
Abstract. In order to identify new targets and treatment
modalities for breast cancer, we searched the literature for
circular RNAs (circRNAs) with efficacy in preclinical breast
cancer-related in vivo models. From our search, we identified
26 up-regulated and six down-regulated circRNAs which
mediate efficacy in breast cancer-related preclinical in vivo
models. We discuss reconstitution and inhibition of the
identified circRNAs, as well as druggability and validation of
the targets identified in the context of chemoresistance,
inhibition of proliferation and metastasis. Pathways driven
by suppressors of cytokines and high-mobility group proteins,
nuclear factor ĸB and Hippo signaling emerged as important
drivers of tumor growth and metastasis. The role of trefoil
factor-1 with respect to metastasis of estrogen receptor-
positive breast cancer also merits further investigation. In
addition, mucin 19 has emerged as an unexplored target for
treatment of breast cancer.

Breast cancer (BC) is the most common malignancy in
women worldwide and occurs as ductal and lobular
carcinomas (1). According to the expression of hormone
receptors (HR) such as estrogen-receptor (ER), progesterone
receptor and human epidermal growth factor receptor 2
(HER2), the following subtypes have been defined: Luminal
A (HR+, HER2−), luminal B (HR+, HER2+), triple-negative

BC (HR−, HER2−) and HER2 enriched (2). The treatment of
BC is dependent on the molecular subtype and includes
surgery, radiotherapy, chemotherapy and targeted therapy
with agents such as tamoxifen, aromatase inhibitors,
trastuzumab, pertuzumab, Kadcyla (trastuzumab-emtansine),
lapatinib, poly-(ADP)-ribose polymerase inhibitors for BC
with BRCA DNA repair-associated mutations, cyclin-
dependent kinase (CDK) 4/6 inhibitors, tumor spread-
inhibiting bisphosphonates and recently also immunotherapy
with pembrolizumab (Keytruda) (3-6). BC is curable in 70-
80% of patients with early-stage, non-metastatic disease (3).
BC metastasizes to the bones, lungs, regional lymph nodes,
liver and brain and metastases only poorly respond to
therapies (7, 8). Another problem is the development of
resistance to chemotherapy and targeted therapies (9, 10). In
order to identify new targets and treatment modalities for
BC, we searched the literature for circular RNAs (circRNAs)
with efficacy in preclinical BC-related in vivo models. We
excluded triple-negative BC because relevant circRNAs in
this subtype will be summarized in a separate review.

Circular RNA

CircRNAs are generated by back-splicing of polymerase II
transcripts, thus creating new junctions (11). Their size
ranges from a hundred to several thousands of nucleotides
(11). In humans, common size of a circRNA is a few
hundred nucleotides comprising two to three exons (12). In
mammalian cells, at least 30,000 different circRNAs have
been identified (13). They affect processes such as
transcription, splicing, protein scaffolding, and can act as
micro-RNA (miR) sponges and decoys; in rare cases they
can even function as translational templates (11-13). In BC
they can act as tumor suppressors, as well as oncogenes
affecting processes such as tumor initiation, progression,
proliferation, cell-cycle, cell death, migration, invasion,
metastasis, angiogenesis, modulation of the tumor micro-
environment and chemoresistance (14-16). CircRNAs can be
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detected in peripheral blood encapsulated in exosomes and
their roles as biomarkers, predictors of survival, metastasis
and drug resistance are under active investigation (17, 18).
The physiological relevance of circRNAs in cancer has
recently been supported by the fact that inhibition of
individual circRNAs can inhibit tumor growth in patient-
derived xenografts of lung adenocarcinoma and gastric
cancer (19, 20).

CircRNAs Down-regulated in BC

circRNAs affecting chemoresistance.
Circ-lysine-specific demethylase 4C (circKDM4C) targets
phenazine biosynthesis-like domain-containing protein
(PBLD). CircKDM4C (Figure 1) was down-regulated in BC
and its down-regulation correlated with poor prognosis (21).
CircKDM4C repressed BC cell proliferation, metastasis and
adriamycin resistance in vitro and in vivo. Mechanistically,
it sponged miR-548p, which led to up-regulation of PBLD.
In hepatocellular carcinoma (HCC), reduced expression of
PBLD correlated with poor prognosis and forced expression
of PBLD inhibited HCC growth in vitro and in vivo by
interfering with mitogen-activated protein kinase (MAPK),
nuclear factor ĸB (NFĸB), epithelial–mesenchymal transition
(EMT) and angiogenesis signaling pathways (22).

Circ0025202 targets forkhead-box-protein O3A (FOXO3A).
Low expression of circ0025202 (Figure 1) was found in BC
tissues (23). Overexpression of circ0025202 reversed
tamoxifen resistance of MCF-7/TR cells (23). In vivo, it
suppressed tumor growth and increased tamoxifen sensitivity
of MCF-7/TR cells in a xenograft model. Mechanistically,
circ0025202 acted as a sponge for miR-182-5p, and resulting
in up-regulation of FOXO3A. The latter is a transcription
factor which is involved in apoptosis, proliferation, cell-cycle
progression, DNA damage and tumorigenesis. FOXO3A is
frequently inactivated by mutation in tumors or sequestrated
in the cytoplasm and overexpression of FOXO3 inhibits
proliferation, tumorigenic potential and invasiveness, EMT
and metastasis (24-26). FOXO3A-driven miR signatures
modulate vascular endothelial growth factor/neuropilin 1
signaling and BC metastasis (27).

Circ0025202 targets homeodomain-interacting protein
kinase 3 (HIPK3). Circ0025202 (Figure 1) was reduced in
BC tissues and tamoxifen-resistant BC cells (MCF-7 and
T47D) (28). Knockdown of circ0025202 elevated the half-
maximal inhibitory concentration for tamoxifen, promoted
cell proliferation, invasion and migration, and mediated cell-
cycle progression and inhibition of apoptosis in vitro (28).
Up-regulation of circ0025202 hindered xenograft growth of
MCF-7/TR and promoted tamoxifen sensitivity in nude mice.
Circ0025202 targeted miR-197-3p and thus led to up-

regulation of HIPK3 (28). The latter is a member of the
ser/thr kinase family with three members (HIK1, -2 and -3)
and interacts with homeobox proteins and other transcription
factors as transcriptional co-activators or co-repressors (29).
HIPK2 acts as a suppressor of development and metastasis
of many types of tumors, down-regulates vimentin and
inhibits BC cell invasion (30). HIPK3 overexpression can
inhibit growth of non-small-cell lung carcinoma (31) and
drives p53 activation to limit colorectal cancer growth (32).
HIPK1 is involved in DNA repair through its interaction with
p53 (33).

circRNAs affecting suppressor of cytokine 2,3 (SOCS2,3)
signaling.
Circ-nucleolar protein 10 (circNOL10) targets suppressor of
cytokine signaling 2 (SOCS2). CircNOL10 (Figure 1) was
down-regulated in BC tissues and cell lines (34). In BT-549
and MDA-MB-231 BC cells, circNOL10 suppressed
proliferation, migration, invasion, EMT by sponging miR-
767 which resulted in activation of SOCS2 and inhibition of
Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) signaling. In nude mice, circNOL10
suppressed the growth of BT-549 BC xenografts.

Circ0001785 targets SOCS3. Circ0001785 (Figure 1) was
reduced in T47D, MCF-7, MDA-MB-453, MDA-MB-231
and BT-549 BC cells in comparison to MCF-10A normal
breast cells. It inhibited proliferation, invasion and migration
of BC cells, as well as tumor growth in nude mice by
sponging miR-942 through up-regulation of SOCS3 (35).

SOCS family members inhibit JAK, signal transducers
and signal transducer and activator of transcription (STAT)
are down-regulated in BC (36, 37). In BC, loss of SOCS2 is
related to cell proliferation and tumor growth (38). In
patients with BC with lymph node metastasis, reduced
expression of SOCS3 was found (39).

Circ001666 targets WNK lysine-deficient protein kinase 2
(WNK2). Circ001666 (Figure 1) was down-regulated in BC
tissues and cell lines (40). It inhibited proliferation, migration,
invasion and promoted apoptosis of BC cells in vitro and
tumor growth of BC xenografts in nude mice. Circ001666
sponged miR-620, resulting in up-regulation of WNK2 tumor
suppressors. WNK2 is a ser/thr kinase, with four paralogs,
which inhibits cell proliferation by modulating the activation
of MAPK/extracellular signal regulated kinase 1/2 (ERK1/2)
(MEK1/ERK1/2) and negatively regulates sodium transport
(41). WNK2 is down-regulated in BC and inhibits BC cell
proliferation (42). During pancreatic ductal adenocarcinoma
development, WNK2 was also found to be down-regulated
(43). However, its function seems to be context-dependent,
because in HCC, WNK2 acts as a driver of carcinogenesis
and is a risk factor of early recurrence (44).
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CircRNAs Up-regulated in BC

circRNAs mediating chemoresistance.
Circ-ATP-binding cassette subfamily B member 10
(circABCD10) targets dual-specificity phosphatase 7
(DUSP7). An abundance of circABCD10 (Figure 2A) was
associated with reduced sensitivity to paclitaxel in BC tissues
and cells (45). In paclitaxel-resistant BC cell lines MCF-
7/PTX and MCF-MB-231/PTX, circABCD10 sponged let-7a-
5p and led to up-regulation of DUSP7. In nude mice,
knockdown of circABCD10 suppressed growth of MCF-
7/PTX xenografts (45). The DUSP family exert their functions
through dephosphorylation of MAPK (ERK1/2, JUN kinase
p38) (46). DUSP7 acts as an oncogene in BC (47). DUSPs
play an emerging role in human cancer (48). Paclitaxel is
widely used for treatment of early and advanced BC (49).

Circ-ring finger protein 111 (circRNF111) targets
transcription factor E2F3. High expression of circRNF111
(Figure 2A) was observed in paclitaxel-resistant BC tissues
and cell lines (50). CircRNF111 knockdown suppressed
paclitaxel resistance, cell viability, colony formation,
invasion and glycolysis in paclitaxel-resistant BC cells MCF-

7/PTX and MDA-MB-231/PTX. In nude mice, knockdown
of circRNF111 in MCF-7/PTX xenografts suppressed
paclitaxel-resistance. CircRNF111 sponged miR-140-5p
resulting in up-regulation of E2F3 (50). The latter is a
member of the E2F family of transcription factors which are
deregulated in BC (51). E2F3 is a driver of EMT, cell
invasion and metastasis in BC (52, 53).

CircHIPK3 targets HK2. CircHIPK3 (Figure 2A) was up-
regulated in paclitaxel-resistant BC tissues and cell lines
such as MCF-7/PTX and MDA-MB-231/PTX (54). Silencing
of circHIPK3 enhanced drug sensitivity in vitro due to
sponging of miR-1286 and up-regulation of HK2. In nude
mice, silencing of circHIPK3 diminished tumor growth and
promoted paclitaxel sensitivity of MDA-MB-231/PTX
xenografts (54). HK2 is a tumor driver in BC and is involved
in chemoresistance of BC (55, 56). It was shown that Pim2
proto-oncogene serine protein kinase (PIM2)-mediated
phosphorylation of HIPK3 is critical for tumor growth and
paclitaxel-resistance in BC (57).

Circ0006528 targets CDK8. Circ0006528 (Figure 2A) was
up-regulated in BC tissues and paclitaxel-resistant BC cell
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Figure 1. Circular (circ) RNAs down-regulated in breast cancer with efficacy in preclinical in vivo models. CircRNAs involved in adriamycin (ADM)
and tamoxifen (TAM) resistance, as well as signaling-related circRNAs are shown. Up- and down-regulation are indicated by up and down arrows,
respectively. ERK1/2: Extracellular signal-regulated kinases 1,2; FOXO3A: forkhead-box protein O3A; HIPK3: homeodomain-interacting protein
kinase 3; JAK: Janus kinase; KDM4C: lysine-specific demethylase 4C; MEK1: mitogen-activated protein kinase 1; MET: metastasis; miR:
microRNA; NOL10: nucleolar protein 10; PBLD: phenazine biosynthesis-like domain-containing protein; SOCS 2,3: suppressor of cytokine signaling
2,3; STAT: signal transducer and activator of transcription; WNK2: WNK lysine-deficient protein kinase 2.



lines BT549/PTX and ZR-75-30-PTX (58). In vitro silencing
of circ0006528 repressed proliferation, migration and
invasion, as well as autophagy, and induced apoptosis in
vitro (58). Circ0006528 sponged miR-1299 and up-regulated

CDK8. The latter promoted proliferation, migration and
autophagy in paclitaxel-resistant BC cells (58). Circ0006528
increased xenograft growth of ZR-75-30/PTX in nude mice
(58). CDK8 is associated with paclitaxel resistance and
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Figure 2. Chemoresistance-related circular (circ) RNAs up-regulated in breast cancer with efficacy in preclinical in vivo models. A: CircRNAs conferring
paclitaxel (PTX) resistance. B: CircRNAs conferring adriamycin (ADM) resistance. C: CircRNAs conferring tamoxifen (TAM) or lapatinib resistance (LR).
Up- and down-regulation are indicated by up and down arrows, respectively. ABCD10: ATP-binding cassette subfamily B member 10; ANLN: anillin; CDK8:
cyclin-dependent kinase 8; CHD4: chromodomain helicase DNA-binding protein; DUSP7: dual specificity phosphatase 7; E2F3: transcription factor E2F3;
ERα: estrogen receptor α; HIPK3: homeodomain-interacting protein kinase 3; HK2: hexokinase 2; INTβ1: integrin β1; LR: lapatinib resistant; MMP11:
matrix metalloprotease 11; NCOA3: nuclear receptor co-activator A3; RNF111: ring finger protein 111; UBE2D2: ubiquitin-conjugating enzyme 2 D2.



activation of the WNT/ß-catenin signaling pathway (59, 60).
CDK8 acts both as an activator and repressor of
transcription, invasiveness and EMT (61). Inhibition of
CDK8 inhibits growth and proliferation of BC cells (62, 63).

Circ0006528 targets chromodomain helicase DNA-binding
protein 4 (CHD4). Higher levels of circ0006528 (Figure 2B)
have been found in adriamycin-resistant BC tissues and cells
(64). Overexpression of circ0006528 mediated proliferation,
migration, invasion and adriamycin resistance in BC cells.
Circ0006528 sponged miR-1236-3p and led to up-regulation
of CHD4 (64). It represents the main component of the
nucleosome remodeling and deacetylase complex and plays
an important role in epigenetic transcriptional regulation
(65). CHD4 promotes BC progression as a coactivator of
hypoxia-inducible factors (66). In addition, CHD4 regulates
the HER2 signaling pathway and autophagy in HER2+ BC
cells (67) and is an essential gene for BC growth (68, 69).
Independently, it has been shown that CHD4 is involved in
DNA damage response and chemotherapy resistance (70).

Circ0001667 targets nuclear receptor co-activator A3
(NCOA3). Knockdown of circ0001667 (Figure 2B) in MCF-
7/ADM and MDA-MB-231/ADM inhibited proliferation,
migration, invasion and adriamycin resistance in vitro (71).
Knockdown of circ0001667 repressed tumor growth and
adriamycin resistance of BC cells in immunodeficient mice
(71). miR-4458 was sponged by circ0001667 and led to up-
regulation of NCOA3, also known as amplified in BC1
(AIB1) or steroid receptor co-activator 3 (SRC3). NCOA3 is
a transcriptional co-activator with several nuclear receptor-
interacting domains and intrinsic histone acetyltransferase
activity, resulting in acetylation of histones and assisting
nuclear receptors in up-regulation of genes (72). NCOA3 is
amplified in BC and acts as an oncogene (73).

Circ0085484 targets integrin β1 (INTB1). Depletion of
circ0085484 (Figure 2B) repressed adriamycin resistance,
proliferation, and metastasis of adriamycin-resistant BC cells
(74). The phenomenon is due to sponging of miR-873-5p and
subsequent up-regulation of INTB1 (74). It was shown that
INTβ1 can bind to collagen type 1 and activate adriamycin
efflux transporters (75).

Circ-ubiquitin-conjugating enzyme 2D2 (circUBE2D2)
targets ERα. Tamoxifen is a selective ER modulator used for
prevention and treatment of BC. Treatment resistance to
tamoxifen is frequently observed (76, 77). CircUBE2D2
(Figure 2C) was up-regulated in tamoxifen-resistant BC
tissues and cell lines such as MCF-7/TMX and T47/TMX
(78). Deletion of circUBE2D2 (Figure 2C) inhibited
tamoxifen resistance in MCF-7/TMX and T47/TMX cells.
UBE2D2 was also found in exosomes of these cell lines.

Intercellular transfer of circUBE2D2 enhanced tamoxifen
resistance in vitro and in vivo. circUBE2D2 sponged miR-
200a-3p and increased viability, metastasis and the level of
ERα (78).

Circ-matrix metalloprotease11 (circMMP11) targets anillin
(ANLN). Lapatinib, an inhibitor of HER2 and epidermal
growth factor receptor is used for the treatment of HER2-
overexpressing advanced and metastatic BC (79).
CircMMP11 (Figure 2C) was up-regulated in lapatinib-
resistant BC tissues and cell lines (MDA-MB-231/LR and
MCF-7/LR) (80). CircMMP11 was transported by exosomes
and enhanced lapatinib resistance in BC cell lines.
CircMMP11 knockdown impeded tumor growth of MDA-
MB-231/LR in nude mice and increased lapatinib resistance
(80). CircMMP11 sponged miR-153-3p, resulting in up-
regulation of ANLN. The latter is a cytoskeletal protein,
containing an actin/myosin-binding domain and a pleckstrin-
homology domain, which is critical for cell division and
EMT, and is frequently overexpressed in cancer (81, 82).
Knockdown of ANLN inhibits growth of BC cells (82).
ANLN is also involved in poor prognosis in patients treated
with anthracycline-based chemotherapy (83).

CircRNAs up-regulating high-mobility group (HMG) proteins
Circ0069094, circ-F-box and leucine-rich repeat protein 5
(circFBXL5), circ-homeodomain-interacting protein kinase
3 (circHIPK3) and circ0003645 target HMGA1, -A2 and -
B1. Circ0069094 (Figure 3A) was up-regulated in BC
samples in comparison to adjacent normal tissues and non-
cancerous MC7-10A cells (84). Knockdown of circ0069094
inhibited cell glycolysis, glucose uptake, lactate production,
HK2, proliferation, migration, invasion and increased
apoptosis in BC cells in vitro and tumor formation in vivo in
nude mice (84). From a mechanistic point of view,
circ0069094 sponged miR-661, resulting in up-regulation of
HMGA1.

CircFBXL5 (Figure 3A) was up-regulated in BC samples,
promoted migration and invasion, and inhibited apoptosis in
MBA-MB-231 and MDA-MB-453 BC cells in vitro and its
silencing reduced 5-fluorouracil-resistant BC growth in vivo
in nude mice (85). CircFBXL5 sponged miR-216b, resulting
in up-regulation of HMGA2 (85).

CircHIPK3 up-regulates HMGB1 (Figure 3A), which was
increased in BC tissues and high expression predicted poor
prognosis. Small interfering RNA (siRNA)- mediated
knockdown of circHIPK3 reduced viability, migration and
invasion of MDA-MB-231 BC cells in vitro and inhibited
tumor growth in vivo in nude mice (86). CircHIPK3 sponged
miR-193a, resulting in expression of HMGB1 and activation
of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT
serine/threonine kinase 1 (AKT) signaling in MDA-MB-231
cells (86).
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Circ0003645 (Figure 3A) also up-regulated HMGB1 by
sponging miR-139-3p (87). Circ0003645 was overexpressed
in BC tissues, promoted proliferation of MCF-7 and MDA-
MB-231 BC cells in vitro and tumor growth of MDA-MB-
231 BC cells in vivo in nude mice after subcutaneous
implantation (87).

HMG proteins are chromosomal DNA-binding proteins
which are involved in the regulation of DNA-dependent
processes such as transcription, replication, recombination
and DNA repair (88). HMGA contains an AT-hook domain,
HMGB contains an HMG-box domain and HMGN exhibits

a nucleosomal-binding domain (89). They can directly
interact with transcription factors and alter chromatin
structure (89). Expression of HMGA1 and HMGA2 is
correlated with malignant status and prognosis of patients
with BC (90. 91). Knockdown of HMGA1 inhibited BC
growth and metastasis in immunodeficient mice and
attenuated BC angiogenesis (91, 92). HMGA2 is involved in
proliferation, migration, invasion, acquisition of stem cell
features, EMT and telomere restoration (93, 94). HMGA1
also occurs extracellularly and is involved in an autocrine
loop by binding to the receptor for advanced glycation end-
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Figure 3. Circular (circ) RNAs up-regulated in breast cancer with efficacy in preclinical in vivo models affecting high-mobility group (HMG)
proteins, secreted factors and transmembrane proteins. A: CircRNAs up-regulating HMG proteins. B: CircRNAs up-regulating secreted and
transmembrane proteins. Up- and down-regulation are indicated by up and down arrows, respectively. CXCL10: C-X-C Chemokine ligand 10;
FBXL5: F-box/LRR repeat protein 5; HIPK3: homeodomain-interacting protein kinase 3 exon 2 splicing; IGF1: insulin-like growth factor 1; miR:
microRNA; MUC19: mucin 19; PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase; PLK1: POLO-like kinase 1; TFF1: trefoil factor 1.



products, resulting in migration, invasion and metastasis, and
can be targeted with monoclonal antibodies (95). HMGA2
promotes BC metastasis by modulating Hippo-YAP signaling
(96). The druggability of HMGs deserves further attention.

CircRNAs up-regulating secreted and transmembrane proteins
Circ-trefoil factor 1 (circTFF1) targets trefoil factor 1.
CircTFF1 (Figure 3B) was found to be highly expressed in
BC and its depletion restrained cell migration, invasion and
EMT in BT-549 and MBA-MB-231 BC cells (97). CircTFF1
sponged miR-326, resulting in up-regulation of TFF1.
CircTFF1 accelerated growth of BT-549 cells in nude mice
(97). Three TFFs are known to contain at least one copy of
a 40 amino acid domain with three conserved sulfide bonds
(98). TFF1 is regulated by ER and can act as a tumor
suppressor in mice (99). On the other hand, TFF1 stimulated
migration of BC cells (100). TFF1 represents a potential
prognostic biomarker with functional significance in patients
with BC (101). TFF1 is expressed at higher levels in blood
from patients with metastatic BC than in those without
metastatic disease (102). Independently, it has been shown
that TFF1 is up-regulated in ER+ BC and is correlated with
increased bone metastasis (103).

Circ0000515 targets C-X-C chemokine ligand 10 (CXCL10).
Circ0000515 (Figure 3B) was up-regulated in BC and its
expression level correlated with poor prognosis (104). It
promoted cell-cycle progression, proliferation, invasion,
inflammatory response and pro-angiogenic potential of BC
cells (104). Circ0000515 was shown to bind to miR-296-5p,
preventing it from repressing CXCL10. CXCL10 binds to
CXC motif chemokine receptor 3 (CXCR3) together with
CXCL9 and CXCL11 (105). Loss of CXCL10 reduced
growth of MCF-7 BC cells in nude mice (104). CXCL10
mediates BC resistance to tamoxifen and promotes estrogen-
dependent and - independent proliferation (106). In BC, RAS
induced CXCL10 signals through serine-threonine kinase
RAF and PI3K signaling pathways. However, CXCL10 can
have dual effects on cell growth (107, 108). CXCL10 plays
a role in migration of tumor cells (109). CXCL10 and its
receptor CXCR3 play a key role in BC metastasis to bone
and osteoclast activation through NFĸB activation (110).
However, a major function of CXCL10 is enhancement of T-
cell-dependent anticancer immunity, a property which cannot
be assessed in the immunodeficient in vivo model as
described above (105). Therefore, the role of CXCL10 as a
cancer-promoting agent has to be scrutinized in more detail.

Circ-POLO-like kinase 1 (circPLK1) targets insulin-like
growth factor 1 (IGF1). CircPLK1 (Figure 3B) was up-
regulated in BC tissues and cells (111). In BT549 and
HCC38 BC cells, circPLK1 regulated cell proliferation, cell-
cycle transition from G1 to S phase, and migration and

invasion in vitro. In vivo, interference with circPLK1
restrained tumor growth in nude mice (111). CircPLK1 binds
to miR-4500, resulting in up-regulation of IGF1. The latter
functions as a potent mitogen in the mammary gland via IGF
receptor 1 signaling (112). This signaling system also
includes six IGF-binding proteins, which modulate the
bioavailability of IGF1 and triggers PI3K/AKT and
RAF/MAPK pathways (112). In addition, IGF1 also binds to
the insulin receptor (113). In preclinical models of BC,
IGF1/2 antibodies inhibited bone metastasis without
affecting the growth of the primary tumor (114, 115).
However, clinical trials with IGF receptor 1 antibodies, IGF
receptor 1 tyrosine kinase inhibitors and IGF1/2 antibodies
in patients with cancer have generated negative results.

Circ0001982 targets mucin 19 (MUC19). Circ0001982
(Figure 3B) was increased and its knockdown inhibited cell
glycolysis, viability of and migration and invasion by MDA-
MB-231 and MDA-MB-468 BC cells (116). Circ0001082
sponged miR-1297-5p, resulting in up-regulation of MUC19
and mediated xenograft growth of MDA-MB-231 cells in
nude mice (116). Mucins are large O-glycoproteins which
occur as transmembrane or secreted molecules to activate
signaling pathways such as NFĸB, WNT, SRC, p53, MAPK,
hypoxia-inducible factor and JAK-STAT, affecting stemness,
metabolism and chemoresistance (117). MUC1, -4 and -16
are also involved in the pathogenesis of BC (118). MUC16,
which was discovered as cancer antigen 125 and functions
as a ligand for mesothelin, is aberrantly expressed in many
types of cancer and numerous clinical studies with
corresponding monoclonal antibodies and their conjugates
are ongoing. Cleavage of its extracellular domain represents
a major problem for therapy (119, 120). Other approaches
focus on the use of MUC1 as a cancer vaccine (121). For
MUC19, more preclinical validation studies are needed to
rank its significance for treatment of BC.

CircRNAs involved in signaling.
Circ-inhibitor of NFĸB kinase subunit beta (circIKBKB) targets
NFĸB. Overexpression of circIKBKB (Figure 4A) in MCF-7
and MDA-MB-231 BC cells induced osteoclastogenesis,
formation of a bone pre-metastatic niche and bone metastasis
after intracardiac injection in nude mice (122). Overexpression
of circIKBKB activated NFĸB signaling due to IĸB kinase β-
mediated phosphorylation of NFĸB inhibitor α (IĸBα) and its
subsequent degradation. CircIKBKB recruited NFĸB to the
promoters of several bone-remodeling factors such as receptor
activator of NFĸB ligand, macrophage colony-stimulating
factor and granulocyte-macrophage colony-stimulating factor.
Eukaryotic translation initiation factor 4A3 (EIF4A3) directly
bound to circIKBKB pre-mRNA and induced its cyclization.
Blocking of EIF4A3 by RNA interference or a specific, highly
selective non-competitive inhibitor blocked NFĸB signaling,
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osteoclastogenesis and bone metastasis (122). EIF4A3 is a
nuclear matrix protein and a core component of the exon
junction complex (123, 124). Bone metastasis occurs in 70%
of patients with metastatic BC (125). Bisphosphonates and
receptor activator of NFĸB ligand monoclonal antibody
denosomab are approved for treatment of metastatic bone
disease but they do not have an impact on survival and exhibit
severe side-effects (126). It remains to be studied as to whether

the inhibition of hyperactivated NFĸB signaling will result in
improved agents.

Circ-WW and C3 domain-containing (circWWC3) targets
RAS pathway genes. Zinc finger E-box binding homeobox 1
(ZEB1) up-regulates circWWC3, which correlated with BC
progression (127). CircWWC3 (Figure 4A) increased
invasion and migration of MCF-7 and MDA-MB-231 BC
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Figure 4. Circular (circ) RNAs up-regulated in breast cancer with efficacy in preclinical in vivo models affecting signaling and induction of additional
targets. A: CircRNAs involved in signaling. B: CircRNAs up-regulating additional targets. Up-regulated and downregulated are indicated by up
and down arrows, respectively. AKT: serine-threonine kinase AKT; CBX4: chromobox protein 4; CCND1: cyclin D1; CFL2: cofilin 2; COL1A1:
collagen 1A1; DENN4C: DENN domain-containing 4C; EGFR: epidermal growth factor receptor; GRB2: growth factor receptor-bound protein 2;
HK2: hexokinase 2; IKBKB: inhibitor of NFĸB kinase; IĸBα-P: phosphorylated inhibitor IĸBα; MAPK1: mitogen-activated protein kinase 1; MET:
metastasis; miR: microRNA; NFĸB: nuclear factor ĸB; PAK4: serine-threonine protein kinase PAK4; RPPH1: ribonuclease P component H1; TAZ:
transcriptional co-activator with a PDZ-binding motif; UBR1: ubiquitin-protein ligase 1; WWC3: WW and C3 domain-containing; YAP1: YES-
associated protein 1.



cells. CircWWC3 functioned as a sponge for miR-26b-3p
and -660-3p and up-regulated RAS pathway genes epidermal
growth factor receptor, growth factor receptor-bound protein
2, serine-threonine kinase PAK4, MAPK1, and AKT. In nude
mice, circWWC3 promoted metastasis of MDA-MB-231
cells to the lungs and liver. The RAS/RAF/MEK/ERK
MAPK pathway plays a crucial role in growth, survival and
differentiation of cancer cells (128). Targeting mutant RAS
has recently led to approved drugs (129-131).

Circ-ribonuclease P component H1 (circRPPH1) targets
YES-associated protein 1 (YAP1). CircRPPH1 (Figure 4A)
was overexpressed in BC and mediated proliferation,
migration and invasion in vitro of MCF-7 and MDA-MB-
231 cells as well as endothelial tube formation with
supernatants from circRPPH1-transfected BC cells (132).
CircRPPH1 sponged miR-556-5p, up-regulated YAP1 and
promoted tumor growth in nude mice bearing MDA-MB-231
BC cells (132).

Circ0005273 targets YAP1. Circ0005273 (Figure 4A) was
highly expressed in BC and correlated with TNM stage,
lymph node metastasis, tumor size and distant metastasis
(133). It induced proliferation, migration and cell-cycle
progression in MDA-MB-231, MCF-7 and SKBR3 BC cells
in vitro and promoted tumor growth in MDA-MB-231 cells
in nude mice (133). This was due to sponging of miR-200a-
3p, which led to up-regulation of YAP1.

Circ0000511 targets transcriptional co-activator with PDZ-
binding motif (TAZ). Circ0000511 (Figure 4A) was up-
regulated in BC and accelerated proliferation, migration,
invasion, and impeded apoptosis in MCF-7 and MDA-MB-
468 BC cells in vitro (134). Circ0000511 sponged miR-326
and up-regulated TAZ. In vivo, circ0000511 promoted tumor
growth in nude mice (134).

YAP and TAZ are transcriptional co-activators of the
Hippo pathway, which signals through components of the
extracellular matrix, cell adhesion sites, cell shape and the
actomyosin cytoskeleton and determines organ size in
animals (135-137). YAP/TAZ regulates BC-related
metastasis targets (138, 139). Therefore, targeting of the
Hippo pathway in BC is a high priority issue (140).
Verteporforin has been identified as a compound which
inhibits YAP-TEA domain family interaction (140) and
BAY1238097 interacts with YAP/TAZ and down-regulates
their transcriptional activity by inhibiting bromodomain-
containing protein 4 (141).

CircRNAs up-regulating additional targets.
Circ-ubiquitin protein ligase 1 (circUBR1) targets cyclin D1
(CCND1). CircUBR1 (Figure 4B) was up-regulated in BC
and its silencing inhibited proliferation and metastasis,

promoted apoptosis in vitro and restrained tumor growth in
vivo (142). CircUBR1 sponged miR-1299 and led to
overexpression of CCND1. The latter is overexpressed in
more than 50% of BCs, causes mammary cancer in
transgenic mice, promotes cellular proliferation and cell-
cycle progression, and has a role in BC stem cell expansion
(143). CCND1 has been found to be amplified in BC (144).
It has been found that a CCND1 G870A polymorphism
increased BC risk (145).

Circ0008673 targets cofilin 2 (CFL2). Circ0008673 (Figure
4B) was up-regulated in BC, promoted proliferation,
migration and invasion, and inhibited apoptosis of BC cells
in vitro. It acted as a sponge for miR-153-3p and its silencing
repressed BC xenograft growth in nude mice (146). This was
due to up-regulation of CFL2, which mediated growth of BC
cells in vitro (146, 147). CFL2 reversibly controls actin
polymerization and depolymerization in a pH-dependent
manner and regulation of the actin cytoskeleton in cancer
cell migration and invasion (148). CFL2 promotes cancer
cell invasion through O-Glc-Nacylation (149) and BC
invasion and metastasis (150).

Circ002178 targets collagen 1A1 (COL1A1). Circ002178
(Figure 4B) was overexpressed in BC tissues and correlated
with poor prognosis (151). Silencing of circ002178 impaired
proliferation, energy metabolism and angiogenesis.
Circ002178 bound to miR-328-3p and led to up-regulation
of COL1A1. In vivo, circ002178 stimulated growth of MDA-
MB-231 BC cells in nude mice. COL1A1 is an extracellular
matrix protein that is correlated with advanced BC, poor
prognosis, invasion and metastasis (152). Development of
the extracellular matrix is correlated with BC cancer
progression (153, 154). Taken together, these findings show
COL1A1 is a potential target for treatment of BC.

Circ0008030 targets chromobox protein 4 (CBX4).
Circ0008030 (Figure 4B) was up-regulated in BC tissues and
cells and expedited proliferation, invasion and migration of
BC cells (155). It sponged miR-515-5p, which led to up-
regulation of CBX4. Knockdown of circ0008030 suppressed
tumor growth of BC xenografts in nude mice. CBX family
proteins are canonical components of polycomb repressive
complex 1 (PRC1) which bind to DNA and transcriptionally
repress target genes via chromatin modification, acting as
oncogenes or tumor suppressors (156). CBX4 recognizes
H3K27me3, a transcriptionally suppressive epigenetic marker
(157). In BC, CBX4 exhibits oncogenic activity via NOTCH1
signaling (158). In addition miR-129-5p has been shown to
suppress BC proliferation by targeting CBX4 (159).

Circ-differentially expressed in normal cells neoplasia
domain-containing 4C (circDENN4C) targets HK2.

Weidle et al: Circular RNAs With In Vivo Efficacy in Breast Cancer-related Models (Review)

230



CircDENN4C (Figure 4B) was up-regulated in BC cells in
response to hypoxia (160). Knockdown of DENN4C in
MDA-MB-453 and SKBR3 BC cells inhibited glycolysis,
lactate production and HK2, as well as migration and
invasion under hypoxia. It was found that the observed
phenomena were due to sponging of miR-200b and -c by
circDENN4C. In addition, EMT and expression of MMP2
and -9 were increased under hypoxia by circDENN4C (160).
However, the underlying mechanisms have to be resolved in
more detail. Knockdown of circDENN4C in MDA-MB-435
cells inhibited xenograft growth in nude mice (160).
Increased glycolysis is one of the hallmarks of cancer (161,
162) and a glycolysis-related expression signature predicts
recurrence of BC (163).

Approaches and Challenges of Targeting CircRNAs

Down-regulated circRNAs can be reconstituted by
transfection of expression vectors for the corresponding
circRNA into recipient cells (164). For up-regulated
circRNAs, the new junctions generated via back-splicing
events may be specifically targeted (165). Options include
antisense-oligonucleotides (ASO), siRNAs (siRNA), short
hairpin RNA (shRNA) and the clustered regularly
interspaced short palindromic repeats (CRISPR)-Cas
(CRISPR-associated proteins) method for specific cleavage
of the target RNA. ASOs are chemically modified single-
stranded oligonucleotides (12-24-mers) that bind to their
RNA targets and, depending on the design, lead to the
RNaseH-mediated degradation or inhibit the function of
target RNAs by steric interference (166, 167). Medicinal
chemistry-based backbone and sugar modifications give rise
to optimized ASOs with improved stability, high potency,
and enabled intracellular delivery without the help of
transfection agents (166, 167). siRNA and shRNA are RNA
interference-based agents. siRNAs are 12–24-mers double-
stranded RNAs with one of the strand targets circRNAs
through complementary pairing and incorporate the circRNA
into the RNA-induced silencing complex (168). shRNAs, on
the other hand, contain a tight hairpin loop structure and
target-complementary sequences which can be delivered as
plasmids or viral vectors, allowing for stable integration of
shRNA and long-term knockdown of the target (18, 169).
The CRISPR-CAS13-based method has recently been used
for screening for functional circRNAs (170). siRNA and
shRNA can be delivered as lipid-based polymers or with
exosomes (171). However, low stability in cells, poor
intracellular delivery, and lack of cell specificity are critical
issues for RNA interference therapeutics in vivo (172).
Immunogenicity is another critical issue of the agents as
described above (173, 174). Progress in the design of new
formulations and tissue-specific targeting methods are issues
of paramount importance (175-178).

Conclusion

We have identified six down-regulated and 26 up-regulated
circRNAs which mediate efficacy in preclinical BC-related
in vivo models. According to their corresponding targets, they
can be categorized into groups which mediate
chemoresistance or signaling, or are related to HMG,
transmembrane or secreted proteins, as well as other targets.
Two down-regulated and eight up-regulated circRNAs
mediate adriamycin, tamoxifen, paclitaxel and lapatinib
resistance. Interestingly, down-regulation of circ0025202
mediates tamoxifen resistance via miR-182-5p and miR-197-
3p, with FOXO3A and HIPK3 as targets (Figure 1).
Circ006528 can mediate paclitaxel as well as adriamycin
resistance via miR-1299 and miR-1236-3p with CDK8 and
CHD4 as targets (Figure 2). SOCS2 and SOCS3 (Figure 1)
are frequently down-regulated in BC, resulting in constitutive
activation of JAK- and STAT-related signaling. Other
identified circRNAs target tumor- and metastasis-promoting
pathways driven by HMG proteins (HMGA1, -A2 and -B1)
(Figure 3). There are druggability issues with small
molecules, but interference with antibody-related moieties
emerges as an alternative, because HMGs are also present on
the cell surface (179). Further identified targets are mediators
of metastasis-related pathways. NFĸB signaling induced by
circIKBKB (Figure 4) is a mediator of bone metastasis.
Hippo-related components YAP1 (circRPPH1, circ0052372)
and TAZ (circ0000511) are also involved in metastasis of BC
(Figure 4). It remains to be established whether a therapeutic
window for corresponding inhibitors can be defined.
CircTFF1 up-regulates TFF1, which is involved in metastasis
of ER+ BC and should be investigated in further detail in this
subgroup of patients (Figure 3). A further unexplored target
identified by our search is MUC19, which merits further
investigation by target validation experiments (Figure 3).
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