
Abstract. The identification of cancer biomarkers that will
predict susceptibility to disease and subsequent clinical
outcome are key components of future genomics-based tailored
medical care. Animal models of disease provide a rich resource
for the identification of potential cancer biomarkers. Animal
models of prostate cancer in particular offer the potential to
identify cancer genes associated with dietary and
environmental factors. The key issue is the timely and efficient
identification of candidate genes that are likely to impact on
human prostate cancer. Here, we demonstrate comparative
genomics-based methods for the identification of candidate
genes in animal models that are associated with human
chromosomal regions implicated in prostate cancer. Using
publicly available bioinformatics tools, comparisons can be
made between cancer-specific datasets, genomic sequencing
data and cross-species comparative maps to identify potential
cancer biomarkers. This process is demonstrated by using rat
models of prostate cancer to identify candidate human prostate
cancer genes. Genes identified through these techniques can be
screened as biomarkers for response to chemopreventive
agents, as well as being used in transgenic or knockout mice to
engineer better animal models of human prostate cancer. The

bioinformatics techniques outlined here can be used to leverage
genomic data from any animal cancer model for use in the
study and treatment of human cancer.

The Use of Comparative Mapping in Gene
Identification

The genomic sequencing of multiple species has led to

extensive studies in comparative genomics (1-3). These

studies have identified the relationship between genomes

and defined syntenic regions for genomic similarity (4),

thus laying the groundwork for their use in cancer research.

Initial cancer studies have utilized comparative genomics

to identify orthologs of cancer genes (5, 6), as exemplified

for the Wnt signaling pathway (7, 8). Additional efforts

have focused on the identification of syntenic regions for

genetic mapping data in neuroblastoma and lung cancer

animal models (9-11). Recently, experimental comparisons

have been made across species at the level of whole

transcriptomes using gene orthologs. Particular examples

of this work include the analysis of mouse and human

hepatocellular carcinoma (12, 13) and our own work in rat

and human prostate cancer (14). Thus, the ability to use

bioinformatics processes and tools has made it possible for

researchers to examine and evaluate their cancer-specific

genomic data from animal models for relevance in human

cancer. Through simple publicly available bioinformatics

tools for visualizing genomic information (genome

browsers), an investigator can examine their cancer-specific

genetic regions, expression results, and chromosomal

region data against the backbone of the rat, mouse, or

human genomes and, through cross-species comparative

genomics, identify cancer genes based on multiple lines of

scientific evidence. These local datasets, once studied and

137

*Current address: PointOne Corporation, Milwaukee, Wisconsin,

U.S.A.

Correspondence to: Milton W. Datta, M.D., Department of

Pathology, Emory University, 1365B Clifton Road NE, Atlanta,

GA, 30324, U.S.A. Tel: 404-778-4089, Fax 404-778-5016, e-mail:

mdatta@emory.edu

Key Words: Cancer genes, prostate cancer, comparative genomics,

animal models.

CANCER GENOMICS & PROTEOMICS 2: 137-144 (2005)

Review

Using Comparative Genomics to Leverage Animal Models in the
Identification of Cancer Genes. Examples in Prostate Cancer

MILTON W. DATTA1, MARK A. SUCKOW2, SIMON TWIGGER3, MORRIS POLLARD2,

HOWARD JACOB3 and PETER J. TONELLATO3*

1Department of Pathology and Urology, Winship Cancer Institute, 
Emory University School of Medicine, Atlanta, Georgia;

2Walther Cancer Center, University of Notre Dame, Notre Dame, Indiana;
3Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.

1109-6535/2005 $2.00+.40



published, can then be made publicly available, to be 

re-analyzed and expanded upon by subsequent scientists.

Here, we outline a bioinformatics-based process in which

datasets from animal models of prostate cancer can be

examined and compared to human prostate cancer data

using a Genome Browser. These datasets include rat

prostate cancer microarray gene expression and genetic

mapping studies, mouse transgenic and knockout data, rat

mouse and human genomic sequence data, and

comparative mapping data across the rat, mouse and

human genomes. Through this process, comparative

mapping can be used to identify syntenic regions of the rat

genome that, in the human, are associated with prostate

cancer risk. Within these regions, genes expressed in rat

prostate tumors under specific environmental effects can

be prioritized for validation studies.

Animal Models as a Source of Novel Cancer Genes

Animal models of cancer are important to the

understanding of the pathophysiology of neoplasia and the

development and testing of treatments. In particular, animal

models are ideally suited for the examination of factors

including diet, toxin exposures and drug responses, due to

the ability to control the environmental exposures. This is

important in the study of complex genetic traits such as the

susceptibility to prostate cancer, with its associated

environmental and genetic risks. Animal models of prostate

cancer can be grouped into two general categories; i)

genetically-engineered models, in which known cancer genes

have been studied, and ii) spontaneous tumor models,

where the genes involved in tumor risk are not known. Since

our goal is the identification of novel cancer genes, we

focused on the use of animal models in which the genes are

not known. These types of studies can also be used in

genetically-engineered animal models to identify additional

genes that modify the tumor phenotype or outcome. For

spontaneous models of prostate cancer, most work has been

done on dog and rat models. These have been limited in

their application to human prostatic disease because of their

high cost, low tumor incidence and dissimilarities to

prostate anatomy (15, 16). Yet, rat models have shown value

in the study of hormonal-based carcinogenesis and because

they mimic human responses to chemotherapeutics and

dietary factors in prostatic neoplasia (17-19). In addition,

the development of mouse prostate cancer models, using

transgenic and knockout technologies, allows for the genetic

manipulation and combination of prostate cancer genes to

produce better models. This is exemplified by the

development and interbreeding of genetically-engineered

mouse prostate cancer models such as the NKX3.1, PTEN,

p27 and Androgen receptor transgenic or knockout animals

(20-25). Through the identification of additional genes in

other animal models and their breeding into these mice, we

can leverage the strength of the mouse model system to

create better animal models for cancer research (26).

Genetic and Genomic Data in Animal Models of
Cancer

Animal models offer the opportunity to collect large

amounts of both genetic and genomic data associated with

specific tumor characteristics. This has been demonstrated

through the collection of gene expression microarray and

genetic mapping data, both of which provide the opportunity

to identify novel cancer genes. Genetic mapping in animal

cancer models has been most extensively demonstrated using

rat models of breast cancer (27-31). Prostate cancer genetic

mapping studies are in their infancy, although preliminary

mapping data has been generated for quantitative trait loci

(QTLs) associated with prostate tumor formation and

metastasis (Datta and Suckow, unpublished). Genomic

studies have been more commonly performed and include

studies of rat tumors under various conditions, for example

aging and dietary changes (32-35). These datasets provide a

rich source of candidate genes for subsequent validation.

Collecting Human Genomic and Genetic Cancer
Data for Comparison

Animal data can be analyzed for relevance in human cancer

by filtering it against human cancer genomic and genetic

data. The sequencing of both the rat and mouse genomes

allows for comparative mapping across species (2, 3). By

linking the genomic cancer data across genomes, one can

leverage syntenic mapping to prioritize genes found in

animal studies for validation based on their location within

chromosomal regions involved in human cancer. In order to

accomplish this, one must have cancer-specific human

genomic and genetic data. Specific sources include familial

genetic mapping studies, cytogenetics and loss of

heterozygosity studies, and comparative genomic

hybridization and gene expression microarray studies. While

some of these data types have been collected in central

repositories such a CGAP (36), much still resides in

individual publications and laboratory files. We have

developed a data set of human chromosomal regions

associated with prostate cancer, named ChromSorter PC

(37) (Figure 1). This is a hand-annotated collection of data

extracted from publications identified in automated

searches of Medline using the key words "human", "prostate

cancer" and "chromosome". The literature was examined,

sorted and annotated for prostatic intraepithelial neoplasia,

prostate cancer and prostatic metastasis. In each article,

data was extracted regarding the experimental methods used

(comparative genomic hybridization, loss of heterozygosity,
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karyotyping, chromosomal transfer), demographics (age

groups, ethnicity) and chromosomal regions, including

chromosomes, chromosomal arms and cytogenetic bands

and, if available, genetic markers. These datasets, along with

additional datasets for comparative genomic hybridization

or prostate cancer gene expression studies, can be used as

benchmarks for comparison with animal model data.

Integrating Local Data Using Large Scale Genomic
Datasets

A crucial question is how specific cancer genes will be

identified and sorted from the large quantities of genomic

data. In this sorting process, bioinformatics-based

comparative genomics will play a crucial role by

associating genes with chromosomal regions that are

linked to human cancer, thus making them strong

candidates for further study. Bioinformatics and its

associated computer-based tools allow for the integration

and comparison of various types of genomic data including

sequence, expression and functional information to cross

entire genomes. The ability to rapidly organize this

genomic data has been the hallmark of such bioinformatics

and genomics pipelines as the National Center for

Biotechnology Information (http://www.ncbi.nlm.nih.gov/),

the University of California at Santa Cruz genome browser

(http://genome.ucsc.edu/cgi-bin/hgGateway) and the

Ensembl database (http://www.ensembl.org/). While
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Figure 1. ChromSorter PC data for human chromosome 1p36. Data is displayed on a generic genome browser (http://www.gmod.org). Each referenced
chromosomal data element is displayed with respect to the human genome, and is linked to the original article in PubMed. The syntenic regions in the
rat genome have been selected and are displayed at the bottom.



extremely valuable in the analysis of genomic sequence

data with respect to gene structure, function and even

expression, the data presented is often very general and

not focused on specific cancers. The true value of these

Internet tools for cancer research is through the ability of

users to upload their own locally generated cancer data for

comparison with the stored genomic data. This provides a

framework for comparing cancer data to known genes and
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Figure 2. Visualization of the human chromosome 1p36 region with synteny to rat chromosome 5.

Figure 3. Sorting of genes based on syntenic regions. Human chromosome 6q22-25 is shown. Human prostate cancer-expressed genes from CGAP are
present as red bands. Genes that are located in the region defined by the light blue bands at the top (human prostate cancer reference) and bottom
(genetic data in the rat model) are prioritized for study.



across genomes. The ability to upload and compare data is

a feature that can be found on the UCSC genome browser.

Some cancer-specific databases are now being developed

that will allow for the analysis of cancer-specific data

(CMAP, http://cmap.nci.nih.gov/), but currently do not

have the ability to compare across species. For groups with

biocomputing capabilities, the implementation and use of

their own genome browsers allows for the collection of

specific cancer-related data of relevance to the laboratory.

This data can then be analyzed and reviewed without the

need to reload datasets on a public genome browser. One

particular tool we have used is the Generic Genome

Browser developed by Lincoln Stein at Cold Spring Harbor

Laboratories (http://stein.cshl.org/) and made publicly

available through the Generic Model Organism Database

Project (http://www.gmod.org/, Figures 1-3).

Using Cross-species Comparisons for Prostate
Cancer Gene Identification

Animal data must be evaluated in the context of human

cancer relevance. Thus, the identification and prioritization

of genes identified in rat prostate cancer studies needs to be

carried out in the context of human prostate cancer data.

We have previously shown that gene expression profiles

between rat and prostate cancer cells lines show a dramatic

level of similarity (14). In addition, we have shown that, by

concentrating on genes that demonstrate consistently similar

changes to nutrients like Selenium across species, one can

identify significant pathways involved in human prostate

cancer (14). Here, we demonstrate how these studies can be

extended through cross-species comparative mapping with

genetic and genomic data. While demonstrated for prostate

cancer, the techniques are applicable to any cancer system

in which animal model data is available or can be generated.

Predicted Synteny Between Animal Model and
Human Prostate Cancers

We have collected genetic data from a spontaneous rat

model of prostate tumors. The Lobund-Wistar (L-W) rat is

predisposed to spontaneously develop metastasizing tumors

of the anterior prostate-seminal vesicle complex  (38). While

the anatomic similarity to human prostate cancer has been

debated, the clinical similarities, including hormonal

modulation, onset with age, similar chemosensitivity and

dietary profiles, have been well established (38-41). As such,

this model offers an opportunity to examine environmental

effects in hormonal carcinogenesis. We have previously

documented that the tumor susceptibility in the Lobund-

Wistar rat can be transferred to a tumor-resistant

Copenhagen rat strain through hybrid breeding, suggesting

a genetic mechanism for tumor sensitivity (or resistance)

(42). In a genetic characterization of the Lobund-Wistar

colony using over 350 polymorphic genetic markers, it was

noted that the animals in the Lobund-Wistar colony were

92% inbred over their genomes, with 8% of the genetic loci

containing polymorphic (multiple) alleles. Using these

regions with polymorphic markers, genotyping was

performed on archival primary and metastatic tumors from

over 50 Lobund-Wistar rats. In this genome sharing

approach, we asked whether, in the polymorphic regions,

one of the variant alleles preferentially segregated with

tumor or metastasis formation. The results identified five

chromosomal regions, two for tumor and three for

metastasis. The regions identified include portions of rat

chromosomes 1 and 18 for tumor formation, and areas on

rat chromosomes 1, 8 and 10 for the metastatic spread of

tumor. Comparative mapping between syntenic regions of

the rat and human genomes reveal that these chromosomal

regions in the Lobund-Wistar rat are syntenic to

chromosomal regions involved in human prostate cancer.

Using the human prostate cancer chromosomal data in the

ChromSorter PC database (37), the chromosomal regions of

the rat genome have predicted synteny to human

chromosomes 1p36 (Figure 2) (43-45), 8q24 (46-50), 5q22-25

(51) and 6q22-27(Figure 3) (52-54), all areas that have been

associated with prostate cancer by either familial genetic

mapping, loss of heterozygosity studies and/or comparative

genomic hybridization. These studies are currently being

followed up by a full scale genetic backcross to better

characterize the chromosomal regions.

Combining Synteny and Gene Expression Data to
Leverage Animal Models for Prostate Cancer Gene
Identification

In addition to these genetic studies, synteny data was used

to overlay microarray gene expression data from rat prostate

cancer cell lines treated with the chemopreventive agent

Selenium on the human genome. In this way, the gene

expression data from animal models can be sorted to

prioritize genes of significance in human prostate cancer.

The gene expression datasets were visualized across the rat

and human genomes using a generic Genome Browser

anchored to either human or rat genome sequence data.

Visualization of the genomic data across species allows the

syntenic alignment of data, thus leveraging the strengths of

each species. Overlap was visually identified based on a

concordance of gene expression microarray data and regions

of synteny to human prostate cancer chromosomal regions.

Examples of two genes are presented and include the

endothelial-specific receptor tyrosine kinaseTie-2/Tek and

the protein S100A4. Tie-2/Tek is present on human

chromosome 9p21, a region involved in chromosomal

aneuploidy in human prostate cancer (55, 56). This gene is
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a receptor for angiopoietins and modulates the activity of

vascular endothelial growth factor (VEGF) (57). It has been

found to be elevated along with VEGF in the serum of

prostate cancer patients (58, 59). An additional gene

identified with respect to Selenium treatment is S100A4.

This gene maps to Xq27-28, a region associated with human

prostate cancer based on familial genetic mapping studies

(60-63). S100A4 has recently been associated with prostate

cancer (64, 65), along with multiple other members of the

S100 protein family (66, 67). These genes, thus, become

prioritized candidates for biomarker validation and use in

the engineering of better animal models of prostate cancer.

Visualizing the Genomic Similarities of Animal
Models to Human Disease, Now Possible with
Available Bioinformatics Tools

Bioinformatics tools and processes demonstrate a new

opportunity for scientists to perform cross-species syntenic

analysis of their animal model genomic and genetic data to

identify genes of significance in human cancer. Simple

comparisons can be performed using Internet-enabled tools

such as the UCSC Genome Browser, while local tools, such

as the generic genome browser, are open source and can be

modified and expanded by individual groups for more

advanced comparative mapping studies. Through the

publication and release of the associated data, further

analysis can be achieved, thus advancing the field. These

processes and the associated bioinformatics tools are freely

available and can be applied to any disease process or

animal model evaluation.

Using these tools, prostate cancer-specific genes from

animal studies were selected as potential cancer biomarker

candidates, based on their association with chromosomal

region data in human prostate cancer. Thus, the process

provides a novel method for identifying and prioritizing new

cancer genes based on animal models. In this way, candidate

gene identification can be accelerated. This data also

demonstrates the applicability of prostate cancer animal

models, in particular with dietary or chemoprevention

studies, to identify genes related to nutrients and prostate

cancer. This current method also has the capability of

analyzing other animal models of human disease at the

genomic level, identifying both common and differing

features that indicate the strengths and weaknesses of the

model. Subsequent selection of specific genes or regions for

breeding and genetic manipulation will allow for the

development of better animal models of cancer.
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