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Abstract. Background/Aim: We previously described four
different vascular patterns (reticular, diffuse, fasciculate, and
trabecular) in renal cell carcinoma (RCC) suggesting an early
and heterogeneous acquisition of perivascular cells most
probably due to a particular PDGF pathway gene expression
profile. The aim of the study was to study PDGF pathway
gene expression profiles, separately for each vascular pattern.
Materials and Methods: TagMan assay for the PDGF pathway
was performed on twelve cases of ccRCC previously evaluated
by histopathology, immunohistochemistry, and RNAscope.
Gene expression profile was correlated with grade, invasion,
vascular patterns, and VEGF. Results: PIK3C3 and SLC9A3
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genes were overexpressed in all vascular patterns, but they
were significantly correlated with high VEGF mRNA in the
reticular and diffuse pattern. STATI, JAK2, SHC2, SRF and
CHUK (IKK) were exclusively overexpressed in cases with
diffuse vascular pattern. SLC9A3, CHUK and STAT3 were
overexpressed in G2 tumors. Conclusion: Three ccRCC
subgroups were defined: 1) PIK3C3 (VSP34)/SLC9A3 which
may be proper for anti PIK3C3 inhibitors; 2) VEGFhish
subgroup where association of anti VEGF may be a benefit
and 3) JAK2/STATI subgroup, potentially being eligible for
anti JAK/STAT therapy associated with IKK inhibitors.

Renal cell carcinoma (RCC) represents about 2.2% of total
diagnosed cancers worldwide with an estimated number of
newly diagnosed patients of 400,000 approximately (1, 2).
Fifteen percent of newly diagnosed cancers are diagnosed in
the primary metastatic RCC (mRCC) stage of disease but
more than 30% of cases which had no metastases at the time
of diagnosis become metastatic in a variable period of time
of 4 to 8 years from the primary diagnosis despite
application of novel and targeted therapies (3). Renal cell
carcinoma clear cell type (ccRCC) arises from the proximal
tubules of the kidney parenchyma and is the most common
subtype of RCC, representing 80% of RCCs (4). ccRCC is a
complex disease with a silent development and an
unexpected behavior having a highly heterogeneous response
to therapy (5). Normal kidney and malignant tissue arising
from it have a special and unique microenvironment (6) and
this, may be influence the resistance to therapy which appear
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early during the treatment (7) despite of modern and targeted
therapies developed in the last years (8, 9).

Inside renal carcinoma microenvironment heterogeneity, two
main components seem to be responsible for the rapid
development of therapy resistance: tumor blood vessels and
immunogenic profile (10, 11). Vascular and immunogenic
compartments of ccRCC are the most “targeted” compartments
in ccRCC, antiangiogenic therapies and immune-checkpoints
inhibitors being, currently, the gold standard for the treatment
of renal cancer.

The heterogeneity of vascular compartment of ccRCC tumor
microenvironment is easy to observe also by studying the
morphology and immunophenotype of ccRCC tumor vessels.
Previously, our team described 4 vascular patterns based on
their morphology and cellular components (endothelial cells
versus perivascular cells) (12). An unusual tendency to a
heterogeneous acquisition of perivascular cells (as time and
morphology) was highlighted for tumor blood vessels from
ccRCC but also a different arrangement of these vessels inside
the tumor. Perivascular cells heterogeneity distribution
(assessed by a double immunostaining of tumor blood vessels
with CD34/Smooth Muscle Actin antibodies) was the hallmark
of the 4 groups of tumor blood vessels from ccRCC defined by
our team and was strongly correlated with tumor invasion (12).

Later, in a paper published by Ruis Sauri and colleagues
(13) the authors confirmed the presence of the 4 vascular
patterns and also reported that these patterns are strongly
correlated with ISUP tumor grade (13).

Because of the discrepancies between the high number and
unusual morphology of blood vessels from ccRCC (despite of
a low endothelial cells proliferation rate) and highly maturated
state of these tumor blood vessels, we considered that the study
of PDGF-B/PDGFRf axis is mandatory in ccRCC and
correlated with the inhibitory isoform of vascular endothelial
growth factor (VEGF), VEGF 165b. In a paper published in
2016 our group reported a significant correlation between
VEGF165b and PDGF-B/PDGFRf ratio (14), this being
correlated with vascular patterns previously described. This
correlation, exclusively found in the reticular pattern, supports
the fact that concomitant inhibition of endothelial cells by
VEGF165b and rapid perivascular cell recruitment driven by
the PDGF-B/PDGFRf} axis, may define several types of
heterogeneous tumor vasculature in ccRCC.

It is well known that any morphology and immunophenotype
heterogeneity is supported by a specific gene expression profile
(15). Gene expression profiling is a feasible tool to define
molecular classes inside various malignancies and based on these
stratify prognostic and therapeutic subgroups which may better
define the heterogeneous response to therapy, prognosis and
survival. The last papers in the field of ccRCC were focused in
investigating molecular subgroups of ccRCC (15, 16).

Our previous findings on ¢ccRCC vascular heterogeneity
required validation by more specific methods. Tumor blood

478

vessel maturation is given by acquisition of vascular smooth
muscle cells driven by PDGF-B/PDGFRf axis. We aimed to
study gene expression profile of the PDGF pathway by using
TagMan™ Array Human PDGF Pathway and correlate the
findings with vascular patterns previously described in
ccRCC. Further, we aimed to identify potential subgroups of
ccRCC able to give a better overview of ccRCC carcinomas
with possible different prognostic and therapeutic impact.

Materials and Methods

Case selection. We previously selected 50 retrospective cases of
formalin fixed paraffin embedded (FFPE) kidney cancer randomly
selected from the archive of Pathology Department of Clinical
County Hospital Timigoara, Romania. Biopsies were harvested
between 2005 and 2015, fixed in 10% buffered formalin and
paraffin embedded following routine protocol. Three independent
experienced histopathologists certified microscopic diagnosis of
renal cancer, clear cell type. On these cases we previously
performed immunohistochemistry, RNAscope and in situ
hybridisation focusing on the study of VEGF, PDGF and
CD34/SMAct co-expression and we defined four vascular patterns
in ccRCC (12). Twelve cases of ccRCC (selected based on vascular
patterns previously described by our team (12) were prepared for
TagMan Assay technique. The TagMan® Array Human PDGF
Pathway 96-well plate contains 92 assays to PDGF Pathway
associated genes and 4 assays to endogenous control genes. All the
experiments were performed in triplicate.

Tissue samples used for RNA extraction were collected by automated
image guided coring with Tissue Micro Array technology.
Microscopic slides were scanned by using Panoramic Desk Slide
Scanner (3Dhistech, Budapest, Hungary) and areas of interest were
marked by using automated software of TMA Grand Master
(3Dhistech) overlapped to correspondent donor paraffin blocks
loaded. Briefly, all 12 donor blocks and correspondent 12 PCR tubes
were uploaded into automated TMA web-based digital platform. A
2.0 mm diameter core punch instrument was selected and used to pick
up tissue fragments. The specimens are viewed and annotated
(marked) using 2.0 mm diameter tool, multiple times using specific
color to distinguish tissue areas. Four cores of 2 mm diameter each
were collected into 0.2ml PCR tubes from each FFPE block followed
by RNA extraction using a semi-automated method described below.

RNA extraction by semi-automated magnetic beads-based
technology and cDNA synthesis. Dewaxing of FFPE tissue cores
was performed by filling PCR tubes containing material with xylene
and incubating them for 60 minutes at room temperature for cores
dewaxing. Xylene was discarded and RNA extraction was started
by using King Fisher Pure RNA Tissue Kit (Thermo Scientific,
Waltham, MA, USA). Reagent preparation was done according to
the protocol provided by the manufacturer and loaded into
Kingfisher 96 Deep Well Plates based on the predesigned template
included in the protocol. RNA extraction continued by loading the
plates into King Fisher Duo Prime automated System (Thermo
Scientific, Santa Clara, CA, USA) and by choosing Pure RNA
Tissue Duo program as running protocol. The RNA total amount
was checked using a Qubit™ 3.0 fluorometer (Thermo Scientific,
Santa Clara, USA) by preparing the preliminary samples with the



Ferician er al: PDGF Pathway Heterogeneity in Renal Cell Carcinomas

Figure 1. Intense tumor angiogenic process inside renal cell carcinoma
clear cell type (ccRCC). Note tumor blood vessels heterogeneity inside
the same microscopic field, containing vascular buds (sign of an intense
endothelial cells activation), cords (suggesting an active endothelial
cells migration and small vascular structures with lumen (as already
functional tumor blood vessels). Yellow arrows indicate early presence
of smooth muscle actin (SMAct) positive perivascular cells which
usually appear only in stabilisation stage of tumor blood vessels. As
herein shown, perivascular cells are partially attached to the outer part
of the vessel, some of them having unusual extensions in between two
newly formed blood vessels (yellow arrows, lower part of the image).

Qubit™ RNA HS Analysis Kit (code Q32852, Thermo Scientific).
cDNA synthesis from the extracted RNA was performed by using
the Applied Biosystem High-capacity RNA-to-cDNA kit™ (Fischer
Scientific, Loughborough, UK) following the protocol provided by
the manufacturer. Two micrograms of total RNA were used per 20-
ul reaction. The TagMan Array plates were prepared by loading 20
ul of cDNA sample prepared by using 10 pl of nuclease-free water
and 10 pl of Master Mix (2x) on each well. The TagMan Array
Human PDGF plates were subjected of RT-PCR technique
performed on the 7500 Fast Dx Real-Time PCR Instrument
(Agilent, Santa Clara, CA, USA).

Immunohistochemistry. The cases for TagMan Array were selected
based on previous assessments of immunohistochemical stained slides
with a double-stain method for endothelial cells (monoclonal mouse
anti-human CD34, clone QBEnd 10, Novocastra, Newcastle upon
Tyne, UK) and for perivascular cells (monoclonal mouse anti-human
Smooth Muscle Actin antibody, clone 1A4, Novocastra). Each step
of immunohistochemical procedure was done in an automated manner
by using software of Bond Max Autostainer (Leica MicroSystems,
Deer Park, IL, USA). Thirty minutes incubation time with primary
antibodies was followed by the use of Bond Refine Detection System
Dual Color (Leica MicroSystems). Based on the CD34/SMAct co-
expression we selected cases according to our team classification
reported by Ferician ef al. (15) as we include all four types of
vascular patterns previously described.

Data analysis. The microscopic assessment of CD34/SMAct was
performed by three independent pathologists using AxioZoom Zeiss
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Microscope (Zeiss, Oberkochen, Germany). Interaction between
CD34 positive endothelial cells and SMAct positive perivascular
cells was the main criterion used to select cases for TagMan Array.
TagMan assay results were evaluated by using Data Assist V.3.01
software (Thermo Fisher Scientific, Waltham, MA, USA). Heat Map
and volcano plots were automatically generated from this analysis.

Results

We previously characterized all 12 cases of ccRCC included
in the present study regarding tumor grade, vascular pattern,
the presence of CD34/SMAct immunoexpression, and
assessment of tumor blood vessels stabilization (a parameter
which make ccRCC less responsive to antiangiogenic and/or
antivascular therapy). Initial microscopic assessment of each
c¢cRCC specimen included the evaluation of tumor grade.
Eight cases were scored as having tumor grade 2 and 4 cases
with tumor grade 3. We detected a high angiogenic process
inside tumor mass (Figure 1) with a high density of tumor
blood vessels being in all stages of angiogenic process (buds,
cords, tube-like structures, perfused vessels). Despite an active
angiogenic morphological appearance, even for angiogenic
stages where SMAct-positive perivascular cells should be
absent (buds and cords stages), we observed SMAct-positive
perivascular cells with a heterogeneous distribution.

All cases showed stable tumor blood vessels highlighted by
CD34/SMAct immunostaining in the whole area or just in
spotted zones of tumor mass (Figure 2a). Most tumor blood
vessels showed an oversized perivascular cell network
highlighted with smooth muscle actin (SMA) immunostaining
(Figure 2b). Also, the arrangement of SMA-positive
perivascular cells was not normal (closely attached to the outer
circumference of the vessel wall), being partially detached
(Figure 2b) or being distributed as bridge-like structures in
between small tumor blood vessels loops (Figure 2b).

Based on these preliminary microscopic observations
together with a high immunohistochemical expression of
PDGF-BB previously reported by our team (17) and given
the fact that perivascular cells acquisition is driven by
PDGF-B/PDGFR}} pathway, we performed TagMan Array to
highlight the peculiarities of PDGF pathway gene expression
to identify potential gene overexpression related to unusual
early presence, morphology and distribution of SMAct-
positive perivascular cells.

Immunohistochemical evaluation of PDGF-B/PDGFRf3
showed that all 12 cases of ccRCC were positive for PDGF-
BB, by immunohistochemistry and RNAscope of which
91.6% were confirmed by RT-PCR.

PDGF pathway gene expression profile was evaluated
related to our previous results regarding VEGF immuno-
histochemical and RNAscope expression and also with our
previous classification which stratifies the types of tumor
blood vessels from ccRCC in 4 categories: reticular, diffuse,
fascicular, trabecular.
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Figure 2. Early presence, particular morphology and distribution of
smooth muscle actin (SMAct) positive perivascular cells related to renal
cell carcinoma clear cell type (ccRCC) tumor blood vessels. Incomplete
attachment of perivascular cells on tumor blood vessels [(a), green
arrow, stained in red)] and bridge-like arrangement of smooth muscle
actin (SMAct) positive perivascular cells (stained in red) in between
tumor vessels [(a), yellow arrows)]. Other tumor areas have
glomeruloid like structures [(b), red arrow)] with smooth muscle actin
(SMAct) positive perivascular cells surrounding CD34 positive
structures without evident lumen (most probably newly formed blood
vessels in early stages of angiogenesis).

Based on TagMan Array results analysis, a PDGF pathway
gene expression profile HeatMap has been automated created
by Data Assist analysis software. As it has been shown in
Figure 3, HeatMap analysis revealed several overexpressed
PDGEF pathways genes. Genes with the highest overexpression
were: PIK3C3 (VsP34), SLC9A3, STAT1, JAK2, SHC2, SRF
and CHUK.

Volcano plot analysis was correlated with ccRCC vascular
patterns, VEGF immunohistochemical expression and tumor
grade.

PIK3C3 (VsP34) and SLC9A3 were up-regulated
(Figure 4) for both reticular and diffuse vascular patterns
ccRCC cases which had a moderate and intense VEGF
immunohistochemical expression (VEGF score 2 ore 3)
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Heat Map (Study: PDGF.RCC)
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Figure 3. Heat Map of platelet derived growth factor (PDGF) pathway
automatically generated based on TagMan Assay analysis. Gene
overexpression was highlighted in red, gene down-regulation in green
and the lack of expression in black. As shown in the heatmap,
overexpressed genes were: PIK3C3 (VsP34), SLC9A3, STATI, JAK2,
SHC2, SRF and CHUK.
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Volcano Plot (Study: PDGF.RCC, 3 vs. 2, Fold Change Boundary: 2.0, p-Value Boundary: 0.05)
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Figure 4. Volcano plot showing statistically significant up-regulated genes: SLC9A3 and PIK3C3, common for reticular and diffuse vascular patterns

of ccRCC.

certified by RNAscope in situ hybridization method
(Figure 4, inset).

In the reticular vascular pattern ccRCC group, vascular
invasion was found in 66.6% out of the total number of cases.
For this group, PDGF pathway TaqgMan analysis revealed a
statistically significant MAP2K2 up-regulation (p=0.004). For
the diffuse and trabecular pattern group we detected vascular
invasion for 40% of cases. Analysis of PDGF pathway gene
expression profile identified other two up-regulated genes
specific for this group: PIK3C3 (p=0.004211) and MAPK3
(p=0.048) (Figure 5). MAPK3 was found to be up-regulated
also in group with high expression of VEGF inhibitory
isoform, VEGF 165b (p=0.0127).

PDGF pathway TaqgMan assay was also assessed related
to tumour grade. CHUK (p=0.030151), STAT3 (p=0.0357)
and SLC9A3 (p=0.0308) genes were statistically significant
up-regulated for ccRCC cases having tumor grade 2 (see
volcano plot from Figure 6).

Five new different genes have been found to be down-
regulated in ccRCC cases with reticular pattern (Figure 7)
and up-regulated for diffuse pattern exclusively. These genes
are: STAT1, JAK2, SHC2, SRF, CHUK.

Based on gene analysis of the PDGF pathway in ccRCC
correlated with VEGF expression and tumor blood vessels
types, we defined three subgroups of renal carcinomas which

may have three different therapeutic options. The first is the
VEGE"i#h subgroup showing PIK3C3 (VPS34) and SLC9A3
up-regulation. This group includes both reticular and diffuse
vascular patterns and might be eligible to a combined
therapeutic option of anti-VEGF agents and PIK3C3
inhibitors. The second group may be defined as VEGF'O"/~
showing a similar PIK3C3 (VPS34), SLC9A3 up-regulation.
For this group, anti-PDGF-PDGFR may be suitable. The
third subgroup that we called JAK/STAT subgroup is
characterized by overexpression of the 5 genes, suitable for
anti JAK/STAT therapy associated with PIK3C3 and IKK
inhibitors (Figure 8).

Discussion

Renal cancer remains one of the most unpredictable
malignancies related to its intratumor heterogeneity,
invasiveness, metastatic behaviour, response to conventional
and targeted therapies (17, 18) as well as to high
vascularisation and heterogeneity of tumour blood vessels (12,
19). VHL gene mutation has been reported for several years
as one of the main inductors of ccRCC initiation and
progression, while other gene expression profile pathways (as
angiogenic or lymphangiogenic pathways gene expression
profile) being somehow neglected for several years.
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Volcano Plot (Study: PDGF.RCC, 0 vs. 1, Fold Change Boundary: 2.0, p-Value Boundary: 0.05)
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Figure 5. Volcano plot showing gene up-regulation for diffuse vascular pattern cases with invasion.

Most of ccRCC are characterized by an increased density
of intratumor blood vessels at the time of diagnosis.
Intratumor blood vessels have a highly heterogeneous
morphology previously described and classified by our team
in four vascular patterns based on their microscopic
morphology, presence and arrangement of perivascular cells
(12). Three out of four vascular patterns described before
(12) included tumor blood vessels showing a high grade of
maturation certified by the presence of SMA-positive
perivascular cells. Following our paper related to vascular
pattern heterogeneity (12), other reports continued to be
published being increasingly focused on ccRCC tumor blood
vessels heterogeneity and its potential impact on the
development of resistance to targeted therapies (13, 20-22).

Relatively recent data suggested that there is a strong
mutual communication in between tumor cells and
intratumor blood vessels. The relationship between the tumor
microenvironment and ccRCC tumor cell heterogeneity is
increasingly reported in the literature both on experimental
models, and by gene expression analysis of human tissues
derived from patients with renal cancer (23, 24). Intratumor
and peritumour microenvironment is highly heterogeneous
not only by its cellular components, such as tumor
fibroblasts (25) or macrophages (26), but also by its
vascularisation (12). Yuan and colleagues, reported in 2016
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that highly perfused ccRCC tumor areas, have increased
cellularity and increased microvessel density compared to
low-perfused areas. This suggests a direct correlation
between vascularity and tumor cells in ccRCC (27).
Following this report, one of the first to suggest the
interrelation between tumor cell behavior and renal tumor
vascularization, several studies have confirmed that tumor
cell aggressiveness and their response to therapy are closely
related to tumor vascularization (27-30). As evidence of the
essential involvement of blood vessels in the behavior of
tumor cells, most targeted therapies used in the treatment of
ccRCC, target tyrosine kinases and their receptors (31, 32).
Under these targeted therapies recurrence and metastasis
rates decreased significantly but resistance to therapy still
developed by incompletely elucidated mechanisms (33, 34).

Despite the above, there are few studies that refer to the
morphology of blood vessels, as well as the involvement of
perivascular cells in the early maturation of ccRCC tumor
vessels. Ferician and colleagues, classified intratumoral
blood vessels into 4 subtypes depending on the presence and
architecture of perivascular cells (12). The same team
showed that VEGF165b has a major contribution in the
phosphorylation of PDGF-beta. This combination most likely
cause inhibitory effects on endothelial proliferation and
migration, which partly explains the early maturation of
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Volcano Plot (Study: PDGF.RCC, 2 vs. 3, Fold Change Boundary: 2.0, p-Value Boundary: 0.05)
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Figure 6. Platelet derived growth factor (PDGF) pathway gene expression profile assessment related to tumor grade. Grade 2 was characterized

by significant up-regulation for 3 genes compared to other tumor grades.

blood vessels with the 4 different patterns described above.

Morphological and immunohistochemical ccRCC tumor
blood vessels heterogeneity certified by previous mentioned
studies suggested a possible PDGF pathway gene expression
profile heterogeneity which was the aim of the present study.

TagMan analysis revealed two genes overexpression
(PIK3C3 (VPS34) and SLC9A3) common to ccRCC diffuse
and reticular vascular patterns for cases with moderate and
high VEGF expression.

PIK3C3 also called VPS34, is involved in intracellular
membrane trafficking and autophagy, and is a target for a
SAR405 compound approved in 2014 together with
Everolimus, the combination giving synergistic effects as an
antiproliferative of renal cancer tumor cells (35). In 2020
Jones and colleagues described three VPS34 inhibitors with
proved effects on ccRCC tumor cell autophagy (36).

Although there are numerous studies on autophagy of
tumor cells, studies related to autophagy in smooth muscle
cells and endothelial cells of tumour blood vessels
normalization are limited (37).

Currently, there are studies proving that overexpression of the
PIK3C3 gene (VPs34) stimulates proliferation of perivascular
smooth muscle cells in the experimental model by differentiating
their SUMO]1-dependent, as a morphological substrate
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responsible for pulmonary arterial hypertension (38). These data,
correlated with the microscopic observations of an early
maturation of the newly recruited tumor blood vessels in ccRCC
as well as the gene overexpression of PIK3C3 (VPs34), reported
in our study, support the hypothesis that this gene is not only
involved in the autophagy mechanism of tumor cells but also
acts on perivascular smooth muscle cells autophagy, practically
performing an early remodeling of tumor blood vessels.

This may partially explain the early maturation of ccRCC
tumor blood vessels, most of these tumours already having
tumor blood vessels covered by perivascular cells at the time
of diagnosis (20). Early maturation of tumor vessels results
in a partial response or a development over time of partial
or total resistance to antiangiogenic and/or antivascular
therapies actually used in ccRCC.

If for perivascular smooth muscle cells the role of PIK3C3
(VPs34) is partially explained and accepted in benign lesions
and less in malignant ones, the involvement of PIK3C3
(VPs34) in endothelial cell activation seems to be closely
correlated with VEGF overexpression. The performance of
this function is related to the interaction with the caveolin
system in the endothelial cell membrane (39).

The role of PIK3C3 (VPs34) in tumor angiogenesis is
indirectly suggested at this time by its interaction with the
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Figure 7. STAT1, JAK2, SHC2, SRF, CHUK down-regulation for the diffuse and reticular pattern.

VEGF pathway, but also with hypoxia in the tumor
microenvironment mediated by the HIF1a pathway (40). A
proposed mechanism for the involvement of PIK3C3
(VPs34) in tumor angiogenesis is that of interaction with
tyrosine kinase receptors, forming currently important targets
in ccRCC therapy (41).

PIK3C3 (VPs34) is involved in the cellular internalization
of VEGFR?2 (41). This aspect, correlated with the maturation
of blood vessels, may partly explain the low rate of
endothelial cell proliferation in tumor vessels despite VEGF
overexpression in tumor cells described by our team in
previous studies (42).

SLCY9A3, the second overexpressed gene in our study, in
cases with diffuse and reticular vascular network and
increased VEGF is known and studied as an ion transporter
in the renal parenchyma (43). Its action on vascular smooth
muscle cells is scarcely studied in the literature. The
experimental model of pulmonary hypertension in rats
demonstrated that overexpression of the NHE family of
which SLC9A3 is a part causes proliferation and migration
of vascular smooth muscle cells that are responsible for
pulmonary hypertension (44, 45). The role of this gene in
tumor angiogenesis is unknown. Its overexpression in our
study may be related either to a study published by
Karumanchi et al. (46) where the authors reported its

overexpression in renal cell carcinoma cells dependent on the
von Hippel-Lindau gene mutation (VHL) so common in
renal cell carcinoma, or an action of hyperplasia of vascular
smooth muscle cells that causes early maturation of tumor
vessels in the ccRCC.

For the diffuse pattern of ccRCC vascularization, we
identified the overexpression of 5 genes, most of them being
part of the JAK/STAT pathway well known as having a
major role in tumor angiogenesis. Activation of the
JAK/STAT pathway causes proliferation of perivascular
smooth muscle cells, with their hyperplasia, especially the
JAK2/STAT3 axis (47) and JAK2/STAT1 (48) through a
PDGF-dependent mechanism.

The JAK/STAT pathway is intensely studied in renal cell
carcinoma progression and metastasis (49-51) as well as in
ccRCC-associated inflammation (52) but the association
between this pathway and tumor blood vessel types has not
been performed to date. We found that JAK2 and STATI
were up-regulated in our study related to ccRCC group
having a diffuse pattern of tumor blood vessels which
showed a high maturation grade by the presence of
perivascular smooth muscle cells. Recently, Kong et al. (53)
reported that the JAK2/STAT1 pathway is correlated with
PD-L1 activation and expression mediated by HIF2a and
IFNy. HIF2a up-regulates genes involved in tumor blood

484



Ferician er al: PDGF Pathway Heterogeneity in Renal Cell Carcinomas

VEGF high
PIK3C3 (VsP34)
SLC9A3

Anti VEGF
therapy
+

PIK3C3 inhibitors

Cc RCC molecular subgroups
suggesting a potential patients
strafification related to therapy
selection

VEGF lowr-
PIK3C3(VsP34)
SLC9A3

ANTI-PDGF/PDGFRs
therapy

JAK/STAT

subgroup
STAT1 ,JAK2 ,SHC2,
SRF,CHUK

Anti JAK/STAT
therapy
+

PIK3C3 inhibitors+/-
IKK inhibitors

Figure 8. Proposed renal cell carcinoma clear cell type (ccRCC) subgroups based on Platelet Derived Growth Factor (PDGF) pathway assessment

correlated to ccRCC tumour vascular pattern.

vessel maturation (53). The JAK2/STAT1 pathway has been
also reported to be involved in vascular remodeling by acting
on vascular smooth muscle cells during different steps of
atherosclerosis or following vascular injuries (54, 55).
Bartoli et al. demonstrated that VEGF activates STAT1 in
bovine aortic endothelial cells by facilitating the interaction
between STAT1 and VEGFR2 (56). This may explain our
finding of JAK2/STAT1 genes up-regulation in ccRCC cases
with moderate and intense expression of VEGF from both
diffuse and reticular pattern.

The origin of smooth muscle perivascular cells obtained
by ccRCC is currently unknown. Also, the molecular
mechanisms involved in the early and rapid acquisition of
perivascular smooth muscle cells around ccRCC tumor
vessels are unknown. Normal kidney contains cells (in both
parenchyma and stroma) with the ability to transdifferentiate
in smooth muscle-like cells which might be recruited by
c¢cRCC tumor vessels during their maturation. Mesangial
cells (considered to be modified pericytes) (57) were recently
classified by He et al. (58) as having two distinct
phenotypes: a pericyte-like phenotype and a fibroblast-like
phenotype. Also, mesangial cells express FoxD1 gene which
is also expressed by a population of progenitor cells that give
rise to renal stroma, pericytes, vascular smooth muscle cells
and mesangial cells (59-61).

The JAK2/STAT1 pathway is activated in mesangial cells
during kidney response to an injury as diabetic nephropathy
(62) and renal fibrosis (63) but their involvement in kidney
malignancies is not yet reported. JAK2/STAT1 pathway is
controlled by PDGF (62). In the normal human kidney, a
high PDGF expression was reported inside mesangial cells
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which also have PDGF receptors (63). Moreover, PDGF has
an autocrine effect on mesangial cells inducing their
proliferation (64). During embryonic development of renal
glomerulus, PDGF secreted by endothelial progenitor cells
attracts mesangial cells and stimulates their attachment to the
outer side of the capillaries inducing glomerular capillaries
loops development. Our microscopic assessment of smooth
muscle cells attached to ccRCC tumor blood vessels linked
to our molecular findings and also related to previous
presented indirect evidence suggests mesangial cells as a
potential source of tumor blood vessels perivascular cells by
a mechanism mediated by PDGF/PDGFRs activation through
JAK2/STAT1 pathway. In our study, all 12 cases were PDGF
positive by RNAscope and immunohistochemistry and in
more than 90% this expression was confirmed by RT PCR.
Simon et al. demonstrated that PDGF has a mitogenic effect
on human airways smooth muscle cells and this effect is
mediated in part by JAK2/STAT1 pathway (48). In our study
the diffuse pattern of tumor vasculature includes PDGF-
positive ccRCC cases having intratumor blood vessels with
a continuous layer of SMAct positive perivascular cells. For
this group JAK2 and STAT1 up-regulation found by TagMan
analysis may explain, in part, the rapid maturation of tumor
blood vessels most probably due to mitogenic effects of
PDGF on perivascular smooth muscle cells by a mechanism
involving JAK2 and STAT1. PDGF stimulated smooth
muscle cells activates STAT1 alpha (p91) (65) and switch to
a secretory phenotype for growth factors and IFN vy (65).
STAT1 activation decreased expression of proangiogenic
molecules bFGF, MMP-2, and MMP-9 and subsequently
may induce a decrease of endothelial cells activation (66,
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67). STAT1 action on both endothelial and perivascular cells
may explain the presence of already mature tumor blood
vessels at the time of ccRCC diagnosis (67).

STATT increased in radioresistant human ccRCC samples
and inhibition of STAT1 by fludarabine and siRNAs
enhanced ccRCC cell radiosensitivity (67). Banes-Berceli et
al. (68) reported that levels of JAK1 and JAK2 mRNA were
higher in ccRCC cells compared to normal kidney tissue and
this molecular mechanism may be responsible for
inappropriate cell survival and chemoresistance. Sunitinib
therapy influences JAK2/STAT1 pathway by magnifying
IFNg-induced STAT1 activity and causing an increase of the
activity of janus kinase 2 (JAK2) (69). The same authors
linked STAT1 up-regulation by indoleamine 2,3-dioxygenase
(IDO) activation.

IDO has been reported to be expressed in mature tumor
associated blood vessels from early stage cervical cancer
(70). Also, IDO is known to be one of the immune
checkpoint regulators (71). Recently, Jonasch et al. (72)
proposed combination of anti-angiogenics and checkpoint
inhibitors for renal cell carcinoma as a novel therapeutic
strategy based on promising results of preclinical studies
showing the benefits of such association, some of them
targeting perivascular cells detachments. Our finding about
JAK2/STAT1 pathway up-regulation for ccRCC group with
diffuse pattern of tumor blood vessels may sustain this novel
therapeutic strategy.

Serum response factor (SRF) was also up-regulated in
diffuse vascular pattern ccRCC group. SRF increases ccRCC
tumor cells migration and invasion by stimulating epithelial
to mesenchymal transition (73). SRF gene is well known to
have a dual role on both endothelial cells and perivascular
cells. SRF is responsible for actin cytoskeleton dynamics and
is critical for EC filopodia formation, tip cell contractility
and EC migration (74, 75). Also, SRF is involved in
epithelial to pericyte transition reported in renal tubular
epithelial cells (76) as well as in cancer cells (77). This SRF
action on both endothelial and perivascular cells may explain
in part the high microvessels density in ccRCC, but also the
predominance of mature type tumor blood vessels.

Conclusion

We herein demonstrated PDGF pathway gene expression
profile heterogeneity of ccRCC related to vascular tumor
pattern, invasion status and tumor grade. By correlating
PDGF pathway gene expression profile and ccRCC vascular
patterns we defined 3 ccRCC distinct subgroups which may
have a potential impact on choosing the best therapeutic
strategy for each patient. Further studies are needed to
elucidate ccRCC tumor blood vessels perivascular cell origin
and also to assess molecular mechanisms responsible for the
early and rapid maturation of ccRCC tumor blood vessels.
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