
Abstract. Patients with disseminated colorectal cancer have
a dismal prognosis with a 5-year survival rate of only 13%. In
order to identify new treatment modalities and new targets, we
searched the literature for up-regulated circular RNAs in
colorectal cancer which induce tumor growth in corresponding
preclinical in vivo models. We identified nine circular RNAs
that mediate resistance against chemotherapeutic agents, seven
that up-regulate transmembrane receptors, five that induce
secreted factors, nine that activate signaling components, five
which up-regulate enzymes, six which activate actin-related
proteins, six which induce transcription factors and two
which up-regulate the MUSASHI family of RNA binding
proteins. All of the circular RNAs discussed in this paper
induce the corresponding targets by sponging microRNAs
(miRs) and can be inhibited by RNAi or shRNA in vitro and
in xenograft models. We have focused on circular RNAs with
demonstrated activity in preclinical in vivo models because
the latter is an important milestone in drug development. All
circular RNAs with in vitro activity only data are not
referenced in this review. The translational impact of
inhibition of these circular RNAs and of the identified targets
for treatment of colorectal cancer (CRC) are discussed.

CRC is the third most common malignancy and the second
cause of cancer-related death worldwide (1). In patients with
early disease, the 5-year survival rate is in the range of 90%
(2). However, in patients with advanced and metastatic
disease the 5-year survival rate is only around 13% (2).
Standard conventional treatment of CRC are surgery,
chemotherapy, and radiotherapy (3). Chemotherapy is
mainly based on 5-fluoro-uracil (5-FU), oxaliplatin (L-
OHP), capecitabine and drug combinations. Several
monoclonal antibodies (mAbs) have been approved for the
treatment of CRC. One of them is Cetuximab which is
directed against the epidermal growth factor receptor
(EGFR). Two others are directed against endothelial targets,
such as Bevacizumab that is directed against vascular
endothelial growth factor (VEGF) and Ramicurumab, which
binds to vascular endothelial growth factor receptor 2
(VEGFR2). Three other mAbs target immune checkpoint
proteins. Ipilumab is directed against cytotoxic T-
lymphocyte associated protein 4 (CTLA4) as well as
Nivolumab and Pembrolizumab which both target
programmed cell death ligand 1 (PD-1L). However, the
percentage of responding patients as well as the therapeutic
benefit is limited (3, 4). Genetic instability such as
chromosomal and microsatellite instability, mutations in
adenomatous polyposis coli (APC), protein p53 (p53),
Kirsten rat sarcoma virus (Ki-RAS), signal transduction
protein SMAD4 and phosphatidylinositol 3-kinase, its
catalytic subunit PIK3CA, as well as epigenetic
modifications such as methylation, are characteristics of
subsets of CRCs (5, 6). Four molecular subtypes based on
gene expression have been identified: CMS1 (immune),
CMS2 (canonical), CMS3 (metabolic) and CMS4
(mesenchymal); these may respond differentially to treatment
(7, 8). Taken together, identification of new targets and
treatment modalities is an issue of paramount importance.
Therefore, we have searched the literature for up-regulated
circular RNAs (circRNAs) and their corresponding targets
for possible therapeutic intervention in CRC patients. 
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Role of Circular RNAs in Cancer

CircRNAs are covalently closed RNAs which have a length
between hundred to thousands of nucleotides and are
generated by backsplicing (9). They are exceptionably stable
and have potential as diagnostic and prognostic biomarkers
as well as therapeutic targets in cancer patients (10, 11). In
addition, they exhibit a regulatory function in tissue
development, neurogenesis and myogenesis (12). As a rule,
they do not encode proteins, but in a few cases an internal
ribosome binding site mediates translation of peptides (13,
14). They act as efficient sponges for miRs (15), protein
scaffolding, protein sponges or decoys and regulators of
transcription, splicing and translation (16). circRNAs can
function as tumor suppressors or oncogenes, affecting
hallmarks of cancer such as proliferation, epithelial
mesenchymal transition (EMT), apoptosis, angiogenesis, and
metastasis (16). The role of circRNAs in CRC has been
summarized in previous studies (17, 18). In order to define
new modalities for therapeutic intervention and to identify
new targets for treatment of patients with CRC we have
searched the literature for circRNAs which are up-regulated
in CRC tissues and mediate efficacy in preclinical in vivo
models. We have excluded down-regulated circRNAs. The
identified RNAs can be inhibited by siRNA or shRNA and
the corresponding targets can be attenuated with mAbs,
small molecules or other entities if they are druggable.

Up-regulated circRNAs Conferring Drug Resistance

Circular RNAs conferring resistance to 5-fluoro-uracil (5-
FU) and oxaliplatin (L-OHP). Circ_0032833: Circ_0032833
(Figure 1) was up-regulated in folinic acid, 5-FU, oxaliplatin
(FOLFOX)-resistant CRC and was associated with resistance
against 5-FU and L-OHP (19). Knock-down of circ 0032833
sensitized FOLFOX resistant CRC cell lines to 5-FU and L-
OHP. Circ 0032833 sponged miR-125-5p which led to up-
regulation of the RNA binding protein Musashi-1 (MSI-1).
Down-regulation of circ 0032833 sensitized HCT-116R CRC
xenografts in nude mice against 5-FU and L-OHP. MSI-1
acts as an RNA binding protein and is involved in
tumorigenesis, progression, and resistance (20, 21).

Circ 0007031: Circ 0007031 (Figure 1) knock-down
repressed CRC cell proliferation, migration, invasion and
enhanced 5-FU sensitivity (22). Knockdown of circ 007031
inhibited growth of 5-FU-resistant CRC xenografts in nude
mice. Circ 007031 sponged miR-133b and led to up-
regulation of ATP binding cassette subfamily C, member 5
multidrug resistance associated protein 5 (ABCC5) which
acts as drug efflux transporter and functions as a mediator of
chemotherapy response (23, 24).

circRNA protein kinase, DNA activated, catalytic subunit
(circ-PRKDC): Circ-PRKDC (Figure 1) was up-regulated in

5-FU resistant CRC tissues and cell lines such as SW480/5-
FU and SW620/5-FU (25). Knockdown of circ-PRKDC
suppressed 5-FU resistance in CRC cells. Circ-PRKDC
sponged miR-375 which led to expression of transcription
factor FOXM1, an activator of the WNT/β catenin pathway
(26-28). The latter has been shown to induce 5-FU resistance
(29). Knockdown of circ-PRKDC suppressed 5-FU resistance
of SW480/5-FU CRC xenografts in nude mice (30).

Circ 0000338: Knockdown of circ 0000338 (Figure 1)
reversed 5-FU resistance in SW480/5-FU and HCT116/5-FU
CRC cells in vitro (31). Circ 0000338 was packaged into
exosomes and could be internalized by 5-FU sensitive CRC
cells. Intercellular transfer of circ 0000338 conferred 5-FU
resistance in HCT116 and SW480 CRC cells in vitro (31).
Intra-tumoral injection of circ 0000338 into SW480 CRC
xenografts enhanced 5-FU resistance in nude mice (31). Circ
000038 sponged miRs-217 and 485-3p (31). miR-217 can
target astrocyte-elevated gene 1(AEG-1, metadherin),
mitogen-activated protein kinase (MAPK) and transcription
factor ZEB1 (32-34). miR-485-3p was shown to target the
spindle-assembly factor TPX2 (35).

Circ 0071589 confers resistance to cis-platin (CDDP). Circ
0071589 (Figure 1) was found to be overexpresssed in
CDDP-resistant CRC tissues and cell lines (36). Knockdown
of circ 0071589 inhibited CDDP resistance, proliferation,
migration, and invasion and promoted apoptosis in CDDP
resistant CRC cell lines HCT116/CDDP and LoVo/CDDP in
vitro (36). In nude mice, knockdown of circ 0071589
enhanced cytotoxicity of CDDP in HCT116/CDDP
xenografts (36). From a mechanistic point of view, circ
0071589 sponged miR-526b-3p which led to the up-
regulation of transcription factor Krueppel-like factor 12
(KLF12), which can act as an oncogene (36-38).

Exosomal circular sponge for miR-122 (ciRS-122) confers
oxaliplatin resistance (L-OHP). ciRS-122 (Figure 1) is
highly expressed in L-OHP resistant cells such as SW480/L-
OHP (39). Exosomes from the L-OHP resistant CRC cell
line SW480/L-OHP could transfer ciRS-122 to SW480 cells
in vitro and in vivo and enhance expression of the M2
isoform of pyruvate kinase (PKM2) accelerating glycolysis
and drug resistance (39). It was shown that drug resistance
was induced by sponging of miR-122 by ciRS-122 and
subsequent up-regulation of PKM2. Systematically injected
exosomal si-ciRS-122 could sensitize the response to L-OHP
of SW480/L-OHP xenografts in nude mice (39).

Circ 001680 confers irinotecan (IRT) resistance. Circ 001680
(Figure 1) was overexpressed in CRC tissues in comparison to
matching normal tissues (40). It promoted proliferation and
migration of SW480 and HCT116 CRC cells and induced stem
cell spheres and IRT resistance (40). In nude mice, circ 001680
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expressing CRC cells were resistant to intra-peritoneally
delivered IRT and knockdown of circ 001680 decreased tumor
volume. Circ 001680 sponged miR-340 resulting in up-
regulation of B lymphoma Mo-MLV insertion region 1
homolog (BMI-1). The latter acted as a transcriptional
repressor and is a member of the polycomb group of proteins
which modify chromatin structure (41). BMI-1 mediates EMT,
liver metastasis and drug resistance (42, 43).

Circ 0006174 confers doxorubicin (DOX) resistance. Circ
0006174 (Figure 1) was up-regulated in DOX-resistant CRC
tissues and cell lines (44). Down-regulation of circ 0006174
inhibited DOX resistance, cell proliferation, invasion, and
migration of CRC cells (44). Circ 0006174 could enhance
DOX-resistance via exosomal intercellular transfer. Circ
0006174 sponged miR-1205 resulting in up-regulation of
cyclin D2 (CCND2). The latter functions as an allosteric
regulator of cyclin-dependent kinase 4,6 (CDK4, CDK6) to

regulate cell-cycle transition from the G1 to S phase (45). In
nude mice, knockdown of circ 0006174 enhanced sensitivity
to DOX. Exosomal circ 0006174 is a potential biomarker for
diagnosis of chemoresistance in CRC.

Circ centrosome/spindle pole associated protein 1 (circ
CSPP1) confers doxorubicin resistance. Circ CSPP1 (Figure
1) was found to be overexpressed in DOX-resistant CRC
tissues and cell lines such as LoVo/DOX and HCT116/DOX
(46). Knockdown of circ CSPP1 enhanced DOX sensitivity
and suppressed cell proliferation, migration and invasion in
these CRC cell lines (46). In nude mice, knockdown of circ
CSPP1 repressed tumor growth of LoVo/DOX xenografts
(46). Circ CSSP sponged miR-944 resulting in up-regulation
of frizzled 7 (FZD7). The latter is a member of the frizzled
(FZD) family which regulates canonical and non-canonical
WNT pathways, is involved in metastasis and represents a
promising target for drug discovery (47-49).
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Figure 1. Circular RNAs conferring resistance to chemotherapeutic agents in colon-cancer related preclinical in vivo models. The first line shows
the corresponding circ-RNA, the second line displays the chemotherapeutic agents against which resistance is induced, the third line shows the
microRNA which is sponged by the circ RNA and the fourth line shows the corresponding target(s). 5-FU: 5-Fluoro-uracil; ABCC5: ATP binding
cassette subfamily C member 5; AEG: astrocyte elevate gene 1; BMI-1: B lymphoma Mo-MLV insertion region 1 homolog; CCND2: cyclin D2;
CDDP: cisplatin; circ CSPP1: centrosome/spindle pole associated protein; ciRS: circ sponge for miR-122; DOX: doxorubicin; circ PRKDC: protein
kinase, DNA activated, catalytic subunit; FOXOM1: transcription factor M1; FZD7: frizzled 7; IRT: irinotecan; KLF12: Krüppel-like factor 12;
L-OHP: oxaliplatin; MAPK: mitogen-activated protein kinase; miR: micro RNA; MSI1: Musashi; PKM2: pyruvate kinase, isoform M2; TPX2:
spindle-assembly factor TPX2; ZEB1: transcription factor ZEB1.



Circular RNAs Up-regulating Transmembrane
Proteins and Secreted Factors

Circ 0000467 targets transmembrane tyrosine kinase
(TYRO3). Circ 0000467 (Figure 2) was highly expressed in
CRC tissues and cells (50). In vitro, silencing of circ
0000467 inhibited proliferation, migration, invasion,
glycolysis, and accelerated apoptosis in CRC cells. Silencing
of circ 0000467 hindered growth of CRC-related xenografts
in nude mice (50). Circ 0000467 sponged miR-330-5p
resulting in up-regulation of transmembrane tyrosine kinase
TYRO3. The latter is a member of the TAM (TYRO3, AXL,
MERTK) family of transmembrane receptor tyrosine kinases,
is overexpressed in tumors and induces proliferation,
migration, invasion, EMT and chemoresistance of tumor
cells and activates phosphoinosite-3 kinase (PI3K)/ser-thr
kinase AKT/mammalian target of rapamycin (mTOR),
MAPK/ extracellular signal regulated kinase (ERK), src
family kinase FYN and Janus kinase JAK/signal transducer
and activator of transcription (STAT) signaling. Expression
of circ 0000467 correlates with poor prognosis in CRC
patients (51-53). TYRO3 also induces resistance against
PD1/PD-1L therapy (54).

Circ 0067835 targets insulin- like growth factor receptor 1
(IGF-1R). Exosomal circ 0067835 (Figure 2) was up-
regulated in the serum of CRC patients after radiotherapy
(55). Its knock-down inhibited proliferation, cell-cycle
progression and enhanced radiosensitivity in vitro in SW620
and HCT-116 CRC cells after exosomal transfer. In nude
mice, its knockdown inhibited tumor growth and enhanced
radiosensitivity in SW620 CRC cells. It targeted miR-296-
5p resulting in up-regulation of IGF-1R (55). In preclinical
CRC-related models, IGF-1R is a driver of tumor growth and
metastasis and can be targeted with oligonucleotides,
tyrosine kinase inhibitors and mAbs (56, 57). However, in
clinical studies, with single agent-based therapy, consistently,
lack of efficacy was noted in cancer patients (58-60). The
challenge will be the identification of effective therapies
based on biomarkers.

Circ-Denn domain containing 4C (circ DENND4C) up-
regulates glucose transporter 1 (GLUT1). Circ DENND4C
(Figure 2) was up-regulated in CRC tissues in comparison to
corresponding matching tissues (61). Knockdown of circ
DENND4C in SW480 and HCT-116 CRC cells inhibited cell
proliferation, migration, and glycolysis in vitro. Silencing of
circ DENN4C in SW480 CRC cells led to reduced tumor
growth in immunodeficient mice. Circ DENND4C sponged
miR-760 induced up-regulation of glucose transporter 1
(GLUT1). The latter is highly expressed in tumor cells and
acts as a major glucose transporter and is involved in
glycolysis of mammalian cells. Since glycolysis generates

less ATP than complete oxidative breakdown, cancer cells
need more molecules of glucose than normal cells. GLUT1
is expressed in most normal tissues and represents a
transmembrane receptor with 12 membrane spanning α-
helices (62-63). GLUT1 is a potential target for anticancer
therapy and can be inhibited with small molecules, mAbs,
siRNA and shRNA (64-66).

Circ-ASXL1 transcriptional regulator1 (circ ASXL1) targets
glutamate ionotropic receptor kainate type subunit 3
(GRIK3). Circ ASXL1 (Figure 2) was up-regulated in CRC
tissues in comparison to non-transformed cell line NCM460
representing normal intestinal tissues (67). Knock-down of
circ ASXL1 in SW480 and SW620 CRC cell lines
repressed proliferation, invasion, induced G0/G1 phase
arrest and induced apoptosis in vitro and inhibited tumor
growth in immuno-deficient mice (67). Circ ASXL1 acted
as a sponge for miR-1205 resulting in up-regulation of
GRIK3 (67). The latter responds to neurotransmitter
glutamate and is associated with diseases such as
depersonalization disorders and schizophrenia (68). It has
been shown that GRIK3 is involved in CRC proliferation
and migration (69).

Circ runt related transcription factor (circ-RUNX1) targets
solute carrier family 38, member 1 (SLC38A1). Circ RUNX1
(Figure 2) was up-regulated in CRC tissues and cells in
comparison to normal colonic tissues and cells (70). Its
knockdown restrained CRC colony formation, migration,
invasion, glutaminolysis, induced apoptosis in vitro and
blocked tumor growth in immuno-deficient mice (70). Circ
RUNX1 sponged miR-485-5p leading to up-regulation of
SLC38A1. The latter functions as a glutamine transporter
and promotes proliferation and migration of human CRC
cells (71). Targeting glutamine metabolism is part of ongoing
efforts to treat CRC (72).

Circ HERC family of ubiquitin liases 4 (circ-HERC4) targets
C-terminal binding protein 2 (CTBP2) and down-regulates
E-cadherin. Expression of circ HERC4 (Figure 2) was
correlated with poor prognosis in patients with CRC (73).
Circ- HERC4 behaved as an oncogene and promoted
proliferation, migration, and invasion of CRC cell lines
HCT-116, DLD-1 and SW480 in vitro. Knockdown of circ
HERC4 in HCT-116 CRC cells inhibited tumor growth in
immuno-deficient mice (73). HERC4 sponged miR-556-5p
and subsequent up-regulation of CTBP2 which suppressed
expression of E-cadherin (73). Two major splice variants
(CTBP1 and CTBP2) have been identified which are
involved in EMT, inhibition of apoptosis and repression of
tumor suppressors such as E-cadherin, p16 inhibitor
p16Ink4a, p15 inhibitor p15Ink4b and phosphatase and
tensin homolog (PTEN) (74, 75).
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Circular homeodomain-interacting protein kinase 3 (circ-
HIPK3) targets IGF-1R, epidermal growth factor receptor
(EGFR), transcription factor ying-yang1 (YY1) and focal
adhesion kinase (FAK). Circ HIPK3 (Figure 2) was up-
regulated in patients with CRC and predicted poor
prognosis (76). Silencing of circ HIPK3 in HCT-116 and
HT29 CRC cells inhibited proliferation, migration,
invasion, and induced apoptosis in vitro. Circ HIPK3
sponged miR-7 resulting in up-regulation of IGF-1R,
EGFR, YY1 and FAK (76). In immuno-compromised mice,
a miR-7 agomir reduced tumor volume and weight and
inhibited liver metastasis in the tail vein injection model.
IGF-1R and EGFR play oncogenic roles in CRC (77-79).
YY1 acts as a transcriptional repressor protein and inducer
of cancer metastasis (79). FAK functions both as a non-

receptor tyrosine kinase and as an adaptor protein
regulating adhesion, signaling and cell migration. It also
promotes cell survival in response to stress (80, 81).

Circular RNAs Which Up-regulate Secreted Factors

Circ 0030998 targets vascular endothelial growth factor-A
(VEGF-A). Circ 0030998 (Figure 3) was up-regulated in
CRC tissues and associated with poor prognosis in CRC
patients (82). It promoted proliferation of HCT-116 and
SW480 CRC cells and tube-like structure formation in
HUVECs (82). Knockdown of circ 0030998 reduced tumor
growth of SW480 cells in immuno-deficient mice. Circ
0030998 sponged miR-567 resulting in up-regulation of
VEGF-A. The latter is the primary factor for tumor vascular
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Figure 2. Circular RNAs up-regulating transmembrane receptors in colon-cancer related preclinical in vivo models. The first line shows the
corresponding circ-RNA, the second line shows the miR which is sponged by the specific circ-RNA, the third line displays the specific transmembrane
receptor up-regulated and the fourth line indicates the effect of inhibition of the specific circ-RNA on tumor growth and metastasis in nude mice.
Circ ASXL1: Circ transcriptional regulator 1; circ DENN: domain containing 4C; circ HERC: circ HERC family of ligases 4; circ HIPK3: circ
homeodomain-interacting protein kinase 3; circ RUNX1: runt related transcription factor 1; CTBP2: C-terminal binding protein 2; E-cad: E-
cadherin; EGFR: epidermal growth factor; FAK: focal adhesion kinase; GLUT1: glucose transporter 1; GRIK3: glutamate ionotropic receptor
kainate type subunit 3; IGF-1R: insulin-like kinase receptor 3; MET: metastasis; miR: micro RNA; SLC38A1: solute carrier family 38 member 1;
TG: tumor growth; YY1: transcription factor Ying-Yang1.



function, promoting EMT and metastasis (83). For CRC,
Bevacizumab, a mAb directed against VEGF-A (84) and
Ramucirumub, a mAb directed against VEGFR2 (85), are
approved therapeutic agents.

Circ 0000372 targets interleukin 6 (IL6). Circ 0000372
(Figure 3) was up-regulated in CRC tissues and correlated
with poor prognosis (86). Its silencing suppressed
proliferation, migration, and invasion of CRC cells in vitro
and growth of CRC-related xenografts in nude mice (86). It
sponged miR-495 resulting in up-regulation of IL6 and
JAK2/STAT3 signaling (86). The IL6 pathway is activated
in many types of tumors resulting in proliferation, survival,
invasion, and metastasis (87, 88). Presently the food and
drug administration agency (FDA) has approved inhibitors

of the IL6/JAK/STAT3 pathway targeting IL6, interleukin 6
receptor (IL6R) or JAKs for the treatment of inflammatory
conditions and myeloproliferative neoplasms (89). IL6
signaling is activated in CRC and it remains to be seen
whether its inhibition can be converted into clinical benefit
in patients with CRC (90).

Circ runt-related transcription factor 1 (RUNX1) targets
insulin-growth factor 1 (IGF-1). Circ RUNX1 (Figure 3) was
up-regulated in CRC patients and correlated with cancer
progression (91). In vitro, circ RUNX1 promoted proliferation,
migration, invasion, and inhibited apoptosis in HCT-116 and
SW480 CRC cells. In HCT-116 cells, circ RUNX1 enhanced
tumor growth in nude mice and liver metastasis after
intrasplenic injection (91). It sponged miR-145-5p resulting in
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Figure 3. Circular RNAs up-regulating secreted factors in colon-cancer related preclinical in vivo models. The first line shows the corresponding
circ-RNA, the second line displays the miR which is sponged by the specific circ-RNA, the third line indicates the specific secreted factor up-
regulated and the fourth line outlines the effect of inhibition of the specific circ-RNA on tumor growth and metastasis in nude mice. Circ ALG1:
Circ chitobiosyldiphosphorodolchiol β-mannosyltransferase; circ CTNNA1: circ catenin α1; circ RUNC1: circ runt-related transcription factor 1;
CXCL5: C-X-C motif ligand 5; IGF-1: insulin-growth factor 1; IL6: interleukin 6; MET: metastasis; miR: microRNA; PLGF: placental growth
factor; TG: tumor growth; VEGF A: vascular endothelial growth factor A.



up-regulation of IGF-1, a circulating neuroendocrine hormone
which promotes CRC tumorigenesis and metastasis (92, 93).
In CRC, IGF-1 signaling is involved in glucose metabolism
and circulating IGF-1 correlates with risk of CRC (94, 95).

Circ catenin α1 (circ CTNNA1) targets chemokine C-X-C
motif ligand 5 (CXCL5). Circ CTNNA1 (Figure 3) was up-
regulated in CRC tissues and cell lines (96). In SW480 and
SW620 CRC cells, silencing of circ CTNNA1 suppressed
proliferation, metastasis, induced G0/S cell-cycle arrest and
enhanced apoptosis in vitro. In immunodeficient mice, sh-circ
CTNNA1 treated CRC cells inhibited tumor growth after
subcutaneous implantation (96). Circ CTNNA1 sponged miR-
363-3p resulting in up-regulation of C-X-C motif chemokine
(CXCL5). It has been independently shown that CXCL5
mediates proliferation, migration and invasion of CRC cells
and might be a serum prognostic factor in CRC patients (96).
It was shown that CXCL5 can activate tumor angiogenesis
by the AKT/nuclear factor κB (NFκB) pathway (97). CXCL5
also can activate transcription factor SNAIL and
AKT/GSK3β/β catenin pathways through interaction with C-
X-C motif-chemokine receptor 2 (CXCR2) (98, 99).

Circ chitobiosyldiphosphodolichol β-mannosyltransferase
(circ ALG1) targets placental growth factor (PLGR). Circ
ALG1 (Figure 3) was highly expressed in CRC tissues and
enhanced migration and invasion in HT-29, HCT-116 and
SW480 CRC cells in vitro (100). Interference with circ
ALG1 decreased liver and lung metastasis in HCT-116 and
SW480 CRC cells in nude mice after tail vein injection. Circ
ALG1 sponged miR-342-5p which could be enhanced by
m6A modification of circ ALG1 and led to up-regulation of
PLGF (100). The latter is a member of the VEGF family that
binds to VEGFR1, but not to VEGFR2, and might be
involved in pathological angiogenesis (101-103). However,
PLGF is a highly controversial target, because it has also
been reported that inhibition of PLGF with mAbs does not
inhibit angiogenesis during primary tumor growth and
combination of anti-VEGF-1 mAbs with anti-PLGF mAbs
did not result in improved anti-angiogenic activity (104). The
mechanistic details of the possible role of PlGF with respect
to pro-tumoral activity as described above have to be worked
out in more detail due to the multifaceted role of PLGF in
cancer (105). In CRC, PLGF expression correlates with
disease progression and patient survival and may be used as
a prognostic indicator (106).

Circular RNAs Up-regulating 
Signaling Components

Circ 3823 up-regulates transcription factor 7 (TCF7). Circ
3823 (Figure 4) was highly expressed in CRC tissues
compared to matching normal tissues (107). In HCT-116 and

SW 480 CRC cells circ 3823 promoted proliferation and
invasion, inhibited apoptosis and supernatants of these cells
transfected with circ 3823 induced tube formation of
HUVECs. In nude mice, HCT-116 cells transfected with circ
3823 exhibited increased tumor growth after subcutaneous
implantation and promoted metastasis to the lungs after tail
vein injection (107). Circ 3823 sponged miR-30c-5p and
subsequently up-regulated TCF-7. The latter mediates
proliferation, angiogenesis, and metastasis by up-regulation
of CCND1 and transcription factor MYC (108-110) and has
therapeutic potential in CRC (111). The deregulation of
WNT/β catenin signaling in CRC is well documented (112).
Circ Arf GAP with FG repeats 1 (circ AGFG1) up-regulates
transcription factor YY1 and β-catenin (CTNNB1). Circ
AGFG1 (Figure 4) was up-regulated in CRC patients and
was higher in patients with liver metastases compared to
patients without liver metastasis (113). Its silencing
suppressed migration, invasion and stemness in SW480 and
HCT-116 CRC cells in vitro. In nude mice, circ AGFG1
promoted tumor growth and liver metastasis after
subcutaneous implantation of these cell lines (113). It
sponged miRs-4262 and -185-5p resulting in up-regulation
of YY1 and CTNNB1. YY1 promotes CRC cell proliferation
(114) and migration and invasion of CRC through the
WNT/β catenin signaling pathway (115). CTNNB1 is the
downstream effector component of WNT signaling in CRC
(116) and has potential as a biomarker to stratify patients
with CRC (117).

Circ ras association domain-containing protein 2 (circ
RASSF2) up-regulates frizzled 4 (FZD4). Circ RASSF2
(Figure 4) was up-regulated in CRC patients and high
expression correlated with poor prognosis (118). Its
knockdown inhibited proliferation, invasion, migration, and
enhanced apoptosis in CRC cells in vitro, whereas
overexpression had the opposite effects. Its knockdown also
restrained tumor growth of CRC xenografts in nude mice after
subcutaneous implantation. Circ RASSF22 sponged miR-195-
5p leading to overexpression of FZD4. FZD receptors are
seven transmembrane GPCRs which mediate WNT signaling
with a cysteine-rich domain which is involved WNT binding
(119). They are potential targets for cancer therapy (120).

Circ 0000392 targets phosphatidyl 3 kinase regulatory
subunit γ (PIK3R3). Circ 0000392 (Figure 4) was up-
regulated in CRC and associated with tumor progression
(121). Knock-down in SW620 and RKO CRC cells inhibited
proliferation and invasion in vitro. Knock-down of circ
0000392 in SW620 xenografts decreased tumor growth after
subcutaneous implantation into nude mice. Circ 0000392
acted as a sponge for miR-193a-5p resulting in up-regulation
of PIK3R3 (121). The latter induces EMT and promotes
metastasis in CRC (122). PI3K is an important target in
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cancer and several clinical studies are ongoing (123-125).
Circ secreted protein acidic and rich in cysteine (circ
SPARC) targets JAK2/STAT3 signaling. Circ SPARC (Figure
4) was overexpressed in the CRC tissues and plasma of
patients (126). It promoted proliferation and invasion in
HCT116 and DLD1 CRC cells. In immunodeficient mice,
circ SPARC improved tumor growth of HCT116 xenografts
after subcutaneous implantation and lung metastasis after tail
vein injection. Circ SPARC targets miR-485-3p resulting in
activation of JAK2. In addition, it facilitated translocation of
STAT3 into the nucleus by recruiting RNA binding protein
fused in sarcoma (FUS) (127, 128). JAK/STAT pathway
inhibitors have been identified and are presently evaluated
in clinical trials in cancer patients (129).

Circ component of oligomeric Golgi complex (circ COG2)
targets transforming growth factor β2 (TGFβ2). Circ COG2
(Figure 4) was up-regulated in CRC tissues and associated with

poor prognosis (130). It mediated proliferation, migration, and
invasion in HCT8 and SW480 CRC cells in vitro. Circ COG2
sponged miR-1305 and up-regulated TGFβ2. Circ COG2
promoted EMT by the miR-1305/TGFβ2/SMAD3 pathway
(130). Circ COG2 containing exosomes injected into HCT8
CRC cells gave rise to increased tumor growth in immuno-
deficient mice. TGFβ/SMAD signaling can promote EMT and
metastasis as shown in numerous examples (131, 132).
However, it should be kept in mind that TGFβ exerts pro- as
well as antitumoral properties, depending on tumor-type stage
of progression and molecular context (133).

Circ 0029803 targets Ski-oncogene like (SKIL). Increased
expression of circ 0029803 (Figure 4) was associated with
progression of CRC (134). Knockdown of circ 29803 in
HCT116 and SW480 CRC cells inhibited colony formation,
migration, invasion, EMT and glycolysis and induced
apoptosis in vitro (134). Circ 0029803 sponged miR-216b-
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Figure 4. Circular RNAs up-regulating signaling components in colon cancer preclinical in vivo models. The first line shows the corresponding
circ-RNA, the second line displays the miR which is sponged by the specific circ-RNA, the third line indicates the specific signaling component up-
regulated and the fourth line outlines the effect of inhibition of the specific circ-RNA on tumor growth and metastasis in nude mice. AJUBA: LIM
protein AJUBA; circ AGFG1: circ Arf GAP with FC repeats 1; circ COG2: circ component of oligomeric complex 2; circ RASSF2: circ ras-
associated domain-containing protein 2; circ SPARC: circ secreted protein acidic and rich in cysteine; CTNNB1: β catenin; DNMT3A: DNA
methyltransferase 3A; FZD4: frizzled 4; JAK2: Janus kinase 2; MET: metastasis; PIK3R3: phosphatidyl 3 kinase regulatory subunit γ 3; SKIL:
Ski oncogene like; TCF-7: transcription factor 7; TG: tumor growth; TGF: transforming growth factor; TGFβ2: transforming growth factor β2;
YAP: yes-associated protein; YY1: transcription factor ying-yang1; WNT: wingless-related integration site.



5p resulting in up-regulation of SKIL. Down-regulation of
circ 0029803 in SW480 CRC cells decreased in vivo growth
in immuno-deficient mice. SKIL encodes a transcriptional
co-repressor which antagonizes TFGβ signaling. SKIL can
act as an oncogene as well as a tumor suppressor (135-137).

Circ 01288846 up-regulates AJUBA and inhibits Hippo/YAP
signaling. Circ 01288846 (Figure 4) was up-regulated in CRC
tissues and mediated proliferation and migration in HCT116 and
SW480 CRC cells (138) in vitro. Knockdown of circ
012888846 in SW480 cells resulted in reduced tumor growth in
nude mice (138). Circ 01288846 sponged miR-1184 mediating
up-regulation of AJUBA which inhibits HIPPO/YAP signaling.
AJUBA is a 55 amino acid protein of the LIM protein family
which transmits signals between cytoplasm and nucleus and
exerts pro- and anti-tumoral functions (139, 140). AJUBA is up-
regulated in CRC and promotes metastasis (141, 142).

Circ 0084615 targets DNA methyltransferase 3A (DNMT3A).
Circ 0084615 (Figure 4) was up-regulated in CRC and
correlated with advanced clinical stage and poor survival rate
(143). Depletion of circ 0084615 impeded CRC cell
proliferation, migration, and invasion in vitro. circ 0084615
mediated lung metastasis of CRC cells in immuno-deficient
mice. It sponged miR-599 and up-regulated DNMT3A (143).
The latter acts an epigenetic modifier through methylation of
CpG islands and promotes proliferation and metastasis of
CRC (144). In mice, deletion of DNMT3A results in
inhibition of intestinal tumor formation (144, 145). DNMTs
are often deregulated in cancer and their inhibitors might be
the basis for new directions of therapy (146).

Circ RNAs Up-regulating Enzymes

Circ 5615 up-regulates tankyrase (TNKS). Expression of circ
5615 (Figure 5) correlated with poor clinical outcome in
patients with CRC (147). In HCT116 and SW480 CRC cells,
circ 5615 mediated progression from G1/S to G2/M,
proliferation, and invasion in vitro. It promoted growth of
HCT116 xenografts after subcutaneous implantation into nude
mice (147). Circ 5615 sponged miR-149-5p leading to up-
regulation of TNKS and activation of the WNT/β catenin
pathway. TNKSes are multifunctional poly-ADP polymerases
with protumoral functions involved in WNT signaling,
telomere maintenance, regulation of mitosis and vesicle
trafficking (148, 149). TNKS inhibitors have been identified
and are presently evaluated as antitumoral agents (150, 151).

Circ formin 2 (circ FMN2) up-regulates human telomerase
reverse transcriptase (hTERT). Circ FMN2 (Figure 5) was
associated with advanced tumor stage and distant metastasis
(152). Knock-down of circ FMN2 in HCT116 and HT29 CRC
cells inhibited growth in vitro. Knock-down of circ FMN2 in

HCT116 cells resulted in decreased tumor growth in immuno-
compromised mice after subcutaneous implantation. Circ
FMN2 sponged miR-1182 leading to up-regulation of hTERT.
Circ FMN2 was found in exosomes secreted into the serum of
CRC patients (152). hTERT functions as a ribonucleoprotein
that adds TTAGGG tandem repeats to telomere ends and is
involved in replication, proliferation, and metastasis. Several
small molecule telomerase inhibitors or hTERT-based
immunotherapeutic agents are evaluated in clinical trials in
cancer patients, but none has yet received approval (153-155).

Circ 101555 up-regulates cyclin-dependent kinase 6 (CDK6)
and replication protein A3 (RPA3). Circ 101555 (Figure 5)
was up-regulated in CRC cancer and correlated with poor
prognosis (156). In vitro and in vivo, silencing of circ
101555 suppressed proliferation and induced apoptosis of
CRC cells. It sponged miR-597-5p inducing up-regulation of
CDK6 and RPA3 (156, 157).

Circ 000984 up-regulates CDK6. Circ 000984 (Figure 5)
was up-regulated in CRC tissues compared to matched
normal tissues and correlated with Tumor, Nodes and
Metastasis (TNM) stage (158). In SW480 and SW620 CRC
cells, silencing of circ 000984 inhibited proliferation, G0/G1
progression, migration, and invasion in vitro. Knockdown of
circ 000984 attenuated growth of SW480 xenografts in
immuno-compromised mice. Circ 000984 sponged miR-106b
leading to up-regulation of CDK6. Enhanced CDK6 activity
and constitutive activity of cyclin D/CDK4,6 has been found
in several types of cancer (159, 160). Several CDK4/CDK6
inhibitors have been approved for hormone-dependent breast
cancer. In CRC, comprehensive expression studies of CDK6
should be performed (161, 162).

Circ tumor protein 53 (circTP53) up-regulates cyclin-
dependent kinase-like 3 (CDKL3). Circ TP53 (Figure 5) was
up-regulated in CRC tissues (163). It promoted proliferation,
invasion, migration and reduced the apoptotic rate of CRC
cells in vitro. Knockdown of circ TP53 could inhibit tumor
growth of CRC xenografts after subcutaneous implantation
into nude mice (163). Circ TP53 sponged miR-876-3p
resulting in up-regulation of CDKL3. The latter was found
to be increased in anaplastic large cell lymphoma (164).

Circ 0007142 up-regulates glycerophosphodiesterase domain
containing 5 (GDPD5). Circ 0007142 (Figure 5) was
overexpressed in CRC and its knockdown facilitated apoptosis
and ferroptosis in CRC cells in vitro and in vivo (165). It
sponged miR-874-5p and subsequently up-regulated GDPD5.
The latter mediates cleavage of glycosylphosphatidylinositol
(GPI)-anchor of target proteins and is involved tumor cell
migration, neurite formation and drives spinal motor neuro
differentiation (166-168).
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Circular RNAs Up-regulating 
Actin-related Components

Circ tubulin γ complex associated protein 3 (circTUBGCP3)
up-regulates RHO-associated coiled coil containing protein
kinase 1 (ROCK1). Circ TUBGCP3 (Figure 6) was up-
regulated in CRC tissues and cell lines (169). Interference
with circ TUBGCP3 inhibited colony formation, migration,
invasion, cell-cycle progression, glycolysis and promoted
apoptosis in CRC cell lines in vitro and in vivo after
subcutaneous implantation into nude mice (169). Circ
TUBGCP3 sponged miR-375 leading to up-regulation of
ROCK1. The latter is a serine threonine kinase which acts as
an effector of GTPase RHOA and promotes generation of
contractile force and regulates the actomyosin cytoskeleton,
cell-cell, and cell-matrix interactions (170). It has been

shown that up-regulated STAT3 and RHOA signaling in
CRC cells promotes invasion and migration (171). Due to
the involvement of ROCK1 in motility, metastasis, and
angiogenesis, ROCK1 is a potential target for CRC therapy
(172, 173).

Circ NOP2/SUN domain family member 2 (circ NSUN2) up-
regulates RHO-associated coiled coil containing protein
kinase 2 (ROCK2). Circ NSUN2 (Figure 6) was highly
expressed in CRC tissues compared to adjacent tissues (174).
It promoted proliferation, migration, and inhibited apoptosis
in HCT116 and T84 CRC cells in vitro and attenuated tumor
growth in vivo in nude mice. Circ NSUN2 sponged miR-
181-5p resulting in up-regulation of ROCK2 (174), which is
a downstream effector of RHOA GTPase. The latter affects
CRC proliferation, apoptosis, invasion, and metastasis by
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Figure 5. Circular RNAs up-regulating enzymes in colon-cancer preclinical in vivo models. The first line shows the corresponding circ-RNA, the
second line displays the miR which is sponged by the specific circ RNA, the third line outlines the specific enzyme up-regulated and the fourth line
indicates the effect of inhibition of the specific circ-RNA on tumor growth in nude mice. CDK6: Cyclin-dependent kinase 6; CDKL6: cyclin-dependent
kinase-like 3; circ FMN2: circ formin 2; circ TP53: circ tumor protein 53; GDPD5: glycerophoshodiesterase domain containing 5; hTERT:
telomerase reverse transcriptase; miR: micro RNA; TG: tumor growth; TNKS: tankyrase.



stabilization of β-catenin (175) and therefore is a potential
target for CRC therapy.

Circ-centrosome and spindle pole-associated protein 1 (circ
CSPP1) up-regulates LIM and SH3-domain protein 1
(LASP1). Circ CSSP1 (Figure 6) was overexpressed in CRC
and corresponding cell lines (176). Its knockdown attenuated
proliferation, migration, invasion, and enhanced apoptosis in
HCT-116 and SW480 CRC cells in vitro. Circ CSSP1
sponged miR-431 leading to up-regulation of LASP1 (176).
Knockdown of circ CSSP1 in SW480 cells attenuated tumor
growth in nude mice after subcutaneous implantation.
LASP1 interacts with the cytoskeleton at sites of dynamic F-
actin assembly and several other binding partners, and its
overexpression is associated with tumor aggressiveness. It is

ubiquitously expressed in normal tissues, albeit at different
levels (177).

Circ phenylalanine-tRNA ligase alpha subunit (circ-FARSA)
up-regulates LIM and SH3-domain protein 1 (LASP1). Circ-
FARSA (Figure 6) was up-regulated in CRC and was
associated with poor survival (178). Its knockdown inhibited
proliferation, migration, and invasion of CRC cells. It
sponged miR-330-5p which led to up-regulation of LASP1.
The latter can interact with Wiskott-Aldrich syndrome
protein to stimulate actin polymerization, migration, and
invasion (179). LASP1 can activate signaling pathways such
as PI3K/AKT and TGF-β/SMAD (180, 181). Activation of
proliferation and survival pathways seems to be an important
feature of LASP1 in oncology (182, 183). Inhibition of circ
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Figure 6. Circular RNAs up-regulating actin-related components in colon-cancer related preclinical in vivo models. The first line shows the
corresponding circ-RNA, the second line displays the miR which is sponged by the specific circ RNA, the third line outlines the up-regulated actin-
related protein, and the fourth line indicates the effect of inhibition of the specific circ RNA on tumor growth in nude mice. circ CSSP1: Circ-
centrosome and spindle pole-associated protein 1; circ FARSA: circ phenylalanine-t-RNA ligase α subunit; circ NSUN 2: circ NOP2/SUN domain
family member 2; circ TUBGCPC3: circ tubulin γ complex associated protein 3; DIAPH1: diaphanous homolog 1; LASP1: LIM- and SH3 domain
protein 1; miR: microRNA; MYO6: myosin 6; ROCK1,2: RHO-associated coiled coil protein kinase 1,2; TG: tumor growth.



FARSA inhibits growth of CRC cells in vivo in nude mice
after subcutaneous implantation.

Circ 0044556 up-regulates diaphanous homolog 1
(DIAPH1). Circ 0044556 (Figure 6) was up-regulated in
CRC and its silencing inhibited proliferation, cell-cycle
progression, migration, invasion and EMT of CRC cells
(184). It sponged miR-665 and up-regulated DIAPH1. In
nude mice, circ 0044556 promoted growth of CRC
xenografts after subcutaneous implantation. DIAPH1 is part
of the formin family, a group of proteins involved in actin
polymerization and acting as RHO-GTPase effector proteins
(185). DIAPH1 is a potential target for cancer therapy (186).

Circ 0011385 up-regulates myosin 6 (MYO6). Circ 0011385
(Figure 6) was up-regulated in CRC tissues and cells (187).
In HCT-116 and SW480 CRC cells its knockdown inhibited
proliferation, migration and invasion and promoted apoptosis
in vitro. circ 0011385 sponged miR-330-3p and up-regulated
MYO6. Tumor growth of SW480 xenografts in nude mice
was inhibited by down-regulation of circ 0011385. MYO6
represents a motor protein that moves cargo toward the
minus ends of actin filaments, and its down-regulation
reduces cell growth and migration and increases apoptosis in
CRC cells (188-190).

Circular RNAs Up-regulating Transcription Factors
and RNA-binding Protein Musashi Homolog 1

Circ 0000467 and circ 0007334 target Krüppel-like factor
12 (KLF12). Circ 0000467 (Figure 7) was up-regulated in
CRC tissues and cell lines (191). Knockdown of circ
0000467 in LOVO and HCT-116 CRC cells inhibited
proliferation, invasion and migration and tube formation of
human umbilical vein endothelial cells (HUVECs) and
promoted apoptosis (191). Down-regulation of circ
0000467 in HCT-116 cells impeded tumor growth in nude
mice after subcutaneous implantation. Circ 0000467
sponged miR-4755-5p and subsequently up-regulated
KLF12 (191).

Circ 0007334 (Figure 7) was increased in CRC tissues and
in CRC-derived exosomes (192). Knockdown of 0007334
impaired viability, colony formation, migration, invasion,
angiogenesis, and tumor growth of CRC cells in vivo in
immuno-deficient mice (193). Circ 0007334 sponged miR-
577 resulting in up-regulation of KLF12 (193). The latter is
part of the Krüppel-like factor family comprising 17
members with involvement in cell differentiation,
proliferation, and apoptosis. They can mediate either tumor-
suppressive or oncogenic properties (192, 194). It has been
shown that KLF12 promotes CRC growth through
transcription factor growth response protein 1 (37). The role
of KLF12 in CRC deserves further investigation.

Circ RNAs Up-regulating Forkhead-box 
Family Transcription Factors (FOXOs)

Circ αE-catenin (circCTNNA1) and circ ring finger 121(circ
RNF 121) up-regulate forkhead transcription factor M1
(FOXM1). Circ CTNNA1 (Figure 7) was up-regulated in
CRC patients and correlated with poor survival (195). Circ
CTNNA1 promoted proliferation, migration and invasion of
SW 480 and SW 620 CRC cells in vitro and enhanced tumor
growth of corresponding xenografts after subcutaneous
implantation into nude mice. Circ CTNNA1 sponged miR-
149-5p and up-regulated FOXM1.

Circ ring finger protein 121 (circ RNF121) up-regulates
FOXM1. Circ-RNF121 (Figure 7) was up-regulated in CRC
tissues with poor prognosis (196). Silencing of circ-RNF121
inhibited proliferation, migration, invasion and glycolysis
and induced apoptosis in HCT-116 and SW480 CRC cells in
vitro. In nude mice, knock-down of circ-RNF 121 repressed
tumor growth (196). Circ-RNF121 sponged miR-1224-5p
and up-regulated FOXM1. Circ-RNF 121 was secreted into
exosomes in CRC cell lines HCT-116 and SW480.
Forkhead transcription factors comprise at least 14 subgroups
sharing a DNA binding forkhead domain of at least 100 aa
(197). Their function can be modulated by post-translational
modifications such as phosphorylation, acetylation and
ubiquitinoylation (197). They have a dual function as tumor
suppressors and as oncogenes (197). FOXM1 acts a regulator
of the cell-cycle by up-regulation of cyclin B1 and D1 and
down-regulation of p21 and p27 (197). In CRC, FOXM1 is
overexpressed (198, 199), induces EMT (200), promotes
growth via activation of β-catenin signaling (201) while its
expression correlates with invasion and poor prognosis (202).

Circ ubiquitin-associated protein 2 (circ UBAP2) up-
regulates forkhead transcription factor O1 (FOXO1). Circ
UBAP2 (Figure 7) was up-regulated in CRC tissues and cell
lines and induced autophagy in vitro and in vivo (203).
Down-regulation of circ UBAP2 in CRC cell lines impeded
proliferation, migration, and invasion. Circ UBAP2 sponged
miR-582 with subsequent up-regulation of FOXO1. Class O
FOX factors have been implicated in promoting anti-oxidant
defenses by up-regulation of superoxide dismutase 2,
periredoxins 3 and 5 in mitochondria and catalase in
peroxisomes (204). Anti-neoplastic roles for FOXO1 have
been described in digestive malignancies (205). The
described functional discrepancies remain to be resolved.

Circ amyloid precursor-like protein 2 (circ APLP2) targets
forkhead transcription factor K1 (FOXK1). Circ APLP2
(Figure 7) was increased in CRC tissues and cell lines (206).
Knockdown of circ APLP2 inhibited proliferation, glycolysis
and facilitated apoptosis in LOVO and SW480 CRC cells in
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vitro. In nude mice, tumor growth of SW480 cells with
knockdown of circ APLP2 was inhibited (206). Circ APLP2
sponged miR-485-5p resulting in up-regulation of FOXK1.
The latter has been shown to promote proliferation,
migration, invasion, and metastasis of CRC cells (207-210).

Circ intraflagellar transport 80 (circ IFT80) up-regulates
Musashi homolog 1 (MSI1). Circ IFT80 (Figure 7) was up-
regulated in exosomes from CRC patients and CRC cells
(211). Exosomes promoted the growth of SW480 and
SW620 CRC cells in vitro. circ IFT80 sponged miR-269,
resulting in subsequent up-regulation of MSI1. Knockdown
of circ IFT80 inhibited growth of SW480 CRC cells after
subcutaneous implantation into immunodeficient mice. As
previously described, MSI1 represents an RNA binding
protein which regulates translation and splicing, exhibits
oncogenic properties and acts as a regulator of stem cell

renewal (212, 213). MSI1 is overexpressed in CRC, is a
predictor of survival in CRC patients and might be a
therapeutic target for the treatment of CRC (214, 215).

Circ 0055625 up-regulates MSI1. Circ 0055625 (Figure 7)
was found to be highly expressed in CRC tissues and
correlated with poor survival (216). Knockdown of circ
0055625 repressed proliferation, migration, invasion and
promoted apoptosis and radiosensitivity in SW480 and
SW620 CRC cells in vitro and tumor growth of SW480 cells
in vivo in nude mice. It sponged miR-338-3p resulting in up-
regulation of MSI1 (216).

Conclusion

We have identified up-regulated circ RNAs which drive tumor
growth in preclinical CRC-related in vivo models. They
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Figure 7. Circular RNAs up-regulating transcription factors and RNA binding protein Musashi in colon-cancer related preclinical in vivo models.
The first line shows the corresponding circ-RNA, the second line displays the miR which is sponged by the specific circ-RNA, the third line indicates
the up-regulated transcription factor or Musashi and the fourth line displays the effect of inhibition of the specific circ-RNA on tumor growth in
nude mice. circ APLP2: Circ amyloid precursor like protein 2; circ CTNN1: circ αE; circ IFT80: circ intra-flagellar transport; circ RNF 121: circ
ring finger protein 121; circ UBAP2: circ ubiquitin-associated protein 2; FOXM1: forkhead transcription factor M1; FOXK1: forkhead transcription
factor K1; FOXO1: forkhead transcription factor O1; KLF12: Krueppel-like factor 12; MSI1: Musashi homolog 1; TG: tumor growth.



sponge specific miRs which leads to the up-regulation of
targets involved in tumor growth and metastasis. Their
inhibition with siRNA or shRNA mediates inhibition of tumor
growth. In addition, the corresponding targets can be inhibited
by small molecules or antibody-related moieties in the context
of target validation. However, the field of inhibition of circ
RNAs is still associated with technical hurdles which are not
discussed in detail in this review. The outstanding issues are
delivery and immunogenicity (217-221).

Nine circ RNAs and their corresponding targets have been
identified which mediate resistance against chemotherapeutic
drugs such as 5-FU, L-OHP, CDDP, IRT and DOX (Figure 1).
Since resistance against chemotherapeutic agents is a steadily
occurring theme during treatment of CRC, the identified
targets and corresponding circ RNAs deserve further
validation. 7 circ RNAs target transmembrane receptors
(Figure 2), whereas 4 of them up-regulated secreted factors
(Figure 3). VEGF-A has emerged as a clinically validated
target in CRC. Noteworthy, two circ RNAs target IGF-1R
(Figure 2) and one of them up-regulates one of its ligands,
IGF-1 (Figure 3). Since no clinical benefit has been observed
with corresponding inhibitors in cancer patients, combination
therapy and identification of biomarkers indicative of response
should be explored. GLUT1, IL6, TYRO3 and CXCL5 as
targets and their corresponding circ RNAs are recommended
for further validation in CRC (Figure 2 and Figure 3). As
shown in Figure 4, 9 circ RNAs up-regulating signaling
components have been identified. The data support inhibition
of WNT, PI3K and JAK2/STAT3 signaling as well as
interference with DNMT mediated methylation for further
preclinical validation. Figure 5 shows the identification of six
circ RNAs promoting tumor growth with enzymatic functions.
Further investigation of TNKS, CDK6 and corresponding circ
RNAs in CRC is recommended. Six of the identified circ
RNAs are involved in up-regulating components of the actin
cytoskeleton (Figure 6). Inhibition of RHOA GTPase effector
functions such as ROCK1,2 and DIAPH1 and their
corresponding circ RNAs as targets for therapeutic
intervention should be explored in more detail. Six circ RNAs
up-regulate transcription factors such as KLF12, FOXM1,
FOXO1 and FOXK1 and two circ RNAs up-regulate MSI1
(Figure 7). Inhibition of transcription factors with the
proteolysis-targeting chimera (PROTAC) technology is under
clinical investigation (222-225). It remains to be explored
whether RNA binding protein MSI1 will emerge as a
druggable and validated target for the treatment of CRC. Also,
it is presently unclear whether the identified circ RNA and
their corresponding targets are associated with one or more of
the defined molecular subtypes of CRC. 
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