
Abstract. Background/Aim: Compared to other breast
cancer types, triple-negative breast cancer (TNBC) has
historically had few treatment alternatives. Therefore,
exploring and pinpointing potentially implicated genes could
be used for treating and managing TNBC. By doing this, we
will provide essential data to comprehend how the genes are
involved in the apoptotic pathways of the cancer cells to
identify potential therapeutic targets. Analysis of a single
genetic alteration may not reveal the pathogenicity driving
TNBC due to the high genomic complexity and heterogeneity
of TNBC. Therefore, searching through a large variety of
gene interactions enabled the identification of molecular
therapeutic genes. Materials and Methods: This study used
integrated bioinformatics methods such as UALCAN, TNM
plotter, PANTHER, GO-KEEG and PPIs to assess the gene
expression, protein-protein interaction (PPI), and
transcription factor interaction of apoptosis-regulated genes.
Results: Compared to normal breast tissue, gene expressions
of BNIP3, TNFRSF10B, MCL1, and CASP4 were down-
regulated in UALCAN. At the same time, BIK, AKT1, BAD,
FADD, DIABLO, and CASP9 was down-regulated in bc-
GeneExMiner v4.5 mRNA expression (BCGM) databases.
Based on GO term enrichment analysis, the cellular process
(GO:0009987), which has about 21 apoptosis-regulated
genes, is the top category in the biological processes (BP),
followed by biological regulation (GO:0065007). We
identified 29 differentially regulated pathways, including the
p53 pathway, angiogenesis, apoptosis signaling pathway,

and the Alzheimer’s disease presenilin pathway. We
examined the PPIs between the genes that regulate
apoptosis; CASP3 and CASP9 interact with FADD, MCL1,
TNF, TNFRSRF10A, and TNFRSF10; additionally, CASP3
significantly forms PPIs with CASP9, DFFA, and TP53, and
CASP9 with DIABLO. In the top 10 transcription factors, the
androgen receptor (AR) interacts with five apoptosis-
regulated genes (p<0.0001; q<0.01), followed by retinoic
acid receptor alpha (RARA) (p<0.0001; q<0.01) and ring
finger protein (RNF2) (p<0.0001; q<0.01). Overall, the gene
expression profile, PPIs, and the apoptosis-TF interaction
findings suggest that the 27 apoptosis-regulated genes might
be used as promising targets in treating and managing
TNBC. Furthermore, from a total of 27 key genes, CASP2,
CASP3, DAPK1, TNF, TRAF2, and TRAF3 were significantly
correlated with poor overall survival in TNBC (p-value
<0.05); they could play important roles in the progression
of TNBC and provide attractive therapeutic targets that may
offer new candidate molecules for targeted therapy.
Conclusion: Our findings demonstrate that CASP2, CASP3,
DAPK1, TNF, TRAF2, and TRAF3 were substantially
associated with the overall survival rate (OS) difference of
TNBC patients out of a total of 27 specific genes used in this
study, which may play crucial roles in the development of
TNBC and offer promising therapeutic interventions.

Breast cancer (BC) is the most common malignant tumor in
women and the biggest threat to the health of women
worldwide (1). Triple-negative breast cancer (TNBC), which
lacks the expression of the human epidermal growth factor
receptor two (HER2), estrogen (ER), and progesterone (PR)
receptors, has shown a significant increase in interest in recent
years (2). The typical characteristics of this condition are early
onset, aggressiveness, earlier local recurrence, distant
metastases, insensitivity to endocrine and targeted therapy, the
rapid development of treatment resistance, a greater
prevalence in premenopausal women under 50, and a poor
progression (3). Due to its aggressive biological nature and
resistance to current treatments, TNBC is thought to have a
poor prognosis (4). However, the exact pathophysiology of BC
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is still unknown. Understanding the molecular genesis of BC
is essential to developing screening indicators and new
therapeutic targets for the disease’s prevention and treatment
(5). Previous research has revealed a significant association
between numerous molecular TNBC genes and therapy (6).
According to our previous studies using TNBC cell lines,
thymoquinone (TQ) treatment significantly altered the
expression of many apoptosis-related genes in MDA-MB-231
and MDA-MB-468 cells (7). Also, the natural compound
rosmarinic acid (8) and oleuropein (9) substantially altered the
expression of many of the apoptosis mentioned above genes
in MDA-MB-231 and MDA-MB-468 TNBC cells. 

Meanwhile, the inactivation of proapoptotic proteins or
the overexpression of antiapoptotic proteins can cause
uncontrolled cell proliferation, leading to cancer. Apoptosis
requires the activation of numerous processes, including
regulated protein-protein interactions (PPIs) (10). During
apoptosis, several proteins are released into the cytoplasm
through the intermembrane gap of the mitochondria,
activating initiator caspases to start a series of PPIs in the
caspase cascade (11). Apoptotic dysregulation is associated
with various clinical conditions, including cancer,
immunological disorders, and neurodegenerative diseases
(12). Therefore, apoptosis-regulated genes might serve as
therapeutic implication genes for TNBC.

Understanding the molecular processes underlying
carcinogenesis and tumor development requires identifying
cancer-related genes. These genes may involve processes or
pathways that enable cancer cells to evade growth regulation,
metastasis, or invasion (13). Several cancer-related genes
have been revealed in the last decade using rapidly
developing technologies, particularly high-throughput
methods like gene expression microarrays and proteomics
(14). For instance, microarray-based comparative genomic
hybridization has been used to identify both known and new
breast cancer genes (15). Transcriptome sequencing coupled
with computational methods (16) has also been used to find
genes related to colorectal cancer (17). For example, BRCA1
and BRCA2 in breast cancer (18), prostate-specific antigen
(PSA) in prostate cancer (19), WAP four-disulfide core
domain protein 2 gene (WFDC2) in ovarian cancer (20), and
BIRC5 in TNBC (21) are well-known targets for certain
cancers. These genes’ complementary biological roles offer
hints for studying the biology of cancer. However, the few
cancer target genes discovered do not behave as standalone
biological units. Integrated omics profiles provide the chance
to find more cancer genes through the advancement of
sequencing technology (22). 

Due to TNBC’s extreme heterogeneity and complexity, it
is difficult to fully comprehend the molecular processes that
drive tumor growth (23). Researchers have identified
potential risk-causing genes in the development of TNBC
tumors. An increasing number of genes are strongly

connected to TNBC progression due to advancements in
experimental methods and high-throughput sequencing
technologies (24). The absence of specific and accurate
treatment for TNBC is one of the biggest challenges in
cancer treatment. 

Understanding the underlying molecular mechanism can
help develop more effective therapies (4). The molecular
mechanisms of cancer and development have been studied
using bioinformatics analysis based on gene expression profile
data. The usage of public data is growing because of increased
availability and reliability in several cancers. Therefore, a
comprehensive understanding of the mechanisms driving
carcinogenesis is required. The public database evaluates
candidate genes by monitoring the presence of typical
oncogene somatic mutation patterns. It also determines the
biological functions of candidate genes through literature
curation. The various online tools for gene-wide screening are
crucial to understanding cancer pathophysiology. In this study,
the data collection from the integrated public databases could
support the significance of the genes. Furthermore, the Gene
Expression database’s data, PPI network screens of differential
genes, and the subset of apoptotic-regulated genes were
examined. A PPI network and co-expression integration
analysis were employed in this study to find possible risk-
causing genes in TNBC. The identified genes are essential in
the carcinogenesis and progression of TNBC. Our previous
findings confirmed the effects of specific genes that promote
the malignant progression of TNBC (7). In addition, the
chemoresistance gene “BIRC5” strongly contributes to the
poor prognosis of TNBC (21). 

Our objective was to expedite the biological networks that
characterize apoptosis-regulated genes/pathways that may be
involved in the carcinogenesis of TNBC. A thorough
examination of protein-protein interactions may make it
easier to pinpoint the pathways and genes that impact TNBC.
Significant advancement has been made in our understanding
of apoptosis on the connectivity of death pathways. 

This study offers a theoretical framework for investigating
potential TNBC treatment targets. Overall, our findings can
serve as a roadmap for investigating the biological processes
involved in the carcinogenesis of TNBC and offer different
perspectives on how TNBC might be treated in the future.

Materials and Methods

Data source and selection of genes. The apoptotic pathway’s
dysregulation or dysfunction is a contributing factor in a variety of
clinical disorders, including cancer. The apoptotic pathway-related
genes have previously undergone experimental validation and
statistical analysis in our lab (7). Based on comparing the control
and the treatment groups of our TNBC cells (MDA-MB-231 and
468), we identified 27 apoptotic-regulated genes from 88 genes. The
PCR based identified genes are AKT1, APAF1, BAD, BAX, BIK,
DAPK1, FADD, TNF, TNFRSF10A, TNFRSF10B, TNFRSF11B,
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TNFRSF21, BAG1, ACTB, TRAF2, TRAF3, BCL10, BNIP3, CASP2,
CASP3, CASP4, CASP9, DFFA, DIABLO, GADD45A, MCL1, and
TP53. Based on these genes, the gene expression profile and human
PPI network were built and examined using an integrated
bioinformatics tool.

Use of the University of Alabama at Birmingham Cancer
(UALCAN) database. UALCAN database is a portal for facilitating
tumor gene expression and survival analyses (25, 26). In this
database, we set the conditions for filtering and data mining. The
screening conditions set in this study are: “Input gene: Apoptotic
genes”, “Link for analysis: expression”, “Analysis Type: Triple-
negative breast Cancer vs. Normal”, “Cancer Type: Breast invasive
carcinoma”, “Data Type: TCGA dataset” (26). 

Use of bc- GeneExMiner v4.5 mRNA expression database (BCGM).
Breast Cancer Gene-Expression Miner v4.5 (bc-GenExMiner v4.5)
was used to explore the expression of various apoptotic-related
genes in this study. The screening conditions set in this study are:
“Analysis: expression-targeted”, “gene expression data: DNA
microarrays”, Population: TNBC(IHC) and/or Basal-like (PAM50)”.
The Breast Cancer Gene-Expression Miner v4.5 (bc-GenExMiner
v4.5 was used (27-29).

Use of TNM Plotter. The TNM plotter (https://www.tnmplot.com,
accessed on August 2, 2022) is an online tool that allows for a real-
time comparison of gene-expression changes in the tumor, normal,

and metastatic tissues across many platforms. The program
combined and examined all selected gene expressions using the
TCGA datasets. The Mann-Whitney test was employed to directly
compare tumor and normal tissues (30).

Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis. The functional
annotation bioinformatics microarray analysis tool DAVID
(https://david.ncifcrf.gov)  was used to import the DEG data. GO
analysis was used to analyze the biological processes (BP) that these
genes are mostly engaged in, and functional enrichment of DEGs
was performed. The inclusion criterion was a false discovery rate
(FDR) of less than 0.05. ConsensusPathDB, a database of molecular
functional interactions, was used mostly for the analysis of cancer-
related pathways (http://cpdb.molgen.mpg.de/). Cellular
components, molecular function, and biological process are the
three basic subcategories of Gene Ontology (GO). To provide a
thorough understanding of the biological information of the genes,
proteins, and their associated pathways, Kyoto Encyclopedia of
Genes and Genomes (KEGG) (31) pathway analyses for the DEGs
from the clusters were carried out using the functional annotation
tool called Enrichr (32, 33) (https://amp.pharm.mssm.edu/Enrichr ).
The threshold parameter for screening the KEGG enrichment
pathways was set at an adjusted p-value of <0.05. The Rich factor,
the ratio of the number of DEGs to the number of genes identified
in the related pathway, was used to rank the KEGG results.
Accordingly, the degree of enrichment increases with an increase in
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Figure 1. Expression of apoptosis-regulated genes in breast cancer (BC). (A) The overall effect of 27 apoptosis-regulated genes in invasive breast
carcinoma. Kruskall-Wallis nonparametric test is used to compare measurements across patient groups for overall analyses. (B) Differential gene
expression analysis in tumor, normal,] and metastatic tissues of the 27 apoptosis genes in breast invasive carcinoma patients according to TNMplot.



the Rich factor. All data were accessed on June 30, 2022. 
ShinyGO (v.0.61), which may be found online at
http://bioinformatics.sdstate.edu/go/ (accessed on July 17, 2022),
was used for the analysis of Enriched biological processes.

PANTHER Classification System analysis. The apoptosis-regulated
genes were then uploaded to PANTHER (Protein ANalysis THrough
Evolutionary Relationships) Classification System online to find
gene/protein networks that were over-represented within the gene
collection. The PANTHER website (http://pantherdb.org/about.jsp,
viewed on June 21, 2022) offers tools for functional analysis of
gene or protein lists. Gene lists, for example, can be graphically
evaluated using sortable functional classes and pie or bar charts or
statistically using overrepresentation or enrichment tests (34-37).

Protein-protein interaction (PPI) network construction and
subnetwork analysis. To predict functional connections of proteins,
the STRING (search tool for retrieval of interacting genes)
database was used (http://www.string-db.org/, version 9.1, accessed
on June 25/2022) (38), which combines known and predicted PPIs.
Currently, STRING includes 24.6 million proteins from 5090
different species (39). The STRING program was used to look for
potential relationships between DEGs and other tissues. The PPI
networks were built using active interaction sources such as

combined score (>0.7), text mining (score >0.7), experimentally
determined interaction (score >0), databases, co-expression, and
species limited to “Homo sapiens” and an interaction score >0.4.
For PPIs, there are often three different types of confidence scores:
Low confidence is defined as a score of 0.4, medium confidence
as a score of 0.4, and high confidence as a score of >0.7 (40). To
get more accurate results in the current investigation, we chose a
high confidence score, which allowed us to rule out PPIs with low
probability or significance. The PPI network was viewed using
Cytoscape software 3.6.1 (41). The following criteria were
employed with ClusterONE 1.0 software to find areas of the
network that were strongly connected: minimum size=5, minimum
density=0.05, and edge weights=combined score. The protein nodes
that had no connections with other proteins were deleted. Genes
functioned as nodes in the PPI network, while associated
interactions were represented by edges. The CentiScaPe plugin for
Cytoscape was used to investigate the connectivity degree of each
node, which reveals the number of contacts of the related gene.
Hub genes were designated nodes with a connectivity score of less
than 15. The Molecular Complex Detection plugin (MCODE) (43)
also performed protein complex analysis to find the important
major clusters in this extensive PPI network. The advanced options
were set to a degree cutoff of 2 and a K-Core of 2, respectively.
Protein complexes with a score of less than five were chosen as
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Table I. An overview of the means of the selected apoptosis genes in breast cancer (BC) in multiple gene analyses using RNA-seq-based data. The
Log2FC is presented compared to normal.

Gene Normal Tumor Metastasis

Log 2FC log 2FC

BAD                                           487.04                                          752.7                                1.6                                   652.29                                  2.4
ACTB                                    76,386.45                                   106,364.4                                2.1                              83,319.71                                  8.0
BAX                                           537.03                                          958.1                                1.2                                   682.29                                  2.9
BIK                                               84.25                                          305.31                              0.5                                   243.71                                  0.7
TNFRSF10A                              245.93                                          260.42                            12.1                                   234                                   –13.9
CASP2                                       920.51                                       1,446.25                              1.5                                1,575.29                                  1.3
BAG1                                      1,413.48                                       2,174.8                                1.6                                2,041.14                                  1.9
GADD45A                              1,690.98                                          535.11                            –0.6                                  1144.29                                –1.8
APAF1                                        410.15                                          482.52                              4.3                                   533.71                                  2.6
TNFRSF10B                           1,589.69                                          895.72                            –1.2                                1,202.86                                –2.5
TRAF2                                       373.84                                          714.9                                1.1                                   764.29                                  1.0
TRAF3                                       605.86                                          717.08                              4.1                                   823.86                                  2.3
CASP9                                       361.13                                          330.53                            –7.8                                   374.43                                19.2
TP53                                        1,146.36                                       1,897.55                              1.4                                1,249.86                                  8.0
AKT1                                      2,348.07                                       4,075.02                              1.3                                5,416.57                                  0.8
BCL10                                        394.59                                          529.7                                2.4                                   508.57                                  2.7
MCL1                                    11,462.45                                     10,282.95                            –6.4                              11,789.71                                24.6
TNFRSF21                              1,181.58                                         1158.6                            –35.3                                   661.29                                –1.2
DFFA                                          922.3                                         1,133.25                              3.4                                1,223.71                                  2.5
CASP3                                       468.29                                          924.08                              1.0                                   885.71                                  1.1
TNFRSF11B                                97.19                                          175.56                              1.2                                     93.57                              –18.3
FADD                                         105.25                                          341.86                              0.6                                   561.14                                  0.4
BNIP3                                        991.57                                       1,089.79                              7.3                                1,476.57                                  1.7
DIABLO                                    266.3                                            230.76                            –4.8                                   214.43                                –3.2
DAPK1                                       622.64                                          616.34                          –68.2                                   837.29                                  2.3
CASP4                                    1,066.21                                          834.33                            –2.8                                1,019.86                              –15.6
TNF                                              24.56                                            59.89                              0.8                                     59.43                                  0.8



important sub-networks. Additionally, we used the STRING
database to perform co-expression analysis on every cluster gene
in order to determine which clusters may be co-regulated with
other clusters. The results of the co-expression study were then
combined to form clusters to determine which clusters are linked
to other clusters by co-expression genes. This might be useful for
comprehending and forecasting the network analysis clusters that
are co-regulated by co-expression genes. The DEGs in all clusters
were then analyzed for BP and KEGG pathway enrichment using
the Enrichr program (42).

Network analysis. GeneMANIA (www.genemania.org, accessed on
August 4, 2022), an online analysis tool that provides protein and
genetic co-expression, co-localization, interactions, pathways, and
shared protein domains of submitted genes, was used to perform a
gene-gene interaction network for selected apoptosis regulated
genes (43).

Verification of genes. OS analyses were performed based on 
the expression and clinical data from KM Plotter
(http://www.kmplot.com) (accessed on September 1, 2022) to verify
the therapeutic implication of hub genes and their significant genes.
KM Plotter used Cox proportional hazards regression were used to
perform survival analysis for each gene, and the Benjamini-
Hochberg method was used to correct for multiple hypothesis
testing (44, 45). We divided the patients into high and low-
expression groups according to their average expression value of
hub genes, and FDR corrected the p-value of the survival analysis
results. The log-rank p-values <0.05 were statistically significant.

Statistical analysis. The TNM plotter web analytic tool was used to
analyze tumor and normal-tissue gene expression statistically.
Kruskall-Wallis nonparametric test was used to compare
measurements across patient groups for overall analyses. The Mann-
Whitney U-test was used to compare the normal and tumor samples.
The Kaplan-Meier plotter web analytic tool was also used to
generate Kaplan-Meier survival plots with the number of people at
risk, hazard ratio (HR), 95 percent confidence intervals (CI), and
log-rank p-values. The GO-based overrepresentation of a gene list
(the analyzed list) compared to a reference homo sapiens gene list
was examined using the PANTHER website. After entering the lists,
we selected the Fisher’s Exact Test with FDR correction. The FDR
is a better correction to apply for this kind of study, especially given
the high degree of class overlap. The p-value was set to <0.05 to
imply that there was a statistically significant difference in overall
survival between the high-expression and low-expression groups.

Results

The expression of apoptosis-regulated genes in BC. We first
used TNMplot to examine the gene expression profile in
normal and tumor in invasive breast carcinoma. The Gene
Signature Analysis uses data from RNA-Seq to determine the
means of the selected gene signature across each patient
individually and produce a summary plot, as shown in Figure
1A. Compared to normal breast tissue, we found that the
combined effect of all the selected gene signature
expressions is significantly elevated in the tumor (Kruskall-
wallis p<0.0001). We also provide a real-time comparison of

changes in gene expression across all 27 genes in the tumor,
normal, and metastatic tissues. Figure 1B and Table I show
a typical boxplot of the result. When compared to normal,
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Figure 2. The apoptosis-regulated genes in tumor and normal breast
tissue using UALCAN heatmap expression. (A) The difference in
expression between the invasive breast tumor and normal breast tissue.
(B) the differences in expression between tumor and normal breast
tissue in TNBC. 



the expression of the genes TNFRSF10A and TNFRSF11B
is up-regulated in the tumor but down-regulated in
metastasis, with log2FC values of 12.1 and -13.9, 1.2, and -
18.3, respectively. With log2FC values of -7.8 and 19.2, -
68.2 and 2.3, -6.4 and 24.6, respectively, CASP9, DAPK1,
and MCL1 gene expression are up-regulated in metastasis
but down-regulated in the primary tumor. Even when the
value of gene expression varies between tumor and
metastasis, GADD45A, CASP4, DIABLO, TNFRSF10B,
and TNFRSF21 are down-regulated compared to normal
tissue (Table I).

The expression of the apoptosis-regulated genes in the BC
and TNBC. We then analyzed and used the UALCAN
database to investigate the level of apoptosis-related gene
expression in normal breast tissue, TNBC, and invasive
breast carcinoma. After inserting our list of genes into the
database, the expression of apoptotic genes in normal breast
tissue, invasive breast carcinoma, and TNBC is depicted in
Figure 2. BIK, BAX, BAG1, TRAF2, TRAF3, CASP2,
CASP3, AKT1, FADD, and DIABLO are all increased in the
tumor compared to normal breast tissue, but TNFRSF10A,
TNFRSF11B, BCL10, BNIP3, MCL1, CASP9, and APAF1

have not demonstrated a significant difference between
tumor and normal breast tissue. At the same time, the rest of
the genes were down-regulated in the tumor (Figure 2A and
Table II). The heatmap expression shows that TNF,
TNFRSF21, BAD, BIK, BAX, TRAF2, CASP2, CASP3,
AKT1, FADD, and DIABLO are all up-regulated in TNBC
compared to normal breast tissue. At the same time,
TNFRSF10A, TNFRSF10B, TNFRSF11B, BCL10, BNIP3,
MCL1, APAF1, and DFFA have no significant differences
between normal and TNBC, and the rest of the genes are
down-regulated in TNBC (Figure 2B, Table II). The levels
of apoptosis-related gene expression in invasive breast
carcinoma and TNBC were compared for observation. When
we examined the expression between the normal breast tissue
in TNBC and BRCA as well as in the tumor, there was a
noticeable difference in gene expression, even though the
expression levels in the tumor and normal breast tissue were
indistinguishable.

Individual apoptosis gene expression profile for TNBC
patients based on the UALCAN database. In our findings,
according to the UALCAN repository database, TNBC
patients have higher TNF mRNA expression than normal
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Table II. The p-value of each gene expression compared to normal breast tissue expression. The p-value is directly extracted from the UALCAN
database without the need for additional statistical analysis.

Tumor compared to normal TNBC compared to normal

Gene p-Value Expression p-Value Expression

TNF 1.18×10–3 DOWN 0.0181 DOWN
TNFRSF10A 0.233 ns 0.233 ns
TNFRSF10B 8.48×10–5 DOWN 8.48×10–5 DOWN
TNFRSF11B 0.920 ns 0.920 ns
TNFRSF21 1.63×10–12 DOWN 1.63×10–12 DOWN
BAD <1×10–12 UP <1×10–12 UP
BIK 1.62×10–12 UP 1.62×10–12 UP
BAX 1.62×10–12 UP 1.62×10–12 UP
BAG1 <1×10–12 UP <1×10–12 UP
BCL10 0.0963 ns 0.0963 ns
BNIP3 0.114 ns 0.114 ns
MCL1 5.17×10–12 DOWN 5.17×10–12 DOWN
TRAF2 <1×10–12 UP <1×10–12 UP
TRAF3 1.16×10–4 UP 1.16×10–4 UP
DAPK1 6.40×10–3 DOWN 6.40×10–3 DOWN
CASP2 1.62×10–12 UP 1.62×10–12 UP
CASP3 <1×10–12 UP <1×10–12 UP
CASP4 1.62×10–12 DOWN 1.62×10–12 DOWN
CASP9 0.870 ns 0.870 ns
AKT1 <1×10–12 UP <1×10–12 UP
APAF1 0.625 ns 0.625 ns
FADD 1.62×10–12 UP 1.62×10–12 UP
DFFA 3.02×10–3 DOWN 3.02×10–3 DOWN
GADD45A 1.60×10–4 DOWN 1.60×10–4 DOWN
DIABLO 1.62×10–12 UP 1.62×10–12 UP



breast tissue (NBT), with average transcripts of 3.3 vs. 1.64,
respectively (Figure 3A). Even though there is no statistical
difference between TNBC and the NBT, TNBC patients have
lower TNFRSF10A mRNA expression, with average
transcripts of 5.6 vs. 7.0, respectively (p>0.05, Figure 3B).

TNBC has lower expression compared to NBT, with average
transcripts of 18.71 vs. 21.30 for TNFRSF10B (p>0.05, Figure
3C) and 1.48 vs. 4.2 (p<0.5) for TNFSRF11B (Figure 3D), but
a higher expression for TNFSRF21 (38.9 vs. 38.2, p<0.05,
Figure 3E) as well as lower BAG1 expression (p<0.05, Figure
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Figure 3. Apoptosis gene expression profile based on the UALCAN
databases. The difference between normal breast tissue (NBT) and TNBC
is shown as *p<0.05, **p<0.01, ***p<0.001, and ns: nonsignificant.



3F). Although there is no statistical difference between TNBC
and NBT, TNBC patients have higher expression of BCL10
(13.0 vs.12.3, Figure 3G) and lower mRNA expression of

BNIP3 (44.7 vs. 55.0, Figure 3H) and MCL1 (205.5 vs. 269.5,
Figure 3I). TNBC patients have significantly higher mRNA
expression of BIK (10.13 vs. 8.86, p<0.001, Figure 3J), BAX

CANCER GENOMICS & PROTEOMICS 20: 247-272 (2023)

254

Figure 4. Apoptosis gene expression profile based on the bc- GeneExMiner v4.5 mRNA expression (BCGM) databases. The difference between
normal breast tissue (NBT) and TNBC is shown as ****p<0.0001, ns: nonsignificant. The values are expressed as mean±standard deviation.



(89.99 vs. 39.5, p<0.01, Figure 3K), BAD (64.4 vs. 57.1,
p<0.01, Figure 3L), and lower DFFA expression (18.4 vs.
19.0, Figure 3M) compared to NBT. TNBC patients have
considerably higher mRNA expression of DAPK1 (12.5 vs.
7.1, Figure 3N), FADD (31.0 vs. 2.01, Figure 3O), and
DIABLO (35.4 vs. 29, Figure 3P). TNBC patients have
significantly higher CASP2 (p<0.0001, Figure 3Q) and CASP3
mRNA expression (27.78 vs. 18.62, Figure 3R) but lower
CASP4 (48.2 vs. 63.8, Figure 3S) and CASP9 (13.6 vs. 9.8,
Figure 3T) mRNA expression compared to NBT. TARF2 (21.2
vs. 9.8, Figure 3U), TRAF3 (9.1 vs. 7.5, Figure 3V), TP53
(74.8 vs. 67.3, Figure 3W), and ACTB (p<0.05, Figure 3X) are
higher mRNA expression compared to NBT. TNBC patients
had significantly lower GADD45A (28.1 vs. 35.3, Figure 3Y),
higher APAF1 (108.3 vs. 105.9, p<0.0001, Figure 3Z), and no
difference in AKT1 (108.3 vs. 105.9, p>0.05, Figure 3AA)
mRNA expression compared to NBT.

Individual apoptosis gene expression profile for TNBC
patients based on BCGM databases. In our findings, TNBC
patients have higher TNF (0.3094 vs. -0.0491, Figure 4A),
TNSRSF10A (Figure 4B), TNSRSF10B (0.1397 vs. -0.0777,
p<0.05) (Figure 4C), nearly equal TNFRSF11B expression
(0.1740 vs. 0.1525, p>0.05, Figure 4D), and higher
TNFRSF21 (0.6860 vs. -0.1520, p<0.05, Figure 4E) mRNA
expression compared to non-TNBC patients. TNBC patients
have lower BAG1 expression than non-TNBC patients,
which is consistent with UALCAN data (p<0.0001, Figure
4F). TNBC has higher BCL10 (-0.0179 vs. -0.0580, Figure
4G), BNIP3 (0.2424 vs. 0.160, Figure 4H), MCL1 (0.2034
vs. -0.0496, Figure 4I in contrast to the UALCAN database),
lower BIK expression (-0.6572 vs. 0.0107, p<0.0001, Figure
4J, contradicted with UALCAN data), higher BAX
expression (p<0.0001, Figure 4K) and lower BAD
expression (p<0.0001, Figure 4L contradicts UALCAN data)
compared to non-TNBC patients. TNBC patients have higher
DFFA expression (0.4543 vs. -0.0523, Figure 4M, contradicts
UALCAN data), higher DAPK1 expression (0.7553 vs. -
0.0562, Figure 4N, similar to UALCAN), lower FADD
expression (-0.3725 vs. -0.0511, Figure 4O, contradicts
UALCAN data) and lower DIABLO expression (-0.0892 vs.
0.0504, Figure 4P, contradicts UALCAN data) compared to
non-TNBC patients. TNBC patients have higher mRNA
CASP2 expression (p<0.0001, Figure 4Q), CASP3 (0.2315
vs. -0.0471, Figure 4R), and CASP4 (0.1313 vs. -0.0902,
Figure 4S), but lower CASP9 (-0.2539 vs. 0.0368, Figure 4T)
mRNA expressions compared to non-TNBC patients. TNBC
patients had higher TRAF2 expression (0.1958 vs. -0.0242,
Figure 4U, similar to UALCAN), higher TRAF3 expression
(0.2767 vs. -0.0605, Figure 4V), no significant change in
TP53 expression ( -0.0297 vs. -0.0569, Figure 4W), lower
ACTB expression (p<0.0001, Figure 4X, consistent with
UALCAN data), no significant difference in GADD45A

expression (-0.0068 vs. -0.0176, Figure 4Y, in contrast to
UALCAN), comparable APAF1 expression (contrary to
UALCAN findings, Figure 4Z), and lower AKT1 expression
(0.3564 vs. 0.0723, Figure 4AA, in contrast to UALCAN)
compared to non-TNBC patients.

When the expression of the investigated apoptosis-related
genes was compared across the UALCAN, and BCGM
online data sets, BNIP3, TNFRSF10A, TNFRSF10B, MCL1,
CASP4, and DFFA were up-regulated in BCGM and down-
regulated or non-significantly changed on UALCAN. At the
same time, BIK, AKT1, BAD, FADD, DIABLO, and CASP9
were down-regulated in BCGM and up-regulated in
UALCAN databases. These differences may demonstrate the
heterogeneity of TNBC and other factors, which need further
research. Table III summarizes the expression of apoptotic
genes between online data sources.

Functional enrichment analyses. Gene ontology (GO) was
used to find distinctive biological characteristics in the RNA-
seq raw data. Utilizing Enrichr, a separate Gene Ontology
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Table III. Comparable apoptosis gene expression of TNBC and non-
TNBC patients from two online databases. The p-values for each
database shown in the table are compared with normal breast tissue.
The p-value is directly extracted from the UALCAN and BCGM
databases without the need for additional statistical analysis.

Gene UALCAN BCGM

TRAF2 UR (p=1.1×10–16) UR (p<0.0001)
CASP3 UR (p=1.6×10–12) UR (p<0.0001)
BAG1 DR (p=1.1×10–02) DR (p<0.0001)
TRAF3 UR (p=1.6×10–05) UR (p<0.0001)
ACTB UR (p<1.0×10–12) UR (p<0.0001)
BCL10 NS (p=8.1×10–02) EQ (p=0.2253)
BNIP3 NS (p=8.7×10–01) UR (p<0.0001)
CASP9 UR (p=4.6×10–06) DR (p<0.0001)
TP53 UR (p=1.6×10–02) EQ (p=0.5176)
TNFRSF10A NS (p=4.9×10–01) UR (p<0.0001)
DIABLO UR (p=2.8×10–11) DR (p<0.0001)
MCL1 DR (p=3.9×10–03) UR (p<0.0001)
CASP4 DR (p=6.2×10–05) UR (p<0.0001)
DFFA NS (p=9.4×10–02) UR (p<0.0001)
GADD45A UR (p=3.6×10–03) EQ (p=0.4955)
FADD UR (p=1.7×10–08) DR (p<0.0001)
TNF UR (p=2.2×10–07) UR (p<0.0001)
BAD UR (p=1.8×10–03) DR (p<0.0001)
TNFRSF10B NS (p=6.2×10–01) UR (p<0.0001)
BAX UR (p<1.0×10–12) UR (p<0.0001)
DAPK1 UR (p=7.2×10–10) UR (p<0.0001)
APAF1 NS (p=1.8×10–01) EQ (p=0.9935)
AKT1 UR (p=8.8×10–07) DR (p<0.0001)
TNFRSF21 UR (p=3.5×10–02) UR (p<0.0001)
TNFRSF11B NS (p=1.7×10–01) EQ (p=0.6357)
BIK UR (p=7.4×10–04) DR (p<0.0001)
CASP2 UR (p<1.0×10–12) UR (p<0.0001)

DR: Down-regulated; NS: non-significant; UP: up-regulated.



Enrichment Analysis tool was conducted. These significantly
enhanced terms could help us understand DEGs’ function in
TNBC. Based on the GO term enrichment analysis results,
they were divided into functional categories for biological
process (BP), molecular function (MF), cellular component,
and protein class. Cellular process (GO:0009987), which has
about 21 apoptosis-regulated genes, is the top category in the
BP, followed by biological regulation (GO:0065007), which
has 20 genes. Biological adhesion (GO:0022610) and
signaling (GO:0023052), on the other hand, was the lowest
categories in terms of the number of apoptosis-regulated
genes involved in the process (Figure 5A). With eight
apoptosis-regulated genes respectively, binding
(GO:0005488) and catalytic activity (GO:0003824) are the
most significant categories in the molecular function; by
contrast, molecular transducer activity (GO:0060089) was
the lowest, with only one gene in the function (Figure 5B).

Only two categories in cellular components were identified:
cellular, anatomical entity (GO:0110165), and protein-
containing complex (GO:0032991), which have 19 and 4
apoptosis-regulated genes, respectively (Figure 5C). In the
PANTHER protein class, the protein modifying enzyme
(PC00260), which has six apoptosis-regulated genes, is the
next highest category, followed by transmembrane signal
receptor (PC00197), which has four apoptosis-regulated
genes (Figure 5D).

The overlapping DEGs were subjected to GO enrichment
analyses. Transcription regulator activity, molecular transducer
activity, binding, molecular function regulator, catalytic
activity, and transporter activity were all highly enriched in
the DEGs according to molecular function classification. The
11 biological processes that these DEGs were involved in are
shown in Table IV, where biological adhesion, biological
regulation, cellular process, developmental process, immune
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Figure 5. Gene ontology (GO) analysis. (A) Biological process, (B) molecular function, (C) cellular components, and (D) protein class. The color
of the bar graph represents the specific cellular activities, while the height represents the number of genes associated with each process. 
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Table IV. GO analysis of the apoptosis-related genes associated with the respective functional categories. 

Category name (Accession): # Genes % of gene hit against % of gene hit against Name of genes
   total # genes total # Function hits

Molecular function
   Transcription regulator 2 7.10% 8.30% BCL10 and TP53
   activity (GO:0140110)
   Molecular transducer 1 3.60% 4.20% TNF
   activity (GO:0060089)
   Binding (GO:0005488) 8 28.60% 33.30% BAX, BCL10, MCL1, TRAF2, 
   ACTB, TP53, BAG1 and TNF
   Molecular function regulator 3 10.70% 12.50% BCL10L BAG1 and TNF
   (GO:0098772)
   Catalytic activity (GO:0003824) 8 28.60% 33.30% BCL10, CASP2, CASP4, TRAF2, 
   CASP9, DAPK1, CASP3, and AKT1
   Transporter activity (GO:0005215) 2 7.10% 8.30% BAX and MCL1
Biological process
   Cellular process (GO:0009987) 21 75.00% 23.30% TRAF3, TNFRSF10A, BAX, 
   DIABLO, BCL10, CASP2, GADD45A, 
   TNFRSF21, TNFRSF10B, CASP4, MCL1, 
   DFFA, TRAF2, CASP9, DAPK1, CASP3, 
   ACTB, AKT1, BNIP3, TP53, and TNF.
   Localization (GO:0051179) 2 7.10% 2.20% ACTB and BNIP3
   Biological regulation 20 71.40% 22.20% TRAF3, TNFRSF10A, BAX, DIABLO, 
   (GO:0065007) BCL10, CASP2, GADD45A, TNFRSF21, 
   TNFRSF10B, MCL1, DFFA, TRAF2, 
   CASP9, DAPK1, CASP3, AKT1, 
   BNIP3, Tp53, BAG1, and TNF
   Response to stimulus 14 50.00% 15.60% TRAF3, TNFRSF10A, BAX, DIABLO, 
   (GO:0050896) BCL10, TNFRSF21, TNFRSF10B, 
   MCL1, TRAF2, CASP9, DAPK1, 
   AKT1, BNIP3, and TNF.
   Signaling (GO:0023052) 13 46.40% 14.40% TRAF3, TNFRSF10A, BAX, DIABLO, 
   BCL10, TNFRSF10B, MCL1, 
   TRAF2, CASP9, DAPK1, AKT1, 
   BNIP3, and TNF.
   Developmental process 3 10.70% 3.30% TNFRSF21, CASP3, and ACTB
   (GO:0032502)
   Multicellular organismal 3 10.70% 3.30% TNFRSF21, CASP3 and ACTB
   process (GO:0032501)
   Biological adhesion (GO:0022610) 1 3.60% 1.10% TNFRSF21
   Locomotion (GO:0040011) 1 3.60% 1.10% ACTB
   Metabolic process (GO:0008152) 9 32.10% 10.00% TRAF33, DIABLO, BCL10, CASP2, 
   TRAF2, CASP9, AKT1, TP53 and TNF
   Immune system process 3 10.70% 3.30% BCL10, TNFRSF21 and CASP3
   (GO:0002376)
Protein class
   Transmembrane signal 4 14.30% 25.00% TNFRSF10A, TNFRSF21, 
   receptor (PC00197) TNFRSF10B and TNFRSF11B
   Intercellular signal molecule 1 3.60% 6.30% TNF
   (PC00207)
   Gene-specific transcriptional 1 3.60% 6.30% TP53
   regulator (PC00264)
   Cytoskeletal protein (PC00085) 1 3.60% 6.30% ACTB
   Chaperone (PC00072) 1 3.60% 6.30% BAG1
   Protein modifying enzyme 6 21.40% 37.50% CASP2, CASP4, CASP9, 
   (PC00260) DAPK1, CASP3 and AKT1
Cellular component
   Cellular anatomical entity 19 67.90% 82.60% TRAF3, TNFRSF10A, BAX, DIABLO, 
   (GO:0110165) BCL10, CASP2, GADD45A, TNFRSF21,
   TNFRSF10B, CASP4, MCL1, TRAF2, 
   CASP9, DAPK1, CASP3, ACTB, 
   BNIP3, BAG1, and TNF.
   Protein-containing complex 4 14.30% 17.40% TRAF3, BCL10, TRAF2 and ACTB
   (GO:0032991)
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system process, localization, locomotion, metabolic process,
multicellular organismal process, response to stimulus, and
signaling are all intimately related to the development of
cancer. GO analysis revealed that transmembrane signal
receptors, intracellular signal molecules, gene-specific
transcriptional regulators, cytoskeletal protein, chaperon, and
protein modifying enzymes were notably enriched in protein
class. According to the results of the GO analysis, cellular,
anatomical entities, and protein-containing complexes were
primarily abundant in cellular components (Table IV).

PANTHER pathway analysis. After characterizing the GO
analysis, we examined the apoptosis-related genes that
contribute to the relevant cellular pathways. We identified 29
pathways using the PANTHER pathway data analysis,
including the p53 pathway, angiogenesis, apoptosis signaling
pathway, and the Alzheimer’s disease presenilin pathway. As
predicted, the apoptosis signaling pathway (p<0.0001) is one
of these pathways, involving 15 genes, followed by the p53
pathway (p<0.001) comprising eight genes. Only one gene is
involved in each of the 17 pathways, which include the EGF
receptor, cadherin, and Alzheimer’s disease presenilin
pathway (Figure 6). AKT1 is the most frequent gene involved
in 17 various pathways, followed by CASP9 and ACTB, each
of them involved in 7 different pathways (Table V).

Gene Ontology enrichment analysis. Based on the data, we
also conducted a ShinyGO Gene Ontology enrichment
analysis employing differentially expressed genes and
proteins. Figure 7 provides hierarchal clustering depictions
of richer biological processes (A), molecular function (B),
and cellular components (C). We found the enrichment of 10
identical biological processes involved in the apoptosis
pathways, indicating that similar cellular mechanisms were
activated. Regulation of programmed cell death, regulation
of the apoptotic process, post-translational regulation of
programmed cell death, post-translational apoptotic process,
and apoptotic signaling pathway are the most important
biological processes, indicated by bigger dots. Cysteine-type
endopeptidase activity is involved in the execution phase of
apoptosis and apoptotic signaling pathway, and tumor
necrosis factor receptor superfamily binding is the most
enriched in the molecular function. CD40 receptor complex,
Bcl-2 family protein complex, and death-inducing signaling
complex are the most significantly enhanced cellular
components. The extrinsic apoptosis pathway participates in
the biological process along with BAD, BAX, TNFRSF10A,
CASP2, TNFRSF10B, TRAF2, CASP9, AKT1, BCL10,
MCL1, CASP3, FADD, and DIABLO, whereas the intrinsic
apoptosis pathway is composed of BAD, BAX, CASP2,
APAF1, TNFRSF10B, TRAF2, CASP9, TP53, AKT1, MCL1,

Figure 6. PANTHER pathway analysis. The height of the bar indicates the number of genes on the corresponding pathways. Colors indicate the
specific pathways. After inserting 27 genes, we found 29 various pathways which directly or indirectly contributed to apoptosis. 



CASP3, BNIP3, DIABLO, and CASP4. The regulation of
programmed cell death has the least fold enrichment (11.53).
In contrast, cellular response to mechanical stimulus has the
highest fold enrichment (94.98) and is followed by activation
of cysteine-type endopeptidase activity involved in the
apoptotic process (84.43). In contrast, only nine genes
regulated the cellular response to mechanical stimuli,
whereas 23 genes regulated apoptosis and programmed cell
death, respectively (Table VI).

Protein-protein interaction (PPI) network construction. Next,
we performed a PPI on these apoptosis-regulated genes,
which is essential in providing insight into how proteins
work and facilitated the ability to model functional pathways
and reveal the biological processes’ molecular mechanisms.
To construct a PPI network, we used Cystoscope and
STRING. Each edge is given a score to serve as the edge
weight, which is used to compute the interaction confidence
in the network. This rating reflects the assessed likelihood
that a specific interaction has biological significance. PPIs
with a confidence score greater than 0.7 were chosen to

guarantee the quality of interactions and reduce false-positive
outcomes. In the STRING database, the PPI data for DEGs
in the TNBC cell line indicated 27 nodes and 188 edges
(Figure 8A). The 27 apoptosis-regulated genes were
clustered into 5 different groups, of which cluster 1 is
comprised of five proteins (BCL10, TRAF2, TRAF3, and
TNF), whereas cluster 2 is formed by the combination of
seven proteins (AKT1, BAX, BAG1, DAPK1, GADD45A,
MCL1, and TP53) (Figure 8B). The protein interactions with
the highest combined scores (>0.9995) in the analysis of
protein connectivity were APAF1 with CASP9 and CASP3,
FADD with TNF, TNFRSF11B, and TNFRSF10A, TNF with
TRAF2, and BAX with MCL1 (Table VI).

When we examined the PP1s between the genes that
regulate apoptosis, AKT1 interacts with CASP3, TP53, TNF,
and CASP9 with automated text mining scores of 0.882, 0.877,
0.826, and 0.814, respectively. APAF1 forms an interaction
with CASP9, CASP3, BAX, MCL1, and CASP2, with
automated textmining scores of 0.995, 0.909, 0.749, 0.721, and
0.715, respectively. TRAF2, BIK, and DAPK1 only interact
with TRAF3, MCL1, and TP53, scoring 0.978, 0.82, and 0.919
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Table V. Apoptosis genes involved in various signaling pathways in the PANTHER pathway analysis.

Pathway Genes

Genes involved in Alzheimer’s disease ACTB
Angiogenesis CASP9 and AKT1
Apoptosis signaling pathway TNFRSF10A, BAX, DIABLO, TNFRSF10B, MCL1, TRAF2,

CASP9, FADD, BIK, CASP3, AKT1, TP53, BAG1, APAF1 and TNF.
CCKR BAX, MCL1, BAD, CASP3 and AKT1
Cadherin signaling pathway ACTB
Cytoskeletal regulation by Rho GTPase ACTB
EGF receptor signaling pathway AKT1
Endothelin signaling pathway AKT1
FAS signaling pathway CASP9, FADD, CASP3, AKT1 and APAF
FGF signaling pathway AKT1
Gonadotrophin-releasing hormone receptor pathway AKT1
Huntington disease BAX, CASP3, ACTB, AKT1, TP53 and APAF1
Hypoxia response via HIF activation AKT1
Inflammation mediated by chemokine and cytokine ACTB and AKT1
Insulin/IGF pathway-protein kinase B signaling AKT1
Integrin signaling pathway ACTB
Interleukin signaling pathway AKT1
Nicotinic acetylcholine receptor signaling pathway ACTB
P53 pathway feedback loops TP53
PI3 kinase pathway GADD45A, CASP9 and AKT1

Ras pathway AKT1
T cell activation AKT1
Toll receptor signaling pathway TRAF2
VEGF signaling pathway CASP9 and AKT1
Wnt signaling pathway ACTB, TP53 and TNF
P38 MAPK pathway GADD45A
P53 pathway by glucose deprivation AKT1 and TP53
P53 pathway feed loop 2 AKT1 and TP53
P53 pathway TNFSRF10A, BAX, GADD45A, TNFRSF10B, AKT1, TP53 and APAF1



in automatic textmining tests. Both CASP3 and CASP9 interact
with FADD, MCL1, TNF, TNFRSRF10A, and TNFRSF10.
Additionally, CASP3 significantly forms PPIs with CASP9,
DFFA, and TP53, while CASP9 with DIABLO. Table VII
demonstrates the top high score protein-protein interactions.

Functional analysis of the protein network. The
GeneMANIA database was used to construct the gene-gene
interaction (GGI) network of the genes that regulate
apoptosis (Figure 9). A total of 27 genes were inputted, and
20 related genes were enriched in this network based on
shared protein domains, predicted, co-localization, physical
interactions, co-expression, pathways, and genetic
interactions. Physical interaction accounted for around
35.50% of gene-gene interactions, followed by predicted
(16.69%) and pathways (14.56%).

Transcription factor PPI analysis. From the results of the
transcription factor, PPI analysis shows the number of
apoptosis-regulated genes interacting with the transcription

factors in Table VIII. In the top 10 transcription factors, the
androgen receptor (AR), a nuclear hormone receptor
transcription factor, interacts with five apoptosis-regulated
genes (p<0.0001; q<0.01), followed by Retinoic Acid
Receptor Alpha (RARA) (p<0.0001; q<0.01) and ring finger
protein (RNF2) (p<0.0001; q<0.01), each of which interacts
with four apoptosis-regulated genes. The most interactive
apoptotic-regulated gene, TP53, interacts with seven
transcription factors (AR, RNF2, NR4A1, ATF3, TFAP2A,
STAT1, and SREBF2), followed by AKT1, which interacts
with five (AR, RARA, IRF3, NR4A1, and STAT1), and
CASP3, interacts with four (AR, RNF2, TFAP2A, and
SREBF2) transcription factors (Table VIII).

Survival analysis verification of key genes. To verify the
therapeutic implications of 27 hub genes, KM Plotter was
applied to 278 TNBC patients for OS analysis. Among the
27 pivot genes, the survival rate of CASP2, CASP3, DAPK1,
TNF, TARF2, and TRAF3 in the OS analysis was
significantly different between the high and low expression
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Figure 7. Enriched biological processes, molecular function, and cellular components. Following analysis of the gene array data, significantly
enhanced processes are displayed as an interactive hierarchical clustering tree with ShinyGO. (A) Biological processes, (B) molecular function,
and (C) cellular components that share a lot of genes tend to group. Larger dots indicate more significant p-values. Following examination of the
genes, enriched processes that were similar were highlighted and marked.



groups (p<0.05, Figure 10A-F). OS in months of TNBC
patients having increased expression of these six important
genes are 85.2, 97.48, 95.08, 98.14, 85.2, and 98.14 for

CASP2, DAPK1, TRAF2, TNF, CASP3 and TRAF3
respectively with their corresponding low expression of 44.4,
37.64, 48, 47.51, 0.77 and 44.4 months, respectively. 
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Table VI. The different pathways in the biological processes. False discovery rate (FDR) expresses the enrichment, and the number and names of
each gene involved in each pathway are displayed.

Enrichment Number of genes Pathway Fold Pathway Genes
FDR genes enrichment

2.27×10–14 9 80 94.98333 Cellular response to BAD, TNFRSF10A, CASP2, GADD45A, 
mechanical stimulus TNFRSF10B, AKT1, BCL10, FADD, and BNIP3

1.65×10–15 10 100 84.42963 Activation of cysteine-type BAD, BAX, TNFRSF10A, CASP2, APAF1, 
endopeptidase activity TNFRSF10B, TRAF2, CASP9, FADD, 

involved in apoptotic proc. and DIABLO
2.08×10–17 12 154 65.78932 Pos. reg. of cysteine-type BAD, BAX, TNFRSF10A, CASP2, APAF1, 

endopeptidase activity TNFRSF10B, TRAF2, CASP9, BCL10, 
involved in apoptotic proc. FADD, DIABLO, and DAPK1

4.75×10–16 12 206 49.18231 Pos. reg. of  BAD, BAX, TNFRSF10A, CASP2, 
endopeptidase activity APAF1, TNFRSF10B, TRAF2, CASP9, 

BCL10, FADD, DIABLO, and DAPK1
3.77×10–17 13 235 46.70575 Reg. of cysteine-type BAD, BAX, TNFRSF10A, CASP2, APAF1, 

endopeptidase activity TNFRSF10B, TRAF2, CASP9, AKT1, 
involved in apoptotic proc. BCL10, FADD, DIABLO, and DAPK1

5.94×10–17 13 245 44.7994 Extrinsic apoptotic  BAD, BAX, TNFRSF10A, CASP2, 
signaling pathway TNFRSF10B, TRAF2, CASP9, AKT1, BCL10, 

MCL1, CASP3, FADD, and DIABLO
2.08×10–17 14 308 38.3771 Intrinsic apoptotic  BAD, BAX, CASP2, APAF1, TNFRSF10B, 

signaling pathway TRAF2, CASP9, TP53, AKT1, MCL1, 
CASP3, BNIP3, DIABLO, and CASP4

3.89×10–15 13 350 31.35958 Cellular response  BAD, BAX, TNFRSF10A, CASP2, 
to abiotic stimulus GADD45A, TNFRSF10B, CASP9, TP53, 

AKT1, BCL10, CASP3, FADD, and BNIP3
1.90×10–14 13 397 27.64698 Neuron death BAD, BAX, CASP2, TRAF2, CASP9, TP53, 

AKT1, MCL1, TNFRSF21, CASP3, FADD, 
BNIP3, and DIABLO

4.59×10–21 19 625 25.66661 Pos. reg. of  BAD, BAX, TNFRSF10A, CASP2, 
apoptotic proc. GADD45A, APAF1, TNFRSF10B, TRAF2, 

CASP9, TP53, AKT1, BCL10, MCL1, DFFA, 
CASP3, FADD, BNIP3, DIABLO, and DAPK1

4.59×10–21 19 640 25.06505 Pos. reg. of  BAD, BAX, TNFRSF10A, CASP2, 
programmed GADD45A, APAF1, TNFRSF10B, 

cell death TRAF2, CASP9, TP53, AKT1, BCL10, 
MCL1, DFFA, CASP3, FADD, BNIP3, 

DIABLO, and DAPK1
4.75×10–21 19 655 24.49104 Apoptotic signaling BAD, BAX, BIK, TNFRSF10A, CASP2, 

pathway APAF1, TNFRSF10B, TRAF2, CASP9, 
TP53, AKT1, BCL10, MCL1, CASP3, FADD, 

BNIP3, DIABLO, DAPK1, and CASP4
2.33×10–20 23 1639 11.84797 Reg. of apoptotic  BAD, BAX, BIK, TNFRSF10A, CASP2, 

proc. BAG1, GADD45A, APAF1, TNFRSF10B, 
TRAF2, TRAF3, CASP9, TP53, AKT1, BCL10, 

MCL1, DFFA, CASP3, FADD, BNIP3, 
DIABLO, DAPK1, and CASP4

3.61×10–20 23 1684 11.53136 Reg. of BAD, BAX, BIK, TNFRSF10A, CASP2, 
programmed BAG1, GADD45A, APAF1, TNFRSF10B, 

cell death TRAF2, TRAF3, CASP9, TP53, AKT1, BCL10, 
MCL1, DFFA, CASP3, FADD, BNIP3, 

DIABLO, DAPK1, and CASP4

Reg.: Regulation; Pos.: positive; proc.: process.



Protein expression for validation of key genes in breast
carcinoma. We examined immunohistochemistry images of
human normal and BC tissues stained with antibodies against
the TRAF2, TRAF3, DAPK1, CASP2, CAPS3, and TNF
protein from the Human Protein Atlas
(https://www.proteinatlas.org/, accessed on December 12,
2022), to validate the gene-expression data. In contrast to BC
tissues, which had a mixed response of “no detected” or
“low” staining with “negative or low” intensities, all normal
tissues were reported to have “moderate, medium, or strong”
staining with “strong or moderate” intensities (Figure 11A-
F). This suggests that breast carcinomas have no, low or
moderate levels of the proteins TRAF2, TRAF3, DAPK1,
CASP2, CAPS3, and TNF.

Discussion

Triple-negative breast cancer (TNBC) is regarded as an
aggressive type of BC. It is characterized by the lack of
expression of progesterone, estrogen, and human epidermal
growth factor receptors, which accounts for 15-20% of all
BCs (46). TNBC has historically had limited treatment
options compared to other BC types. Even though
chemoresistance and undesired side effects are the primary

problems, the mainstay of treatment for TNBC remains
chemotherapy, despite the emergence of new biological and
targeted agents.

One of the main goals of cancer research is to identify
genetic markers associated with the onset of cancer.
Targeting genes only expressed in cancer cells can reveal
novel diagnostic and therapeutic indicators (47). It is
preferable to incorporate data from numerous comparable
studies to undertake an integrative analysis to find and define
the biological functions of cancer-associated genes. Multiple
gene expression analysis methods have been created and
employed for many purposes, including classifying tumor
types and identifying tumor stages. Because of the limits of
clinicopathologic characteristics, predicting the potential
therapeutic genes of cancer is still difficult for many
malignancies, which is important for cancer management.
Identification of gene expression profiles can aid in the
improvement of patient care by offering directions for
individualized treatment strategies (48). Twenty-seven
apoptosis-regulated genes were included for statistical
comparison in the current study. It was possible to identify
statistically significantly expressed genes in TNBC using
various online bioinformatic tools. An extensive
bioinformatics investigation of these genes identified critical
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Figure 8. The 27-apoptosis regulation protein-protein interactions (PPIs). Network analysis from the PPI network showed TNBC. (A) Minimum
required interaction score: we set up the highest confidence at 0.9000 using Cytoscape. The nodes’ sizes indicated the count of interactions (degree)
in the PPI network. There are 188 edges and 27 nodes in the circular structure of the protein-protein interaction, with an average node degree of
13.9 and an average local clustering coefficient of 0.76. The red line indicates the presence of fusion evidence; the green line is neighborhood
evidence; the blue line is co-occurrence evidence; the purple line is experimental evidence; the yellow line is text mining evidence; the light blue
is database evidence; the black line is co-expression evidence. (B) clustered PPIs. Twenty-seven genes were predicted from a cluster analysis using
STRING. Associations within the same cluster are indicated by solid and dotted lines. Different colors denote various types of interactions. 



biological functions enriched in them. Further research into
the biology of TNBC will benefit from these expanded
functionalities or pathways, which may also pave the path
for developing novel diagnostic and therapeutic markers. 

Gene expression of BNIP3, TNFRSF10B, MCL1, and
CASP4 was up-regulated in BCGM and down-regulated in
UALCAN. At the same time, BIK, AKT1, BAD, FADD,
DIABLO, and CASP9 were down-regulated in BCGM and

up-regulated in UALCAN databases. These differences may
demonstrate the distinct gene expression patterns of TNBC
patients, which require further research.

Understanding the role of PPI in inhibiting apoptosis
could provide a foundation for understanding the biology of
cancer as an integrated system (49). Numerous studies have
used PPI networks to identify potential genes (50-52). Most
biological networks are scale-free networks, meaning they
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Table VII. Protein-protein interactions of the apoptosis regulatory genes having a high score for automated textmining, combined, edge betweenness,
and experimentally determined interaction scores.

Automated_ Combined_ Edge Experimentally_ Name
textmining score betweenness determined_interaction

0.906                                       0.933                                 57.0                                       0.298 ACTB (interacts with) AKT1
0.91                                         0.983                                 40.5                                       0.156 ACTB (interacts with) CASP3
0.844                                       0.863                                 33.2                                       0.156 ACTB (interacts with) CASP9
0.71                                         0.783                                 22.0                                       0.281 ACTB (interacts with) MCL1
0.857                                       0.872                                 27.7                                       0.143 ACTB (interacts with) TNF
0.881                                       0.894                                 22.0                                       0.128 ACTB (interacts with) TP53
0.882                                       0.935                                 29.25                                     0.475 AKT1 (interacts with) CASP3
0.814                                       0.984                                 18.4                                       0.231 AKT1 (interacts with) CASP9
0.826                                       0.829                                 15.17                                     0.056 AKT1 (interacts with) TNF
0.877                                       0.989                                 13.0                                       0.201 AKT1 (interacts with) TP53
0.749                                       0.987                                 17.0                                       0.527 APAF1 (interacts with) BAX
0.715                                       0.806                                 17.0                                       0.348 APAF1 (interacts with) CASP2
0.909                                       0.996                                 21.96                                     0.651 APAF1 (interacts with) CASP3
0.995                                       0.999                                 19.83                                     0.987 APAF1 (interacts with) CASP9
0.721                                       0.865                                 19.13                                     0.527 APAF1 (interacts with) MCL1
0.845                                       0.899                                 39.86                                     0.374 BAX (interacts with) CASP3
0.746                                       0.834                                 23.19                                     0.374 BAX (interacts with) CASP9
0.82                                         0.965                                 42.75                                     0.817 BIK (interacts with) MCL1
0.867                                       0.958                                 57.143                                   0.49 CASP2 (interacts with) CASP3
0.968                                       0.988                                 19.0                                       0.87 CASP3 (interacts with) CASP9
0.726                                       0.99                                   64.08                                     0.683 CASP3 (interacts with) DFFA
0.858                                       0.986                                 41.0                                       0.123 CASP3 (interacts with) FADD
0.874                                       0.918                                   5.0                                       0.374 CASP3 (interacts with) MCL1
0.889                                       0.896                                 40.82                                     0.102 CASP3 (interacts with) TNF
0.784                                       0.977                                 43.91                                     0.059 CASP3 (interacts with) TNFRSF10A
0.802                                       0.979                                 38.48                                     0.059 CASP3 (interacts with) TNFRSF10B
0.9                                           0.925                                   5.0                                       0.27 CASP3 (interacts with) TP53
0.945                                       0.995                                 44.17                                     0.213 CASP9 (interacts with) DIABLO
0.855                                       0.869                                 40.67                                     0.123 CASP9 (interacts with) FADD
0.841                                       0.864                                 22.17                                     0.178 CASP9 (interacts with) MCL1
0.716                                       0.721                                 49.15                                     0.058 CASP9 (interacts with) TNF
0.736                                       0.741                                 49.58                                     0.059 CASP9 (interacts with) TNFRSF10A
0.759                                       0.763                                 48.23                                     0.059 CASP9 (interacts with) TNFRSF10B
0.919                                       0.944                                   9.0                                       0.345 DAPK1 (interacts with) TP53
0.952                                       0.996                                 34.67                                     0.345 FADD (interacts with) TNF
0.994                                       0.999                                 43.09                                     0.879 FADD (interacts with) TNFRSF10A
0.994                                       0.999                                 36.42                                     0.879 FADD (interacts with) TNFRSF10B
0.903                                       0.994                                 29.43                                     0.462 FADD (interacts with) TRAF2
0.925                                       0.992                                   6.0                                       0.046 GADD45A (interacts with) TP53
0.944                                       0.995                                   8.0                                       0.298 MCL1 (interacts with) TP53
0.948                                       0.95                                   10.43                                     0.059 TNF (interacts with) TNFRSF10A
0.854                                       0.998                                   8.09                                     0.897 TNF (interacts with) TRAF2
0.988                                       0.979                                 13.75                                     0.78 TNFRSF10A (interacts with) TNFRSF10B
0.978                                       0.983                                 37.63                                     0.81 TRAF2 (interacts with) TRAF3



are characterized by having innumerable hubs with many
interactions. Several protein-protein interactions are required
for the activation of caspases, which are essential for
apoptosis. For instance, procaspase-8, the adaptor molecule
Fas-associated protein with death domain (FADD), and
caspase-8 sequentially oligomerize to activate caspase-8,
whereas procaspase-9 is triggered by the interaction of at
least cytochrome c, Apaf-1, and caspase-9 to create an
apoptosome (53), the PPI data can be used in conjunction
with GO functional analysis (52, 54, 55). 

Furthermore, GO functional analysis also demonstrated
that the DEGs were mainly involved in cellular processes,
biological regulation, response to stimulus, biological
adhesion, metabolic process, and cell-cell signaling based on
the analysis of biological processes. Gene expression
regulation, protein modification, or interaction with a protein
or substrate molecule are just a few of the ways that
biological processes are regulated. Cellular processes,
stimulus-response, biological regulation, and cell signaling

make up 75.5% of all biological processes. TRAF3,
TNFRSF10A, BAX, DIABLO, BCL10, TNFRSF10B, MCL1,
TRAF2, CASP9, DAPK1, AKT1, BNIP3, and TNF are all
considerably enriched in all of them. These processes are
regulated in various ways, such as through altering the
expression of genes, altering protein expressions, or
interacting with proteins (56). Binding and catalytic activity
contribute to 66.6% of the molecular function, as indicated
in Table IV. Except for BCL10 and TRAF2, which are present
in both, binding is enriched for BAX, MCL1, ACTB, TP53,
BAG1, and TNF, whereas catalytic activity is enriched for
CASP2, CASP4, CASP9, DAPK1, CASP3, and AKT1.
Cellular anatomical entities make up 82.2% of the cellular
components that are enriched in TRAF3, TNFRSF10A, BAX,
DIABLO, BCL10, CASP2, GADD45A, TNFRSF21,
TNFRSF10B, CASP4, MCL1, TRAF2, CASP9, DAPK1,
CASP3, ACTB, BNIP3, BAG1, and TNF. The molecular
function and cellular component have played a significant
role in regulating apoptosis (57). The genes mentioned above
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Figure 9. Gene-gene interaction network among the apoptosis-regulated genes predicted by GeneMANIA. Different colors indicate various networks
of gene-gene interactions. A total of 27 genes were input shown in big blue black color circle, and 20 related genes, shown in the small blue black
color circle, were enriched in this network based on shared protein domains with 47 total genes, 0 attributes, and 1411 total links.



in the molecular and cellular components may have a direct
or indirect role in controlling their specific role in apoptosis.

Transcription factors (TFs) are significant regulators of
tissue growth and embryonic development, processes that, if
controlled improperly, can lead to cancer and other diseases.
TFs also play critical roles in regulating various cellular
functions (58). Therefore, establishing a systems-level
understanding of the TF network would provide a crucial
foundation for future research and therapeutic methods. In
our analysis, AR, RARA, RNF2, IRF3, Tp53, NR4A1, ATF3,
TFAP2A, STAT1, and SREBF2 were the top 10 TF
interactors that were most frequently seen. Out of the 27
investigated genes, the following apoptotic genes have been
associated with these TFs: CASP3, BAG1, AKT1, TP53,
ACTB, APAF1, GADD45A, CASP9, TRAF3, BAX,
DIABLO, DAPK1, TNFRSF10B, and FADD. TP53 is the
most frequently apoptosis-regulated gene that interacts with
the seven TF listed above. 

Our findings demonstrated that AR binds TP53, ACTB1,
BAG1, AKT1, and CASP3. Previous research showed that
the JNK kinase MEKK1, which induces apoptosis in prostate
cancer cells, is regulated by the activation of the AR (59).
Similar studies revealed that in transgenic mice and cultured
cells, AR-dependent apoptosis was seen after the probasin
promoter directed the AR to the prostate cancer cells (60).
Both AR-dependent and AR-independent pathways can be
used by several substances to cause apoptosis. Because the
AR is believed necessary for nuclear DHT function, ligand-
dependent events coincide with AR-mediated nuclear events
(61). As a result, the current research shows that apoptosis
genes may control apoptosis in TNBC by activating or
deactivating in response to interaction with the AR
transcription factor; however, more research is required.

RARA has been shown to regulate the cell cycle and
proliferation and initiate and control apoptosis in breast and

pancreatic cancer cells (62, 63). Other studies confirmed that
RARA caused apoptosis in leukemic cells by reducing Bcl-
2 expression (62) and by enhancing TRAIL in human non-
small cell lung cancer and head and neck squamous cell
carcinoma (HNSCC) cell lines (64). In line with these
findings, RARA has been found to down-regulate Bcl-2
expression in acute promyelocytic and myeloid leukemia
cancer cells, and sustained overexpression of Bcl-2 has been
demonstrated to confer resistance to apoptosis (65). These
results imply that RARA interacts with apoptosis-regulated
genes, which may be related to increased or suppressed
apoptosis in TNBC.

According to our results, RNF2 interacts with CASP3,
CASP9, TP53, and ACTB. In a wide range of cancer types,
including breast, ovarian, pancreatic, bladder, melanoma,
and lymphoma, RNF2 has been reported to be highly
expressed (66-68). RNF2 expression is positively correlated
with tumor progression and shortened survival. Hence,
RNF2 is thought to be a potential therapeutic target for
these cancer types. Furthermore, research has shown that
RNF2 knockdown causes cell cycle arrest, triggers
apoptosis, and inhibits proliferation in prostate cancer cells
(69). Studies on colorectal cancer cells showed that RNF2
binds to p53 directly and encourages p53 ubiquitination,
which prevents apoptosis. Similarly, in RNF2-knocked
down cells, p53 protein levels were higher, its half-life was
longer, and its ubiquitination was lower. In contrast, p53
protein levels, half-lives, and ubiquitination were all
lowered in cells overexpressing RNF2 (70). Our findings
imply that RNF2 may contribute to TNBC progression by
preventing gene expression in apoptosis, including TP53
and caspases, and it might be an ideal target for TNBC
prevention or treatment.

According to previous studies, IRF3 induced apoptosis in
BC cells (71), and IRF3 signaling is essential for triggering
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Table VIII. Among the 27 genes, the top 10 significant p-values and q-values for transcription factor PPIs are displayed.

Term p-Value q-Value Overlapping genes

AR 0.000028 0.002923 CASP3, BAG1, AKT1, TP53, and ACTB
RARA 0.000085 0.002972 APAF1, GADD45A, BAG1, and AKT1
RNF2 0.000085 0.002972 CASP9, CASP3, TP53, and ACTB
IRF3 0.000139 0.003645 TRAF3, BAX, and AKT1
NR4A1 0.000490 0.010286 DIABLO, AKT1, and TP53
TP53 0.001366 0.022984 DAPK1, GADD45A, BAG1, TNFRSF10B, and BAX
ATF3 0.001751 0.022984 TP53 and ACTB
TFAP2A 0.001751 0.022984 CASP3 and TP53
STAT1 0.002280 0.026595 AKT1, FADD, and TP53
SREBF2 0.003157 0.029206 CASP3 and TP53

PPI: Protein-protein interaction; AR: androgen receptor; RARA: retinoic acid receptor alpha; RNF2: ring finger protein 2; IRF3: interferon regulatory
transcription factor; Tp53: tumor suppressor transcription factor; NR4A1: nuclear receptor 4A1; ATF3: activating transcription factor 3; TFAP2A:
transcription factor activating enhancer-binding protein 2 alpha (AP-2 alpha); STAT1: signal transducer and activator of transcription 1; SREBF2:
sterol regulatory element binding transcription factor 2. 



apoptosis in hormone-sensitive prostate cancer cells by
activating intrinsic and extrinsic apoptotic pathways (72). On
the other hand, clear cell renal cell carcinoma abundantly
expressed IRF3, and its overexpression was strongly
associated with worse clinical outcomes and overall adverse
survival (73). Increasing proapoptotic protein expression in
BC cells increases cytoplasmic NR4A1 and contributes to the
process of apoptosis (74). ATF3 is a significant regulator of
Kruppel-like factor 6-induced apoptosis in prostate cancer
cells (75) and enhances doxorubicin-induced apoptosis in
TNBC cells (76). In BC cells, STAT1 has been associated with
the suppression of cell growth and apoptosis induction (77).

Similarly, STAT1 modulates chemotherapy-induced
apoptosis in MDA-MB 435 BC cells (78). Up-regulated
SREBP1 expression promotes breast cancer cell growth and
proliferation, is positively correlated with tumor metastasis, and
predicts a poor progression in individuals with breast cancer
(79, 80). SREBP1 activation has been seen in human
glioblastoma cell lines (81). Additionally, research has
indicated that men with prostate cancer had higher levels of
SREBP1 expression (82). Taken together, these TFs may be a
promising target for TNBC treatment and prevention since they
may directly or indirectly influence the progression of TNBC
by regulating the expression of genes that control apoptosis.
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Figure 10. Overall survival (OS) analysis of 27hub genes in TNBC patients by KM Plotter (n=278). (A) CASP2, (B) DAPK1, (C) TNF, (D) TRAF2,
(E) APONON/CASP3, (F) TRAF3, (G) AKT1, (H) CED4/APAF1, (I) FADD, (J) BAD, (K) TNFRSF10A, (L) DFFA, (M) TRAIL-R2/TNFRSF10B, (N)
OPG-TNFRSF11B, (O) TNFRSF21, (P) BAG1, (Q) ACTB, (R) DIABLO, (S) BAX, (T) BCL10, (U) BNIP3, (V) BIK, (W) CASP4, (X) GADD45A, (Y)
MCL1, (Z) TP53, (AA) CASP9.



On MDA-MB-231 and MDA-MB-468 triple-negative
breast cancer cells, muscadine grape extracts showed
substantial anticancer activity (83). Previous studies
demonstrated that various natural compounds have
significantly targeted apoptosis-regulated genes. In TNBC,
several natural compounds target some of these apoptosis-
regulated genes, which may be useful to consider as
alternative compounds for chemoprevention. In MDA-MB-
231 and MDA-MB-468 TNBC cells, thymoquinone
fundamentally altered the expression of numerous
apoptotic genes, increased mRNA levels of caspases
(CASP 2, 3, 6, 9), BAX, BID, BIK, APAF1, and
GADD45A, while down-regulating BIRC5 (7); it also
significantly altered several oxidative stress-regulated
genes (84, 85). Similar to our previous studies, the natural
compound polyphenol gossypol dramatically increased the
expression of GADD45A, TNFRSF9, and BNIP3 in MDA-
MB231 cells, whereas GADD45A and BNIP3 were
increased in MDA-MB468 cells (86). Similarly, curcumin,

a well-known natural compound, significantly enhanced
Pacilitaxel’s ability to induce apoptosis in TNBC cells by
up-regulating CASP3, 8-TP53, BAD, and BAX while
down-regulating BCL2 (87, 88). Other comparable studies
found that resveratrol dramatically boosted the expression
of cleaved-PARP1 and cleaved-Caspase3 while
considerably decreasing the expression of full-length
PARP1, PCNA, and BCL-2 in MDA-MB-231 TNBC cells
(89). Similar studies on natural compounds reported that
rosmarinic acid dramatically increased BNIP3’s mRNA
expression in the MDA-MB-231 cell line while
considerably increasing the transcription of TNF,
GADD45A, and BNIP3 in the MDA-MB-468 cell line.
Additionally, rosmarinic acid suppressed the expression of
TNFRSF11B in MDA-MB-231 cells and TNFSF10 and
BIRC5 in MDA-MB-468 cells (8). Another study found
that oleuropein significantly activated the transcription of
the genes BNIP3, BID, GADD45A, FADD, and
TNFRSF21 in MDA-MB-468 cells, while substantially
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Figure 11. Breast cell cancer selected protein expression. (A-F) Immunohistochemistry showing the expression of theTRAF2, TRAF3, DAPK1, TNF,
CASP2 and CASP3 proteins in normal breast tissue and breast cancer as shown on the Human Protein Atlas website.



increasing the mRNA expression of TNFRSF10A and
CASP4 in MDA-MB-231 cells (9). Similarly, Snail mucus
can induce programmed cell death and has therapeutic
potential by achieving a chemosensitizing effect in TNBCs
(90). These results might imply that natural compounds
that target apoptosis-regulated genes could be exploited to
be used for chemoprevention or to increase the
effectiveness of chemotherapy treatments.

Concerning the study’s limitations, the findings here, like
those of other bioinformatic analyses, need to be verified
through extensive experimental approaches. TNBC patients
have distinct gene expression patterns that limit us from
drawing a firm conclusion about our results. Additionally,
combining several datasets associated with apoptosis-
regulated genes is recommended to acquire a deeper
understanding of the underlying mechanisms of TNBC.

Conclusion

The mechanism of programmed cell death is driven by a
highly controlled network of protein-protein interactions.
Controlling the outcome of these interactions offers great
benefits in treating many human diseases, including cancer.
Understanding the basis of these interactions is key to
uncovering the gap in the treatment of TNBC. Extensive
studies would increase knowledge of the pathogenesis of
advanced TNBC and divulge several useful apoptosis-related
genes and pathways for further research on their therapeutic
implications. We were able to identify crucial PPIs, TF-PPIs,
and pathways that can be utilized in TNBC studies. To
corroborate the function of the identified genes associated
with TNBC, more molecular biological tests, computational
procedures, and gene co-expression network analyses are
needed. Due to TNBC’s heterogeneity and histologic
classification, each TNBC subtype should be analyzed and
interpreted independently. Important genes and pathways for
normal and tumor samples were found in this instance,
allowing the determination of various stages of TNBC
progression. Finding genetic or protein alterations may
enable researchers to develop new targeted therapies.
Researching genetic or protein changes can contribute to
predicting whether a person with cancer will likely have a
better or worse prognosis. The analysis of genes involved in
apoptosis regulation revealed potential TNBC therapeutic
targets. Genes, in particular CASP2, CASP3, DAPK1, TNF,
TRAF2, and TRAF3, are significantly correlated with poor
overall survival in TNBC and may offer new candidate
molecules for targeted therapy. These findings show that
genetic alterations altering apoptosis could be possible
therapeutic targets for TNBC. The six important genes found
in this study may help us better understand the molecular
mechanisms causing TNBC and facilitate the search for
novel treatment targets for TNBC. 
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