructure may often be unnecessary provided that good
study design principles have been used so that case and
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control populations are similar (30). When cases and
controls are reasonably matched, two groups should be
similar. However, those authors also pointed out that
methods that protect against cryptic substructure typically
perform well in limiting the number of false positives, and
the cost of this protection, in terms of lost power, is often
small. Thus, we suggest using appropriate methods to
consider cryptic substructure. Several methods of assessing
population stratification have been proposed using unlinked
markers. A classic statistic for detecting cryptic substructure
is Wright’s FST (38), which is estimated as a single value
that summarizes the average deviation of a collection of
populations away from the mean. While there are a number
of methods for adjusting associations for substructure and
admixture, unlinked markers are used to adjust associations
and the methods may be broadly divided into model based
and non-model based approaches (30). Genomic control
(26) is a non-model based approach that essentially correct
asymptotic distribution of the classic Armitage trend test
statistic by an over-dispersion factor, which is estimated
from the empirical distribution of the trend statistic at a
given number of null markers. The alternative methods such
as those implemented in the program called STRUCTURE
use model-based approaches to determine the underlying
population structure (26). According to Setakis, none of
these methods is uniformly superior to the others, nor is
any one method uniformly inferior in presence of
population structure (26). Nonetheless, if population
substructures are evident in our data as suggested by
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STRUCTURE, we will adjust the population substructure
in our association test. The use of genomic control is simple
but it can only be applied to SNPs. Generally, we need to
use latent variables or mixture models that estimate the
number of underlying subpopulations and the probability
for an individual marker to be originated from each
subpopulation, and then use mixed effects logistic models
as described in Satten (30). The advantage of this approach
is that it is applicable for both SNPs and haplotypes.

Exploratory Data Analysis

All GWAS are expected to collect rich and important genetic
and clinical data. In addition to the hypothesis testing and
regression models as described above, many contemporary
approaches such as tree-based analysis can be applied to take
advantage of all information and to simultaneously examine
multiple SNPs, as well as haplotypes (40, 41).

Conclusion

This article is not intended to be an extensive review, but
instead as an informative and pertinent guide to the statistical
analysis of GWAS. A lot of methodological work has been
done and continues to be done, and it is important for
statistical geneticists to be familiar with the developments.
However, the efforts to recruit families and collect genetic
data should not be detoured by the limitations of the current
state of the statistical methods. The availability of important
data will stimulate exciting developments of statistical and
computational methods for mining those data.
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