CANCER GENOMICS & PROTEOMICS
Published by the International Institute of Anticancer Research
ISSN: 1109-6535

Volume 3, 2006
Editorial Board

A. Seth
Editor-in-Chief
Laboratory of Molecular Pathology, Sunnybrook and Women’s CHSC,
Toronto, ON, Canada

J.G. Delinassios
Managing Editor and Executive Publisher,
International Institute of Anticancer Research, Athens, Greece

L.A. Aaltonen
Department of Medical Genetics, University of Helsinki, Finland

S. Aaronson
Deralrd H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY, USA

J.D. Aitchison
Institute for Systems Biology, Seattle, WA, USA

W. Ansorge
IAET, Borex, Switzerland

S. Antonarakis
Division of Medical Genetics, University of Geneva Medical School, Switzerland

F.G. Barr
Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA

A.M. Chinnaiyan
Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA

B.F.C. Clark
Department of Molecular Biology, University of Aarhus, Denmark

R. Clarke
Vincent T. Lombardi Cancer Center, Georgetown University School of Medicine, Washington, DC, USA

I. Dunham
The Wellcome Trust Sanger Centre, Wellcome Trust Genome Campus, Cambridge, UK

N.A. Ellis
Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

J.A. Fernandes-Pol
Metalloproteomics, LLC, Chesterfield, MO, USA

C.V. Forst
McClintock Resource, Bioscience Division, Los Alamos National Laboratory, NM, USA

M. Fountoulakis
F. Hoffman - La Roche Pharmaceutical Research, Basel, Switzerland

W.L. Gerald
Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

J.W. Gray
Cancer Genetics Program, Comprehensive Cancer Center, University of California San Francisco, CA, USA

B.B. Haab
Van Andel Research Institute, Grand Rapids, MI, USA

J.D. Hoheisel
Deutsches Krebsforschungszentrum, Genome Research and Bioinformatics, Heidelberg, Germany

R.P. Huang
Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA

T.H.M. Huang
Comprehensive Cancer Center, Human Cancer Genetics Program, Ohio State University, Columbus, OH, USA

Yasumasa Ito
Orthopedic Division, National Cancer Center Hospital, Tokyo, Japan

Yoshiaki Ito
Institute of Molecular and Cell Biology, Clinical Research Centre, Singapore

V.C. Jordan
Diana, Princess of Wales Cancer Research Department, Lynn Sage Breast Cancer Research Program,
Northwestern University Medical School, Chicago, IL, USA

A. Kallioniemi
Laboratory of Cancer Genetics, Institute of Medical Technology, Tampere University Hospital, Finland

O.P. Kallioniemi
Medical Biotechnology Group, VTT Technical Research Centre of Finland, Turku, Finland

M. Kancheisa
Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan

S.E. Kern
Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA

K. Khalili
College of Science and Technology, Center for Neurovirology and Cancer Biology, Temple University,
Philadelphia, PA, USA

S.D. Kottaridis
Department of Virology, Hellenic Anticancer Institute, Athens, Greece

P. Lichter
Deutsches Krebsforschungszentrum, Heidelberg, Germany

G. Lubec
Department of Pediatrics, University of Vienna, Austria

P.J. McCormick
Center for Comp. Functional Genomics, VA Medical Center University at Albany, SUNY, Rensselaer,
NY, USA

J.D. Minna
Hamon Center for Therapeutic Oncology, University of Texas, Southwestern Medical Center at Dallas,
TX, USA

F. Mitelman
Department of Clinical Genetics, University Hospital, Lund, Sweden

P. Nelson
Fred Hutchinson Cancer Research Center, Seattle, WA, USA
Acknowledgements

The following Organisations supported many of the works published in CANCER GENOMICS & PROTEOMICS, Volume 3, 2006.

Academy of Finland
Association de la Recherche contre le Cancer, France
Association Nationale de la Recherche Technique, France
Associazione Italiana per la Ricerca sul Cancro (AIRC),
 Italy
Canary Fund, U.S.A.
Cancéropôle Grand Ouest, France
Changhua Christian Hospital, Taiwan, R.O.C.
China Medical University Hospital, Taichung City,
 Taiwan, R.O.C.
Chulabhorn Research Institute, Thailand
Comité du Puy-de-Dôme, France
Concern Foundation, U.S.A.
Curie-CEA, France
DOD Breast Cancer Research Programs, U.S.A.
Electricité de France (EDF)
European Commission Grant "Spiderman"
European Union (European Regional Development Fund)
Finnish Cancer Society
Finska Läkaresällskapet, Finland
Gene and Mary Ann Walters Pancreatic Cancer
 Foundation, U.S.A.
General Secretariat for Research and Technology, Greece
Generalitat Valenciana, Spain
Greek Ministry of Education
Helsinki University Hospital Research Funds, Finland
Hong Kong Research Grants Council, China
Ireland’s Higher Educational Authority Program for
 Research
Italian Ministry of Health
Italian Neuroblastoma Foundation
Japan Private School Foundation
Johansson K. Albin Foundation, Finland
K. Albin Johansson Foundation, Finland
Kuwait University Research Administration Grant
La Ligue Nationale Française de Lutte Contre le Cancer,
 France
Ligue Régionale contre le Cancer de Loire Atlantique,
 France
Lyon’s Club-La Baule / Pays Guérandais, France
Ministère des Finances et de l’ Industrie, France
Ministero dell’ Università e della Ricerca Scientifica e
 Tecnologica, Italy
Ministry of Education, Culture, Sports, Science and
 Technology, Japan
Ministry of Health, Labor and Welfare, Japan
Mitchell Cancer Institute, Mobile, AL, U.S.A.
Nantes Pays de Loire, France
National Cancer Institute, U.S.A.
National Institutes of Health, U.S.A.
National Science Council, Taiwan
New Energy and Industrial Technology Development
 Organization (NEDO), Japan
Pfizer, France
RISC-RAD European Contract, France
Robert J. Kleberg Jr. and Helen C. Kleberg Foundation,
 U.S.A.
Sigrid Jusélius Foundation, Finland
Smoking Research Foundation, Japan
T.J. Martell Foundation, U.S.A.
University of Crete, Greece
Vanderbilt-Ingram Comprehensive Cancer Center,
 Nashville, TN, U.S.A.
Vehicle Racing Commemorative Foundation,
 Japan
Woodruff Health Science Fund, U.S.A.
Contents, Volume 3, 2006

Number 1

* Gene Expression and Proteomic Analysis of Pancreatic Cancer: a Recent Update. R. CHEN, S. PAN, D.A. CRISPIN, T.A. BRENTNALL (Seattle, WA, USA) ... 1

* Proteomics and Bioinformatics in Biomedical Research. T. KISLINGER, I. JURISICA (Toronto, ON, Canada) .. 11

Cytoplasmic Localization of Cyclin Kinase Inhibitor p21 Delays the Progression of Apoptosis. D. ARAI, N. NOMURA, K. FUKUCHI, K. GOMI (Tokyo, Japan) .. 29

Loss of Chromosome 13q is Associated with Malignant Potential in Pulmonary Carcinoids. K. INAMURA, R. FURUTA, Y. SATOH, T. SHIRAKAWA, S. OKUMURA, K. NAKAGAWA, M.I FUJIWARA, E. TSUCHIYA, Y. ISHIKAWA (Tokyo; Yokohama, Japan) .. 39

Rapid and Sensitive Assay of K-ras Mutations in Pancreatic Cancer by Electrochemical Detection with Ferrocenyl-naphthalene-diimide. N. ISHIKAWA, T. MIYA, K. MIZUMOTO, K. OHUCHIDA, E. NAGAI, K. YAMAGUCHI, M. AMANO, S. TAKENAKA, M. TANAKA (Fukuoka; Chiba, Japan) .. 47

Down-regulation of Cdc25c, CDK1 and Cyclin B1 and Up-regulation of Wee1 by Curcumin Promotes Human Colon Cancer Colo 205 Cell Entry into G2/M-phase of Cell Cycle. C-C. SU, J-G. LIN, G-W.I CHEN, W-C. LIN, J-G. CHUNG (Taichung, Taiwan, ROC) .. 55

Improving Gene Expression Sample Classification Using Support Vector Machine Ensembles Aggregated by Boosting. A. DRAGOMIR, A. BEZERIANOS (Patras, Greece) .. 63

Reviews (pages 1, 11)

Number 2

Early Growth Response-1 Suppresses Human Fibrosarcoma Cell Invasion and Angiogenesis. R. HUANG, S. LI, W. YANG, L. CHEN, C. YAO, R-P. HUANG (Atlanta, GA, USA; Guangzhou, China) 71

Transient Expression of a Major Ampullate Spidroin 1 Gene Fragment from Euprosthenops sp. in Mammalian Cells. S. GRIP, A. RISING, H. NIMMERVOLL, E. STORCKENFELDT, S.J. MCQUEEN-MASON, N. POUCHKINA-STANTCHEVA, F. VOLLRATH, W. ENGSTRÖM, A. FERNANDEZ-ARIAS (Uppsala, Sweden; York; Oxford, UK) .. 83

Microarray Expression Profiling of ABC Transporters in Human Breast Cancer. J-P. GILLET, J. SCHNEIDER, V. BERTHOLET, F. DE LONGUEVILLE, J. REMACLE, T. EFFERTH (Namur, Belgium; Madrid, Spain; Heidelberg, Germany) .. 97
Alteration of Apoptotic Regulatory Molecules in Conventional Renal Cell Carcinoma Influenced by Chronic Long-term Low-dose Ionizing Radiation Exposure in Humans Revealed by Tissue Microarray. A. ROMANENKO, L. MORELL-QUADRENY, D. RAMOS, A. VOZIANOV, A. LLOMBART-BOSCH (Kiev, Ukraine; Valencia, Spain) ..

Gene Expression in Human Acute Cutaneous and Hepatic Graft-Versus-Host Disease after Allogeneic Bone Marrow Transplantation. B. CHOUFI, N. CHALABI, L. LE CORRE, L. DELORT, S. SATIH, Y.-J. BIGNON, D. BERNARD-GALLON (Clermont-Ferrand, France) ..

Proteomic Analysis of Liver from Transgenic Mice Overexpressing Small Heterodimer Partner. K. KOUYIANOU, S. GARBIS, K. BOULIAS, P. DIMITRAKI, M. FOUNTOULAKIS, G. TSIOTIS (Athens; Heraklion, Greece) ...

Number 3-4

* RNA Interference with siRNA. H. JOYCE, I. BRAY, M. CLYNES (Dublin, Ireland) .. 127

* Genomic Instability and Breast Cancer Progression. S. INGVARSSON (Reykjavik, Iceland) .. 137

* Design of Nanoparticles as Drug Carriers for Cancer Therapy. J. ZHANG, C.Q. LAN, M. POST, B. SIMARD, Y. DESLANDES, T.H. HSIEH (Ottawa, ON, Canada) .. 147

* Molecular Replacement for Cancer Metabolic and Mitochondrial Dysfunction, Fatigue and the Adverse Effects of Cancer Therapy. G.L. NICOLSON, K.A. CONKLIN (Huntington Beach; Los Angeles, CA, USA) .. 159

Gene Expression Profiles of CD133-positive Fractions Predict the Survival of Individuals with Acute Myeloid Leukemia. Y. YAMASHITA, J. OHASHI, Y. HIRAI, Y.L. CHOI, R. KANEDA, S.-I. FUJIIWARA, Y. ARAI, M. AKUTSU, C. TSUTSUMI, Y. MIYAZAKI, K. USUKI, M. TERAMURA, K. MITANI, Y. KANO, M.C. O’NEILL, A. URABE, M. TOMONAGA, K. OZAWA, H. MANO (Tochigi; Tokyo; Nagasaki; Saitama, Japan; Baltimore, MD, USA) .. 169

Effect of Vitamin E on Cytochrome P450 mRNA Levels in Cultured Hepatocytes (HepG2) and in Rat Liver. C. HUNDHAUSEN, J. FRANK, G. RIMBACH, E. STOECKLIN, P.Y. MULLER, L. BARELLA (Kiel, Germany; Basel, Switzerland) .. 183

Association of HLA-DRB1 and -DQB1 with Classic Kaposi’s Sarcoma in Mainland Italy. F.R. GUERINI, C. AGLIARDI, R. MANCUSO, L. BRAMBILLA, R. BIFFI, S. FERRUCCI, L. ZANETTA, M. ZANZOTTERA, M. BRAMBATI, V. BONESCHI, P. FERRANTE (Milan, Italy) .. 191

* Gene Expression Microarray Technology: Some Applications in Lung Cancer Research. L. BRENN, L. O’DRISCOLL, M. CLYNES (Dublin, Ireland) ...

* Metastasis Promoter S100A4 is a Potential Molecular Therapeutic Target. G.V. SHERBET (Newcastle upon Tyne, UK; Huntington Beach, CA, USA) ...

* Laser Microdissection: Application to Carcinogenesis. F.E. AHMED (Greenville, NC, USA) .. 217

* Considerations Regarding the Use of Blood Samples in the Proteomic Identification of Biomarkers for Cancer Diagnosis. C.V. SAPAN, R.L. LUNDBLAD (Chapel Hill, NC, USA) ...

Methylation Inactivates Expression of CDP-diacylglycerol Synthase 1 (CDS1) in Hepatocellular Carcinoma. K.-T. YEH, K.-P. TANG, Y.-L. CHEN, W.-W. SU, Y.-F. WANG, J.-G. CHANG (Taichung; Changhua; Taipei; Taiwan, ROC) ...

401
Reduced Expression of the Cell Cycle Regulator p27Kip1 within the Invasion Front of Renal Cell Carcinomas Proved to be a Significant Marker for Disease-specific Survival. A.S. MERSEBURGER, E. VON DER HEYDE, A. KOBERSKI, U. WEGENER, M. MENGEL, U. JONAS, J. SERTH, M. KUCZYK (Tübingen; Hannover, Germany) .. 239

Oligonucleotide Array Comparative Genomic Hybridization Profiling of Neuroblastoma Tumours. P. SCARUFFI, S. MORETTI, S. COCO, K. MAZZOCCHIO, R. DEFFERRARI, D. ALBINO, S. BONASSI, G.P. TONINI (Genoa, Italy) .. 245

* Proteomics in Cancer Research and Diagnosis; An Update. V. IFANDI, S.E. SLADE, M. KHAN (Coventry, UK) 253

Relationship among Genetic Alterations, DNA Content, and Clinicopathological Features in Primary Lung Adenocarcinomas. K. UEDA, Y. KANEDA, M. HAYASHI, M. JINBO, T.-S. LI, K. HAMANO (Yamaguchi, Japan) .. 265

Correlative Analysis of DNA Methyltransferase Expression and Promoter Hypermethylation of Tumor Suppressor Genes in Hepatocellular Carcinoma. T.-W. LAM, J.H.-M. TONG, K.-F. TO, A. CHAN, C.-T. LIEW, P.B.-S. LAI, N. WONG (Shatin, SAR Hong Kong, China) .. 271

Reviews (pages 127, 137, 159, 197, 203, 217, 227, 253)

Number 5

cDNA Microarray Analysis of Gene Expression in Ovarian Cancer Cells After Treatment with Carboplatin and Paclitaxel. L. RANDALL-WHITIS, D.D. TAYLOR, Ç. GERÇEL-TAYLOR (Louisville, KY, USA).. 289

Deregulated Pathways in a Human Lymphoblastoid Cell Line after Low Doses of Gamma Irradiation. S. CHEVILLARD, N. UGOLIN, O. RIGAUD, K. ORY, C. LEVALOIS, R. MAXIMILIEN, B. MALFOY (Fontenay-aux-Roses cedex; Paris, France).. 295

* Basics of Diagnostic DNA Microarray Technology. Case Study: Hepatocellular Carcinoma. A. EL-ANEED, J. BANOUB (St. John’s, NL, Canada) .. 311

Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. G. NAKAJIMA, K. HAYASHI, Y. XI, K. KUDO, K. UCHIDA, K. TAKASAKI, M. YAMAMOTO, J. JU (Mobile, AL, USA; Tokyo, Japan).. 317

Review (page 311)

Number 6

New Insights into the Cellular Pathways Affected in Primary Uterine Leiomyosarcoma. S. Kaur, MARCELO L. LARRAMENDY, M. GENTILE, C. SVARVAR, R. KOIVISTO-KORANDER, H. VAIHKONEN, I. SCHEININ, A. LEMINEN, R. BÜTZOW, T. BÖHLING, S. KNUUTILA (Helsinki, Finland; La Plata, Argentina) .. 347
Proteomic Analysis of the MCF7 Breast Cancer Cell Line. J. HARDOUIN, L. CANELLE, C. VLIEGHE, J-P. LASSERRE, M. CARON, R. JOUBERT-CARON (Bobigny Cedex, France) .. 355

A Comparison of KGF Receptor Expression in Various Types of Human Cancer. X-P. ZANG, MEGAN R. LERNER, STEVEN J. BAHR, D.J. BRACKETT, J.T PENTO (Oklahoma, OK, USA) .. 369

Expression Analysis for the Identification of Genes Involved in Acquired Resistance to Cisplatin in Osteosarcoma Cells. K. TAKAZAWA, H. TSUCHIYA, U. YOSHIMICHI, Y. KANAZAWA, S. II, K. TOMITA (Kanazawa; Ishikawa, Japan)... .. 373

Resveratrol Regulation of PI3K-AKT Signaling Pathway Genes in MDA-MB-231 Breast Cancer Cells. O.A RACHID, M. ALKHALAF (Safat, Kuwait) 383

Proteomic Studies of Galectin-3 Expression in Human Thyroid Diseases by Immunodetection. P. SUBHASITANONT, C. SRISOMSAP, P. PUNYARIT, J. SVASTI (Bangkok, Thailand) .. 389

Volume 3, 2006, Index .. 395
Subject Index

(Figures refer to page numbers)

ABC transporter, cluster analysis, microarray, multidrug resistance, 97
Acute myeloid leukemia, CD133, gene expression profile, prognosis, DNA microarray, 169
Angiogenesis, cancer invasion, cell cycle regulation, cytoskeletal dynamics, growth factor signalling, lymphangiogenesis, metastasis, S100A4, therapeutic target, VEGF signalling, review, 203
Angiogenesis, Egr-1, fibrosarcoma, invasion, metastasis, protein arrays, TIMP-2, 71
Antioxidants, oxidative stress, mitochondria, coenzyme Q10, lipid peroxidation, electron transport chain, chemotherapy, lipid replacement, 159
Apoptosis, cyclin kinase inhibitor p21, DNA damage, \(\gamma \)-irradiation, site-directed mutant, 29
Array CGH, DNA copy number changes, uterine leiomyosarcoma, pathway analysis, 347
Assymetric PCR (A-PCR), electrochemical array (ECA) chip, ferrocenyl-naphthalene-diimide (FND), \(k-ras \) mutation, restriction enzyme BstNI, 47
BAX, conventional renal cell carcinoma, ionizing radiation, Chernobyl accident, Bcl-2, Bcl-x, TRAIL-R2 (DR5), NF-\(\kappa \)-B (p65, p50), 107
Bcl-2, conventional renal cell carcinoma, ionizing radiation, Chernobyl accident, Bcl-x, BAX, TRAIL-R2 (DR5), NF-\(\kappa \)-B (p65, p50), 107
Bcl-x, conventional renal cell carcinoma, ionizing radiation, Chernobyl accident, Bcl-2, BAX, TRAIL-R2 (DR5), NF-\(\kappa \)-B (p65, p50), 107
Bioinformatics, proteomics, mass spectrometry, cancer biology, heart disease, diabetes, review, 11
Biomarkers, proteomics, blood plasma, serum, review, 227
Biomarkers, proteomics, cancer diagnosis, review, 253
Blood plasma, proteomics, biomarkers, serum, review, 227
Boosting, gene expression, classification, support vector machines, ensemble learning, feature selection, 63
Breast cancer, genomic instability, chromosomal abnormalities, cancer progression, review, 137
Breast cancer, MCF7 cell line, proteome, mass spectrometry, 2-DE databases, 355
Breast cancer, neoadjuvant fluorouracil, epirubicin and cyclophosphamide chemotherapy, gene expression profiles, drug resistance, 89
Cancer biology, proteomics, mass spectrometry, bioinformatics, heart disease, diabetes, review, 11
Cancer chemotherapy, drug delivery, nanoparticles, polymer- and liposome-systems, magnetic nanohybrids, review, 147
Cancer diagnosis, proteomics, biomarkers, review, 253
Cancer invasion, angiogenesis, cell cycle regulation, cytoskeletal dynamics, growth factor signalling, lymphangiogenesis, metastasis, S100A4, therapeutic target, VEGF signalling, review, 203
Cancer prevention, resveratrol, PI3K pathway, c-fos, p70S6K, predictive cancer markers, microarray, 383
Cancer progression, genomic instability, breast cancer, chromosomal abnormalities, review, 137
Cancer, KGFR, cDNA cancer array, gene expression, progression, 369
Cancer, RNA interference, siRNA, microRNA, review, 127
Carcinoid, lung, chromosome 13q, comparative genomic hybridization, retinoblastoma protein, 39
CD133, acute myeloid leukemia, DNA microarray, 169
Cdc25c, curcumin, cell cycle arrest, cyclin B1, CDK1, Wee1, 55
CDK1, curcumin, cell cycle arrest, Cdc25c, cyclin B1, Wee1, 55
cDNA cancer array, KGFR, cancer, gene expression, progression, 369
CDP-diacylglycerol synthase 1, hepatocellular carcinoma, methylation, mutation analysis, 231
Cell cycle arrest, curcumin, Cdc25c, cyclin B1, CDK1, Wee1, 55
Cell cycle regulation, angiogenesis, cancer invasion, cytoskeletal dynamics, growth factor signalling, lymphangiogenesis, metastasis, S100A4, therapeutic target, VEGF signalling, review, 203
Ceramide, transcriptome, gamma radiation, low doses, stress kinases, 295
c-fos, resveratrol, PI3K pathway, p70S6K, cancer prevention, predictive cancer markers, microarray, 383
CGH, neuroblastoma, microarray, MYCN, chromosome 1p, 245
Chemotherapy, ovarian cancer, resistance, DNA damage, 289
Chemotherapy, oxidative stress, mitochondria, coenzyme Q10, lipid peroxidation, electron transport chain, antioxidants, lipid replacement, 159
Chernobyl accident, conventional renal cell carcinoma, ionizing radiation, Bel-2, Bcl-x, BAX, TRAIL-R2 (DR5), NF-\(\kappa \)-B (p65, p50), 107
Chromosomal abnormalities, genomic instability, breast cancer, cancer progression, review, 137
Chromosome 13q, lung, carcinoid, comparative genomic hybridization, retinoblastoma protein, 39
Chromosome 1p, neuroblastoma, microarray, CGH, MYCN, 245
Cisplatin, osteosarcoma, drug-resistance, DNA microarray, 373
Classic Kaposi’s sarcoma, human leukocyte antigens, human herpesvirus 8, 191
Classification, gene expression, support vector machines, boosting, ensemble learning, feature selection, 63
Cluster analysis, ABC transporter, microarray, multidrug resistance, 97
Coenzyme Q10, oxidative stress, mitochondria, lipid peroxidation, electron transport chain, chemotherapy, antioxidants, lipid replacement, 159
Colon cancer, miRNA, S-1, 317
Comparative genomic hybridization, lung adenocarcinoma, laser scanning cytometry, DNA ploidy, prognosis, lymph node metastasis, 265
Comparative genomic hybridization, lung, carcinoid, chromosome 13q, retinoblastoma protein, 39
Conventional renal cell carcinoma, ionizing radiation, Chernobyl accident, Bcl-2, Bcl-x, BAX, TRAIL-R2 (DR5), NF-κB (p65, p50), 107
Curcumin, cell cycle arrest, Cdc25c, cyclin B1, CDK1, Wee1, 55
Cyclin B1, curcumin, cell cycle arrest, Cdc25c, CDK1, Wee1, 55
Cyclin kinase inhibitor p21, apoptosis, DNA damage, γ-irradiation, site-directed mutant, 29
Cytochrome P450, vitamin E, gene expression, rat, liver, HepG2, 183
Cytokines, GVHD, lymphocytes, quantitative RT-PCR, 113
Cytoskeletal dynamics, angiogenesis, cancer invasion, cell cycle regulation, growth factor signalling, lymphangiogenesis, metastasis, S100A4, therapeutic target, VEGF signalling, review, 203
2-DE databases, MCF7 cell line, proteome, breast cancer, mass spectrometry, 355
2-DE protein database, osteosarcoma, Saos2, proteomics, mass spectrometry, MALDI-MS, 325
Diabetes, proteomics, mass spectrometry, bioinformatics, cancer biology, heart disease, review, 11
DNA copy number changes, array CGH, uterine leiomyosarcoma, pathway analysis, 347
DNA damage, cyclin kinase inhibitor p21, apoptosis, γ-irradiation, site-directed mutant, 29
DNA damage, ovarian cancer, chemotherapy, resistance, 289
DNA methyltransferases, hepatocellular carcinoma, promoter hypermethylation, tumor suppressor genes, 271
DNA microarray technology, hepatocellular carcinoma, hepatitis B, hepatitis C, review, 311
DNA microarray, osteosarcoma, cisplatin, drug-resistance, 373
DNA microarray, prognosis prediction, gene expression profile, CD133, acute myeloid leukemia, 169
DNA ploidy, lung adenocarcinoma, comparative genomic hybridization, laser scanning cytometry, prognosis, lymph node metastasis, 265
Drug delivery, cancer chemotherapy, nanoparticles, polymer-and lipidosome-systems, magnetic nanohybrids, review, 147
Drug resistance, neoadjuvant fluorouracil, epirubicin and cyclophosphamide chemotherapy, breast cancer, gene expression profiles, 89
Drug-resistance, osteosarcoma, cisplatin, DNA microarray, 373
Egr-1, fibrosarcoma, angiogenesis, invasion, metastasis, protein arrays, TIMP-2, 71
Electrochemical array (ECA) chip, ferrocenyl-naphthalene-diimide (FND), k-ras mutation, restriction enzyme BstNI, assymetric PCR (A-PCR), 47
Electron transport chain, oxidative stress, mitochondria, coenzyme Q10, lipid peroxidation, chemotherapy, antioxidants, lipid replacement, 159
Ensemble learning, gene expression, classification, support vector machines, boosting, feature selection, 63
Epirubicin and cyclophosphamide chemotherapy, neoadjuvant fluorouracil, breast cancer, gene expression profiles, drug resistance, 89
Euprosthenops, spidroin 1 gene, mammalian cells, spider silk protein, 83
Feature selection, gene expression, classification, support vector machines, boosting, ensemble learning, 63
Ferrocenyl-naphthalene-diimide (FND), electrochemical array (ECA) chip, k-ras mutation, restriction enzyme BstNI, asymmetric PCR (A-PCR), 47
Fibrosarcoma, Egr-1, angiogenesis, invasion, metastasis, protein arrays, TIMP-2, 71
Field effect, imaging mass spectrometry, tumor microenvironment, 279
Galectin-3, thyroid diseases, proteomics, immunodetection, papillary carcinoma, 389
Gamma radiation, transcriptome, low doses, stress kinases, ceramide, 295
Gene expression profile, DNA microarray, prognosis prediction, CD133, acute myeloid leukemia, 169
Gene expression profiles, neoadjuvant fluorouracil, epirubicin and cyclophosphamide chemotherapy, breast cancer, drug resistance, 89
Gene expression, classification, support vector machines, boosting, ensemble learning, feature selection, 63
Gene expression, KGFR, cDNA cancer array, cancer, progression, 369
Gene expression, pancreatic cancer, proteomic, profiling, review, 1
Gene expression, vitamin E, cytochrome P450, rat, liver, HepG2, 183
Genomic instability, breast cancer, chromosomal abnormalities, cancer progression, review, 137
Genomics, nucleic acids, photoablation, IR, LCM, LMD, LPC, proteomics, UV, review, 217
Growth factor signalling, angiogenesis, cancer invasion, cell cycle regulation, cytoskeletal dynamics, lymphangiogenesis, metastasis, S100A4, therapeutic target, VEGF signalling, review, 203
GVHD, cytokines, lymphocytes, quantitative RT-PCR, 113
Heart disease, proteomics, mass spectrometry, bioinformatics, cancer biology, diabetes, review, 11
Hepatitis B, DNA microarray technology, hepatocellular carcinoma, hepatitis B, hepatitis C, review, 311
Hepatitis C, DNA microarray technology, hepatocellular carcinoma, hepatitis B, review, 311
Hepatocellular carcinoma, CDP-diacylglycerol synthase 1, methylation, mutation analysis, 231
Hepatocellular carcinoma, DNA microarray technology, hepatitis B, hepatitis C, review, 311
Hepatocellular carcinoma, promoter hypermethylation, DNA methyltransferases, tumor suppressor genes, 271
HepG2, vitamin E, cytochrome P450, gene expression, rat, liver, 183
Human herpesvirus 8, classic Kaposi’s sarcoma, human leukocyte antigens, 191
Human leukocyte antigens, classic Kaposi’s sarcoma, human herpesvirus 8, 191
Imaging mass spectrometry, tumor microenvironment, field effect, 279
Immunodetection, galectin-3, thyroid diseases, proteomics, papillary carcinoma, 389
Mass spectrometry, osteosarcoma, Saos2, proteomics, 2-DE protein database, MALDI-MS, 325
Mass spectrometry, proteomics, bioinformatics, cancer biology, heart disease, diabetes, review, 11
MCF7 cell line, proteome, breast cancer, mass spectrometry, 2-DE databases, 355
Metastasis, angiogenesis, cancer invasion, cell cycle regulation, cytoskeletal dynamics, growth factor signalling, lymphangiogenisis, S100A4, therapeutic target, VEGF signalling, review, 203
Metastasis, Egr-1, fibrosarcoma, angiogenesis, invasion, protein arrays, TIMP-2, 71
Methylation, CDP-diacylglycerol synthase 1, hepatocellular carcinoma, mutation analysis, 231
Microarray, ABC transporter, cluster analysis, multidrug resistance, 97
Microarray, neuroblastoma, CGH, MYCN, chromosome 1p, 245
Microarray, resveratrol, PI3K pathway, c-fos, p70S6K, cancer prevention, predictive cancer markers, 383
Microarrays, lung cancer, review, 197
MicroRNA, RNA interference, siRNA, cancer, review, 127
MicroRNA, colon cancer, S-1, 317
Mitochondria, oxidative stress, coenzyme Q10, lipid peroxidation, electron transport chain, chemotherapy, antioxidants, lipid replacement, 159
Multidrug resistance, ABC transporter, cluster analysis, microarray, 97
Mutation analysis, CDP-diacylglycerol synthase 1, hepatocellular carcinoma, methylation, 231
MYCN, neuroblastoma, microarray, CGH, chromosome 1p, 245
Nanoparticles, drug delivery, cancer chemotherapy, polymer- and liposome-systems, magnetic nanohybrids, review, 147
Neoadjuvant fluorouracil, epirubicin and cyclophosphamide chemotherapy, breast cancer, gene expression profiles, drug resistance, 89
Neuroblastoma, microarray, CGH, MYCN, chromosome 1p, 245
NF-κB (p65, conventional renal cell carcinoma, ionizing radiation, Chernobyl accident, Bcl-2, Bcl-x, BAX, TRAIL-R2 (DR5), NF-κB (p65, p50), 107
IR, nucleic acids, photoablation, LCM, LMD, LPC, genomics, proteomics, UV, review, 217
γ-Irradiation, cyclin kinase inhibitor p21, apoptosis, DNA damage, site-directed mutant, 29
K-ras mutation, electrochemical array (ECA) chip, ferrocenyl-naphthalene-diimide (FND), restriction enzyme BstNI, assymmetric PCR (A-PCR), 47
KGFR, cDNA cancer array, cancer, gene expression, progression, 369
Laser scanning cytometry, lung adenocarcinoma, comparative genomic hybridization, DNA ploidy, prognosis, lymph node metastasis, 265
LCM, nucleic acids, photoablation, IR, LMD, LPC, genomics, proteomics, UV, review, 217
Lipid peroxidation, oxidative stress, mitochondria, coenzyme Q10, electron transport chain, chemotherapy, antioxidants, lipid replacement, 159
Lipid replacement, oxidative stress, mitochondria, coenzyme Q10, lipid peroxidation, electron transport chain, chemotherapy, antioxidants, lipid replacement, 159
Liver proteins, small heterodimer partner, transgenic mice, proteomics, 119
Liver, vitamin E, cytochrome P450, gene expression, rat, HepG2, 183
LMD, nucleic acids, photoablation, IR, LCM, LPC, genomics, proteomics, UV, review, 217
Low doses, transcriptome, gamma radiation, stress kinases, ceramide, 295
LPC, nucleic acids, photoablation, IR, LCM, LMD, genomics, proteomics, UV, review, 217
Lung adenocarcinoma, comparative genomic hybridization, laser scanning cytometry, DNA ploidy, prognosis, lymph node metastasis, 265
Lung cancer, microarrays, review, 197
Lung, carcinoid, chromosome 13q, comparative genomic hybridization, retinoblastoma protein, 39
Lymph node metastasis, lung adenocarcinoma, comparative genomic hybridization, laser scanning cytometry, DNA ploidy, prognosis, 265
Lymphangiogenisis, angiogenesis, cancer invasion, cell cycle regulation, cytoskeletal dynamics, growth factor signalling, metastasis, S100A4, therapeutic target, VEGF signalling, review, 203
Lymphocytes, GVHD, cytokines, quantitative RT-PCR, 113
Magnetic nanohybrids, drug delivery, cancer chemotherapy, nanoparticles, polymer- and liposome-systems, review, 147
MALDI-MS, osteosarcoma, Saos2, proteomics, 2-DE protein database, mass spectrometry, 325
Mammalian cells, spidrin 1 gene, Euprosthenops, spider silk protein, 83
Mass spectrometry, MCF7 cell line, proteome, breast cancer, 2-DE databases, 355
Authors Index
(Figures refer to page numbers)

Agliardi C, 191
Ahmed FE, 217
Akutsu M, 169
Albino D, 245
Alkalaf M, 383
Amano M, 47
Anagnostopoulos AK, 325
Arai D, 29
Arai Y, 169
Bahr SJ, 369
Bandoub J, 311
Barella L, 183
Bernard-Gallon D, 113
Bertholet V, 97
Bezerianos A, 63
Biffi R, 191
Bignon YJ, 89, 113
Böhling T, 347
Bonassi S, 245
Boneschi V, 191
Brackett DJ, 369
Brambilla L, 191
Bray I, 127
Breen L, 197
Brentnall TA, 1
Bützow R, 347
Caldwell RL, 279
Campion L, 89
Campon E, 89
Canelle L, 355
Caprioli RM, 279
Caron M, 355
Chalabi N, 113
Chan A, 271
Chang JG, 231
Charbonnel C, 89
Chen GWI, 55
Chen L, 71
Chen R, 1
Chen YL, 231
Chevillard S, 295
Choi YL, 169
Choufi B, 113
Chung JG, 231
Clynes M, 127, 197
Coco S, 245
Conklin KA, 159
Crispin DA, 1
De Longueville F, 97
Defferrari R, 245
Delort L, 113
Déporte-Féty R, 89

Deslandes Y, 147
Dimitraki P, 119
Dragomir A, 63
Effreth T, 97
El-Aneid A, 311
Engström W, 83
Fernandez-Arias A, 83
Ferrante P, 191
Ferrucci S, 191
Ferrucci S, 191
Fountoulakis M, 119
Gentile M, 347
Gergel-Taylor 3, 289
Gillet JP, 97
Gomi K, 29
Fukuchi K, 29
Furuta R, 39
Garbis S, 119
Gonzalez A, 279
Gorgoulis VG, 252
Gouraud W, 89
Hirai Y, 169
Hsieh TH, 147
Huang R, 71
Huang RP, 71
Hundhausen C, 183
Iftandi V, 253
Inamura K, 39
Ingvarsson S, 137
Ishikawa N, 47
Ishikawa Y, 39
Jézéquel P, 89
Jinbo M, 265
Jonas U, 239
Joubert-Caron R, 355
Joyce H, 127
Ju J, 317
Jurisica I, 11
Kanazawa Y, 373
Kaneda R, 169
Kaneda Y, 265
Kano Y, 169
Kaur S, 347
Khan M, 253
Kirschner T, 11
Kittas C, 325

Knuutila S, 347
Kobierski A, 239
Koivisto-Korander R, 347
Kouyianou K, 119
Kuczyk M, 239
Kudo, K, 317
Lai PBS, 271
Lam TW, 271
Lan CQ, 147
Larramendi ML, 347
Lasserre JP, 359
Le Corre L, 113
Leminen A, 347
Lerner MR, 369
Levalois C, 295
Li S, 71
Li TS, 265
Liew CT, 271
Lin JG, 55
Lin WC, 55
Llombart-Bosch A, 107
Lundblad RL, 227
Magrangeas F, 89
Malfroy B, 295
Mancuso R, 191
Mano H, 169
Maximilien R, 295
Mazzocco K, 245
McQueen-Mason SJ, 83
Mengel M, 239
Merseburger AS, 239
Millour M, 89
Minvielle S, 89
Mitani K, 169
Miya T, 47
Miyazaki Y, 169
Mizumoto K, 47
Morelli-Quadreny L, 107
Moretti S, 245
Muller PY, 183
Nagai E, 47
Nakagawa K, 39
Nakajima G, 317
Nagata M, 239
Takasaki K, 317
Takazawa K, 373
Takenaka S, 47
Tanaka M, 47
Taylor DD, 289
Teramura M, 169
Tsuchiya H, 373
Tsuchiya E, 373
Tsutsumi C, 169
Uchida K, 317

Authors Index
(Figures refer to page numbers)
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ueda K</td>
<td>265</td>
</tr>
<tr>
<td>Ugolin N</td>
<td>295</td>
</tr>
<tr>
<td>Urabe A</td>
<td>169</td>
</tr>
<tr>
<td>Usuki K</td>
<td>169</td>
</tr>
<tr>
<td>Vauhkonen H</td>
<td>347</td>
</tr>
<tr>
<td>Vlieghe C</td>
<td>355</td>
</tr>
<tr>
<td>Vollrath F</td>
<td>83</td>
</tr>
<tr>
<td>Von Der Heyde</td>
<td>239</td>
</tr>
<tr>
<td>Vougas K</td>
<td>325</td>
</tr>
<tr>
<td>Vozianov A</td>
<td>107</td>
</tr>
<tr>
<td>Wang YF</td>
<td>231</td>
</tr>
<tr>
<td>Wegener U</td>
<td>239</td>
</tr>
<tr>
<td>Wong N</td>
<td>271</td>
</tr>
<tr>
<td>Xi Y</td>
<td>317</td>
</tr>
<tr>
<td>Yamaguchi K</td>
<td>47</td>
</tr>
<tr>
<td>Yamamoto M</td>
<td>317</td>
</tr>
<tr>
<td>Yamashita Y</td>
<td>169</td>
</tr>
<tr>
<td>Yang W</td>
<td>71</td>
</tr>
<tr>
<td>Yao C</td>
<td>71</td>
</tr>
<tr>
<td>Yeh KT</td>
<td>231</td>
</tr>
<tr>
<td>Yoshimichi U</td>
<td>373</td>
</tr>
<tr>
<td>Zanetta L</td>
<td>191</td>
</tr>
<tr>
<td>Zang XP</td>
<td>369</td>
</tr>
<tr>
<td>Zanzottera M</td>
<td>191</td>
</tr>
<tr>
<td>Zhang J</td>
<td>147</td>
</tr>
</tbody>
</table>
Instructions to Authors

General Policy. CANCER GENOMICS & PROTEOMICS (CGP) welcomes the submission of high quality original articles and reviews on all aspects of the application of genomic and proteomic technologies to experimental and clinical cancer research. The journal's scientific spectrum includes: (a) molecular causes of carcinogenesis, cancer progression and metastasis; (b) structural and functional aspects of genes in the cancer cell; (c) advances in genomic and proteomic technologies applicable to cancer research; (d) anticancer drug design and drug development.

CGP will also accept abstracts and proceedings of scientific meetings for publication, following consideration and approval by the Editorial Board.

A major aim of CGP is to ensure for the prompt publication of original works of high quality, generally within 1-2 months from final acceptance. Manuscripts will be accepted on the understanding that they report original unpublished works that are not under consideration for publication by another journal, and that they will not be published again in the same form. All material submitted to CGP will be subject to review by two members of the Editorial Board and by one suitable outside referee. All manuscripts submitted to CGP are treated in confidence, with access restricted to the Editor-in-Chief, the Managing Editor, the journal's secretary, the reviewers and the printers. The Editors reserve the right to improve manuscripts in terms of grammar and style.

Copyright. On publication of a manuscript in CGP, which is a copyrighted publication, the legal ownership of all published parts of the paper passes from the Author(s) to the Journal. Material published in the journal may not be reproduced or published elsewhere without the written consent of the Managing Editor.

Format. Two types of papers may be submitted: (i) full papers containing completed original work, and (ii) review articles concerning fields of recognizable progress. Papers should contain all the essential data in order to make the presentation clear. Papers should be written in clear, concise English. Spelling should follow that of the "Oxford English Dictionary".

Manuscripts. Submitted manuscripts should not exceed fourteen (14) pages (approximately 250 words per double - spaced page), including abstract, text, tables, figures, and references (corresponding to 4 printed pages). Papers exceeding four (4) printed pages will be subject to excess page charges. All manuscripts should be divided into the following sections: (a) First page including the title of the presented work [not exceeding fifteen (15) words], full names and full postal addresses of all Authors, name of the Author to whom proofs are to be sent, key words, an abbreviated running title and the date of submission. (Note: The order of the Authors is not necessarily indicative of their contribution to the work. Authors may note their individual contribution(s) in the appropriate section(s) of the presented work); (b) Abstract not exceeding 200 words, organized according to the following headings: Background - Materials and Methods or Patients and Methods - Results - Conclusion; (c) Introduction; (d) Materials and Methods or Patients and Methods; (e) Results; (f) Discussion; (g) Acknowledgements and (h) References. All pages must be numbered consecutively. Footnotes should be avoided. Review articles may follow a different style according to the subject matter and the Author's preference. Review articles should not exceed 35 pages (approximately 250 words per double-spaced page) including all tables, figures and references.

Figures. All figures (whether photographs or graphs) should be clear, high contrast, glossy prints of the size they are to appear in the journal: 8.00 cm (3.15 in.) wide for a single column; 17.00 cm (6.70 in.) for a double column; maximum height: 20.00 cm (7.87 in.). Graphs must be submitted as photographs made from drawings and must not require any artwork, typesetting, or size modifications. Symbols, numbering and lettering should be clearly legible. The number and top of each figure must be indicated on the reverse side. Original karyotypes and photographs should be provided wherever possible, rather than photographic copies. A charge will be made for a colour plate. Figures should be numbered with Arabic numerals and include a short title, and legend if appropriate.

Tables. Each table should be submitted on a separate page, double-spaced. Tables should be numbered with Roman numerals and should include a short title, and legend if appropriate.

References. Authors must assume responsibility for the accuracy of the references used. Citations for the reference section of submitted works should follow the standard form of "Index Medicus" and must be numbered consecutively in the order that they appear in the text. Examples: 1 Sumner AT: The nature of chromosome bands and

Ethical Policies and Standards. CGP agrees with and follows the "Uniform Requirements for Manuscripts Submitted to Biomedical Journals" established by the International Committee of Medical Journal Editors in 1978 and updated in October 2001 (www.icmje.org). Microarray data analysis should comply with the "Minimum Information About Microarray Experiments (MIAME) standard". Specific guidelines are provided at the "Microarray Gene Expression Data Society" (MGED) website. Presentation of genome sequences should follow the guidelines of the NHGRI Policy on Release of Human Genomic Sequence Data. Research involving human beings must adhere to the principles of the Declaration of Helsinki and Title 45, U.S. Code of Federal Regulations, Part 46, Protection of Human Subjects, effective December 13, 2001. Research involving animals must adhere to the Guiding Principles in the Care and Use of Animals approved by the Council of the American Physiological Society. The use of animals in biomedical research should be under the careful supervision of a person adequately trained in this field and the animals must be treated humanely at all times. Research involving the use of human foetuses, foetal tissue, embryos and embryonic cells should adhere to the U.S. Public Law 103-41, effective December 13, 2001.

Submission of Manuscripts. An original and two copies of the manuscript (including all photographs and graphs) should be sent to: Dr. J.G. Delinassios, Managing Editor, Cancer Genomics and Proteomics, International Institute of Anticancer Research, 1st km Kapandritiou-Kalamou Rd., Kapandriti, P.O. Box 22, Attiki 19014, Greece. A CD-ROM, floppy disc, or ZIP-disc should also be submitted indicating the computer-processing program. Additionally, for speed of processing, manuscripts may be sent by e-mail to www.cgp-journal.com. Authors are invited to submit, along with their manuscripts, a short list of possible reviewers and any previous publications which could facilitate reviewing. Only the original copy of the submitted manuscript will be returned to the Authors upon rejection.

Galley Proofs. Unless otherwise indicated, galley proofs will be sent by e-mail to the first-named Author of the submission. Corrections of galley proofs should be limited to typographical errors.

Reprints. Twenty-five copies of each communication will be provided free of charge. Additional copies may be ordered after acceptance of the paper. Requests for additional reprints should be addressed to the Editorial Office.
CANCER GENOMICS & PROTEOMICS supports (a) the establishment and the activities of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH (Kapandriti, Attiki, Greece) and (b) the organization of the International Conferences of Anticancer Research.

For more information about CANCER GENOMICS & PROTEOMICS, IIAR and the Conferences please visit the IIAR website: www.iiar-anticancer.org

Publication Data: CANCER GENOMICS & PROTEOMICS (CGP) is published bimonthly. Each annual volume contains six issues. Annual Authors and Subject Indexes are included in the sixth issue of each volume.

Copyright: Once a manuscript has been published in CGP, which is a copyrighted publication, the legal ownership of all published parts of the paper has passed from the Author to the Journal.

Manuscripts, correspondence, requests for sample copies and orders should be addressed to: Dr John G. Delinassios, Managing Editor, Editorial Office, Cancer Genomics & Proteomics, 1st km Kapandritiou-Kalamou Road, P.O. Box 22, Kapandriti, Attiki, 19014, Greece. Tel: 0030 22950 52945, Fax: 0030 22950 53389, e-mail (Editorial Office): journals@iiar-anticancer.org, e-mail (Managing Editor): editor@iiar-anticancer.org

Manuscripts from North America may be sent to the Editor-in-Chief, Prof. A. Seth, CGP, Laboratory of Molecular Pathology, Sunnybrook and Women’s College Health Sciences Center, 2075 Bayview Avenue, Room E-423, Toronto, ON, Canada M4N 3M5. Fax: 416 978 5956, e-mail: genomics.proteomics@utoronto.ca

Subscription Orders: Orders can be placed at agencies, bookstores, or directly with the publisher. Cheques should be made payable to J.G. Delinassios, Managing Editor, Athens, Greece and should be sent to the Editorial Office.

Advertising: Correspondence and rate requests should be addressed to the Editorial Office.

Book Reviews: Recently published books and journals should be sent to the Editorial Office. Reviews will be published within 2-4 months.

The Editors and Publishers of the journal CANCER GENOMICS & PROTEOMICS accept no responsibility for the opinions expressed by the contributors or for the content of the advertisements appearing therein.