
Abstract. Background/Aim: Circulating tumor DNA (ctDNA),
which is shed from cancer cells into the bloodstream, offers a
potential minimally invasive approach for cancer diagnosis
and monitoring. This research aimed to assess the preoperative
ctDNA levels in ovarian tumors patients' plasma and establish
correlations with clinicopathological parameters and patient
prognosis. Patients and Methods: Tumor DNA was extracted
from ovarian tumor tissue from 41 patients. Targeted
sequencing using a panel of 127 genes recurrently mutated in
cancer was performed to identify candidate somatic mutations
in the tumor DNA. SAGAsafe digital PCR (dPCR) assays
targeting the candidate mutations were used to measure
ctDNA levels in patient plasma samples, obtained prior to
surgery, to evaluate ctDNA levels in terms of mutant copy
number/ml and variant allele frequency. Results: Somatic
mutations were found in 24 tumor samples, 17 of which
were from ovarian cancer patients. The most frequently
mutated gene was TP53. Preoperative plasma ctDNA levels
were detected in 14 of the 24 patients. With higher stage,
plasma ctDNA mutant concentration increased (p for trend
<0.001). The overall survival of cancer patients with more
than 10 ctDNA mutant copies/ml in plasma was
significantly worse (p=0.008). Conclusion: Pre-operative

ctDNA measurement in ovarian cancer patients' plasma
holds promise as a predictive biomarker for tumor staging
and prognosis.

Ovarian cancer (OC) is one of the most prevalent and lethal
gynecological cancers with more than 300,000 new cases
diagnosed and more than 200,000 deaths recorded in 2020
worldwide (1). The 5-year survival rate of ovarian cancer has
remained in the range of 40-50% in the past 20 years despite
diagnostic and therapeutic advancements (2). When diagnosed
early, the prognosis of ovarian cancer is much better, with a
5-year survival rate of 73-92% for tumors diagnosed at stage
I, compared to <6% for tumors diagnosed at stage IV (3). 

Early detection of minimal disease can be crucial for early
surgical intervention and improve the outcome for the
patient. However, due to the lack of suitable biomarkers,
effective screening of ovarian cancer is yet to be established.
Population screening trials like the Prostate, Lung, Colorectal
and Ovarian Cancer Screening Trial (PLCO) (4) and
Collaborative Trial of Ovarian Cancer Screening
(UKCTOCS) (5) have been performed to improve screening
to enable earlier diagnosis of ovarian cancer; however still
no excellent screening method has been found. For women
with average to high risk of developing ovarian cancer,
transvaginal ultrasound (TVUS) and CA-125 and HE4 blood
tests are advised for screening of the disease, but no
significant improvement in survival has been observed with
these tests (6). Protein biomarkers and combinations of
biomarkers have good sensitivity to indicate malignancy in
women with pelvic mass, but the specificity needs to be
improved when women with pelvic tumors are evaluated
before surgery (7). At follow up of ovarian cancer after
primary treatment, analysis of CA-125 and HE4 in
combination with computed tomography (CT) scan is usually
performed when suspicion of relapse. 
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In recent years, cell-free circulating tumor DNA (ctDNA)
has emerged as a promising tumor biomarker (8). Through
cell apoptosis, necrosis and other mechanisms of tumor cell
death, small pieces of DNA are released into the
bloodstream. These pieces are called cell-free circulating
tumor DNA. ctDNA can be used for diagnosis, monitoring
of treatment response and/or resistance, detection of latent
disease, and prediction of outcome (8). It has been reported
that elevated preoperative total plasma cell free DNA levels
are correlated to events of advanced epithelial ovarian
carcinoma (9). Advances in deep-sequencing technology
enable comprehensive cataloguing of tumor-specific
(somatic) chromosomal rearrangements and mutations,
which can then be detected in follow-up plasma samples
using mutation detection technologies (10).

The aim of the study was to measure tumor-specific
mutations in plasma in ovarian cancer and borderline ovarian
tumors after targeted sequencing of primary tumor tissues
and to relate the ctDNA measurements to clinicopathological
features and patient outcome. Tumor-specific mutations in
ovarian tumors were identified by targeted sequencing,
which informed ctDNA analyses in matched plasma samples
using the ultrasensitive SAGAsafe digital PCR method. 

Patients and Methods

Sample collection. Peripheral plasma samples were obtained
preoperatively (the day before surgery or the same day) from 41
patients admitted for primary surgery of adnexal masses to the
Department of Obstetrics and Gynecology in Lund, Sweden,
between October 2004 and December 2012. Fresh frozen tumor
biopsies from the same patients were also obtained and all samples
stored at −80˚C until analyzed. The 41 patients were selected as a

representative sample of ovarian tumor patients from the biobank.
All data were grouped according to tumor type and stage of cancer:
benign (B), borderline (BOT) and ovarian cancer (OC Stage I-IV).

Sequencing. DNA was extracted from tumor samples using the
AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany) between
2018 and 2020. Tumor DNA samples were sheared to an average of
250 bp using a Covaris ultrasonicator before generating Illumina-
compatible sequencing libraries using the KAPA HyperPrep Kit
(Roche, Pleasanton, CA, USA). Total library yields were measured
using Qubit (ThermoFisher, Cambridge, UK) and size distributions
checked with BioAnalyzer (Agilent, Santa Clara, CA, USA) before
adding equimolar amounts of each library into pools subjected to
target enrichment. Targeted regions of the 41 libraries were
hybridized according to the manufacturer’s protocol with the xGen
Pan-Cancer Panel (Integrated DNA Technologies; IDT Inc,
Coralville, IA, USA) containing 127 cancer-associated genes or a
custom xGen Lockdown Probes panel covering exons and hotspots
in 14 genes recurrently mutated in cancer (IDT). The hybridized
libraries were sequenced using Illumina NextSeq 550 or MiSeq
(Illumina Inc, San Diego, CA, USA).

Sequencing data was processed using a Snakemake workflow (11)
and Bioconda (12) software packages. Basecalls were demultiplexed
by sample and converted to unmapped BAM format using Picard
v2.21.1, and unique molecular barcodes (UMIs) were extracted using
fgbio v0.7.0. (https://github.com/fulcrumgenomics/fgbio) Reads with
matching UMIs (allowing for a maximum 1 base mismatch) were
collapsed to generate consensus reads. These were aligned to the hg38
version of the human reference genome using BWA v0.7.17 (13).
Variants were called using VarDict-Java v1.7.0 (14). Annotation was
performed using vcfanno v0.3.1 (15) and the data sources COSMIC
v87 (16), dbSNP build 151 (17), as well as the Swedish and Danish
human variation databases. To remove germline variants and
sequencing artifacts,  all variant calls that were also found in normal
samples from five healthy donors were filtered, and only retained
candidate variants as somatic that a) passed basic VarDict-Java
criteria (“PASS” variants), b) were not in sequence repeat regions,
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Table I. Genetic mutations found in the tumors related to histopathology. 

                                                                                                                     Morphology            

Gene mutations   Benign**   Endometriosis**   Teratoma**      Serous        Serous      Endometrioid    Endometrioid      Mucinous     Mucinous   Total
in tumor                                                                                       borderline     cancer         borderline             cancer           borderline       cancer

TP53                            0                       0                        0                   0                12                   1                         0                       0                   1            14
KRAS                           0                       0                        0                   2                  0                   0                         1                       4                   0              7
PIK3CA                       0                       0                        0                   0                  0                   0                         2                       0                   0              2
ASXL1*                       1                       0                        0                   0                  0                   0                         0                       0                   0              1
BRAF                          0                       0                        0                   1                  0                   0                         0                       0                   0              1
FLT3*                         0                       0                        0                   0                  1                   0                         0                       0                   0              1
KIT*                            1                       0                        0                   0                  0                   0                         0                       0                   0              1
PIK3R1                       0                       0                        0                   0                  0                   0                         1                       0                   0              1
No detected                2                       1                        1                   1                  6                   0                         0                       0                   2            13
Total                            4                       1                        1                   4                19                   1                         4                       4                   3            41

*Germline mutation. **Benign histopathology. 



and c) were not known common germline variants in the population
according the dbSNP and COSMIC databases, and the Swedish and
Danish variation data (defined as >1% population frequency).

Cell-free DNA was isolated from patient plasma samples using
the QIAamp MinElute cfDNA kits (Qiagen). CA-125 was analyzed
at the routine laboratory at Lund University Hospital with ELISA.
For each patient, candidate somatic mutations were selected and
SAGAsafe digital PCR (dPCR) assays or developed (SAGA
Diagnostics AB, Lund, Sweden). All assays were validated using
positive control tumor DNA and wild-type negative control DNA
samples. One individual assay was selected for each patient.  The
SAGAsafe technology detects point mutations and small indels
down to 0.001% variant allele frequency. These assays provide
quantitative result in terms of mutant- and wild-type copy number
and the mutant allele frequency (MAF) for an analyzed sample. The
assays were developed and validated on the Bio-Rad QX200/QXDx
Droplet Digital PCR System (Hercules, CA, USA).

Statistical analysis. One-way ANOVA with Bonferroni correction
as post hoc test and trends across ordered groups were analyzed
using linear regression with log-transformed values. Overall survival
probabilities were calculated using the Kaplan–Meier method and
the log-rank test. All comparisons were two-sided, and a 5% level
of significance was used. The statistical analyses were performed
using SPSS 26.0 (IBM Corp., Armonk, NY, USA). 

Ethics approval and consent to participate. Written informed
consent was obtained from all study participants. Ethical approval
was granted by the Ethical Review Board at the Faculty of

Medicine, Lund University, Sweden. Dnr 495 2016 (amendment to
Dnr 558-2004 and 94-2006).

Results
Patient data were grouped according to tumor type as follows:
Benign (n=6), BOT (n=9) and ovarian cancers (n=26). The
benign group generally consisted of younger patients (mean
age=48 years ±13.3) compared to the cancer group (64 years
±11.9). Preoperative CA-125 levels in the BOT group were
293.7±627.3 units/ml and in the cancer group 1,264.3±1,147.1
units/ml. Somatic mutations were found in 24 tumor samples
(seven were in BOT and 17 in cancer patients). TP53, KRAS,
PIK3CA, PIK3R1, and BRAF were the most recurrently
mutated genes in this cohort (Table I and Figure 1). In stage
III ovarian cancer, there were eight tumors with a TP53
mutation and one with PIK3R1 mutations (Figure 1). KRAS
mutations were found in four mucinous borderline tumors and
two serous borderline tumors. 

The mutations detected in plasma were in TP53, KRAS,
PIK3CA, and PIK3R1. Seven patients with stage III, three with
stage IV and four with stages I and II of ovarian cancer had
detectable ctDNA in the plasma. All serous cancer patients with
detectable ctDNA showed TP53 mutations, and one serous
borderline patient had a KRAS mutation in plasma. The
concentration of ctDNA increased with higher stage (p for

Dobilas et al: Preoperative ctDNA Levels and Ovarian Cancer Survival

765

Figure 1. Waterfall plot of validated somatic mutations in patient tumors. Genes are indicated in rows, and samples in columns.  Mutated samples
are shown according to mutation type. Patient and tumor clinicopathological variables are shown below the patient IDs.  



trend <0.001). Concentrations of ctDNA in stage III and IV
were significantly higher compared with stage I (p=0.025 and
0.007, respectively) (Figure 2). The number of 10 mutant
copies per ml for the survival analyses was chosen after

studying the results (Figure 2), in which the number of mutant
copies is shown related to stage. Cancer patients with more
than 10 mutant copies/ml in plasma showed significantly worse
overall survival (OS, p=0.008 by log-rank test) (Figure 3). 
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Figure 2. Plasma circulating tumor DNA (ctDNA) mutant concentration increased with higher stage (p for trend <0.001). Bars show the highest and
lowest values, except outliers (l), which are 1.5 to 3 box lengths from the end of the box, and extremes (*) which are more than 3 box lengths from
the end of the box. Concentrations of ctDNA in stage III and IV were significantly higher compared with stage I (p=0.025 and 0.007, respectively).
One-way ANOVA with Bonferroni correction and trends across ordered groups were analyzed using linear regression with log-transformed values.

Figure 3. Kaplan Meier analysis of overall survival in patients related to genetic mutation found in plasma (OS, p=0.008 by log-rank test). The
blue line corresponds to <10 copies/ml and the red line >10 copies/ml. Among patients with ctDNA levels below 10 copies/ml, 2 out of 3 experienced
mortality, while among those with ctDNA levels exceeding 10 copies/ml, 10 out of 11 patients faced mortality.



Discussion

In this study, ctDNA was measured in plasma samples from
ovarian cancer patients and borderline ovarian tumor patients
using the SAGAsafe dPCR technology. The plasma levels of
ctDNA mutations were increased in patients with higher
stage of disease. In patients with ovarian cancer, higher
levels of ctDNA in plasma were associated with worse OS.
These results indicate that ctDNA analyzed in plasma can be
useful pre-operatively both as a diagnostic and as a
prognostic biomarker in ovarian cancer. 

Specific genomic alterations in ctDNA can guide cancer
treatment. The most frequently mutated gene in these patients
with ovarian tumors was TP53, especially in advanced stage
OC. Several studies have shown that TP53 mutations are
significantly associated with advanced OC since they are
found in more than 90% of the high-grade serous ovarian
carcinomas (18). Loss of p53 function makes cells unable to
induce apoptosis and therefore primes these cells for
transformation into malignancy (19, 20). Most mutations are
single-base substitutions distributed throughout the coding
sequence. TP53 mutations have been shown to be prognostic
and targets for pharmacological intervention (21). In the
current Swedish national guidelines (RCC), PARP inhibitors
are recommended for use in treatment of BRCA-mutated
epithelial ovarian cancer (22). PARP inhibitors have
demonstrated efficacy in BRCA-mutated ovarian cancer (22)
as well as in other malignancies characterized by homologous
recombination deficiency. Only a few studies have been
performed to evaluate the efficacy of PARP inhibitors in
terms of TP53 status (23), and it has been presumed that
targeting mutant p53, which destabilizes PARP repair
function, may impede the distant spread of cancer cells (24).

KRAS gene mutations were found in seven tissue
specimens, and one was found in plasma ctDNA. KRAS is
a member of the Ras family of oncogenes, which also
includes two other genes: HRAS and NRAS. The proteins
these genes encode play important roles in cell division, cell
differentiation, and apoptosis. Six mutations in KRAS were
found in borderline tumors. Low-grade serous carcinomas
(LGSOC) may progress from borderline tumors with
frequent mutations of the KRAS, BRAF, or ERBB2 genes and
lack of TP53 mutations (25). Two multicenter trials studying
MEK inhibitors in LGSOC demonstrated activity in LGSOC,
especially in KRAS-mutated disease. Accordingly, MEK
inhibitors could be an alternative treatment in LGSOC (26).
In patients with advanced malignant melanoma with BRAF
mutations, KRAS inhibition (KRASi) has shown good results
(27). In lung adenocarcinoma patients with co-occurring
TP53 mutations, clinical benefit has been demonstrated from
PD-1 inhibitors and mutation status may guide anti-PD-
1/PD-L1 immunotherapy (28).

Concordance between tumor DNA and ctDNA. Various
plasma ctDNA technologies are being tested in academic and
commercial laboratories (29). Plasma ctDNA testing has a
promising role in follow up as a tumor marker, especially
when treatment is based or monitored on a gene mutation
profile (30). In this study, it was found that 15 out of 24
patients with tumor DNA mutations had mutations detected
in plasma ctDNA, which corresponds to a sensitivity of
62.5%, in line with previous reports (31). However, the
possibility to detect ctDNA mutations in plasma depends on
the morphology of the tumor, the stage of the disease, tumor
burden, as well as DNA degradation (31).

ctDNA in relation to stage. The plasma ctDNA mutant
concentration increased with higher stage, which is in
accordance with previous studies (32). In late-stage cancer,
especially in abdominal organs, such as colon, pancreas, or
ovaries, ctDNA has been commonly detected in more than
60% of patients (33). In this study ctDNA was detected in
two patients in stage I OC. Interestingly, our study also
detected ctDNA mutation in plasma in one patient with a
borderline tumor, which has not previously been reported.
Other studies observed that tumor volume assessed by CT
imaging correlated with ctDNA levels in patients with
relapsed high-grade serous ovarian cancer (34). Patients with
advanced ovarian cancer have had median concentrations of
100–1,000 mutated gene copies per 5 ml of plasma (34). The
analyses in this study were able to detect less than 10
copies/ml in plasma in the early stage of the disease,
indicating very high sensitivity. The quantity of ctDNA in
plasma correlates with tumor size and disease stage, as
indicated by our observations and previous research (35).

ctDNA mutations/ml plasma as a prognostic factor. Confirming
the aim of our study, that it is possible to detect ctDNA in
ovarian cancer patients, we can further conclude that our results
showed that patients in advanced stage of OC had more
mutated gene copies than in early stage of disease. The
prognosis for ovarian cancer patients is highly related to stage
(36). Similar studies with gynecologic cancers have found that
higher percentage of ctDNA correlated with worse survival
(37). In colorectal cancers ctDNA has found to be a prognostic
factor for disease recurrence (38), and another study identified
ctDNA as a potential independent factor (39). In addition,
higher ctDNA concentration significantly correlated with worse
progression-free survival (PFS) (40). Our results showed that
patients with more than 10 ctDNA mutation copies/ml plasma
had significantly worse overall survival. 

Strengths and limitations. The findings of this study have
demonstrated the potential clinical utility of ctDNA analysis
in detecting ovarian cancer and predicting survival.
However, it is important to note that the study was
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conducted on a relatively small patient cohort and only
genetic variants in the coding regions of genes were
investigated. Previous studies have found that variants
located in the intronic, and non-coding regions of genomes
may play a role in identifying individuals at genetic risk of
developing ovarian cancer (41). This and other sequencing
studies have limitations in identifying genetic variants
associated with OC in non-coding regions. The presence of
ctDNA in the bloodstream is directly proportional to the
tumor burden in the body, and patients with a larger tumor
burden are more likely to have detectable ctDNA. The
sensitivity of ctDNA detection can be influenced by the
technology employed for genetic analysis. In this study,
high-sensitivity sequencing data and coverage were used to
detect ctDNA. The quality and quantity of ctDNA can also
be influenced by other factors, such as age and overall
health status. For example, ctDNA levels may be higher in
older patients due to the natural aging process, while
patients with other medical conditions or treatments may
have lower levels.

Implications for practice and future research. The study
demonstrated the potential clinical utility of ctDNA analysis
in detecting ovarian cancer and predicting survival,
particularly in advanced stages. However, the results need to
be validated in larger patient cohorts before clinical
implementation. Further research is needed to explore the
detection of genetic variants in non-coding regions and
improve the accuracy of ovarian cancer detection using
ctDNA analysis. The concentration of ctDNA mutated copies
in plasma was found to be related to stage and overall
survival, suggesting its potential as a prognostic tool; in
larger studies, the optimal cut-off level of mutant copies per
ml should be evaluated. In this study, candidate somatic
mutations were sequenced from the available tumor material
for ctDNA analysis in plasma. In cases where tumor material
is not available, broad genomic panels must be designed for
ctDNA analysis in plasma. The future use of broader
genomic panels may simplify the ctDNA analyses excluding
the need for high-sensitivity DNA sequencing analyses of
tumor tissue, retaining the high sensitivity of ctDNA analysis
and potentially improving the accuracy of OC detection.

Conclusion

This study found that ctDNA mutations could be detected in
15 out of 24 patients with ovarian cancer and pre-malignant
ovarian borderline tumors. The most mutated gene was TP53.
The concentration of ctDNA mutated copies in plasma was
related to stage and was higher in advanced OC stages. Patients
with an increased amount of ctDNA in plasma experienced
worse overall survival. Plasma is easily accessible and ctDNA
may be used for prediction of prognosis. 
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