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Abstract. Esophageal squamous cell carcinoma is a type of
cancer with dismal prognosis. Surgery, chemo- and radiation
therapy, as well as immune checkpoint-blocking immunotherapy
lead to limited improvement of survival of patients; therapy
resistance and recurrencies hamper these treatment modalities.
Therefore, the identification of new targets and treatment
approaches is of paramount importance. We have searched the
literature and identified 7 down-regulated and 16 up-regulated
non-coding RNAs, which showed efficacy in preclinical
esophageal squamous cell carcinoma-related in vitro and in
vivo models, and discuss their diverse mode of actions. We
excluded long non-coding RNAs, which act by sponging of
microRNAs. It is presently unclear whether long non-coding
RNA/protein, DNA and RNA interactions can be targeted with
small molecules. We describe reconstitution therapy and
inhibition of the corresponding long non-coding RNAs with
small interfering RNAs and antisense oligonucleotides. Also, we
discuss emerging targets for treatment of esophageal squamous
cell carcinoma.
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Among cancers, esophageal cancer ranks eighth in terms of
incidence and sixth in terms of mortality (1). Two subtypes
have been identified: esophageal adenocarcinoma (EAC) and
esophageal squamous cell carcinoma (ESCC). EAC occurs in
the lower and middle part of the esophagus and derives from
esophagus glandular cells near the stomach. ESCC is found in
the upper part of the esophagus and originates from the
esophageal squamous epithelium (2). EAC is the predominant
subtype in Europe and North America, whereas ESCC is the
most frequent subtype in Southeast Asia and Africa (2). Despite
treatment by surgery, radiation, chemotherapy with 5-
fluorouracil (5-FU) and irinotecan, and immunotherapy with
monoclonal antibodies (mAbs) directed against programmed
cell death protein 1 (PD1) (pembrolizumab and nivolumab),
patients with EC have a dismal prognosis (3-5). Many types of
therapeutic interventions such as targeting the epidermal
growth factor receptor (EGFR), vascular endothelial growth
factor and receptor (VEGF and VEGFR), hepatocyte growth
factor (HGF)/tyrosine kinase c-MET as well as the mechanistic
target of rapamycin (mTOR) pathway and epigenetic therapies
are under exploration (3-5). Among the problems to be tackled
are high mutational load, therapy resistance, spatial
intratumoral heterogeneity and temporal clonal evolution (6-
9). In this review, we focus on long non-coding RNAs
(IncRNAs) with efficacy in ESCC-related preclinical in vitro
and in vivo models in order to explore new treatment entities
and to identify new targets for therapy of ESCC.

Role of Long Non-coding RNAs in Cancer

IncRNAs comprise more than 200 nucleotides (nts) and are
transcribed by RNA pol II and IIT (10). More than 60,000
IncRNAs are predicted in humans (11). They are involved in
cancer cell proliferation, migration, invasion, epithelial-
mesenchymal transition (EMT), apoptosis and anti-tumor drug
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resistance (10). IncRNAs are predominantly located in the
nucleus, whereas a minority is transported to the cytoplasm
(11). They can act as oncogenes as well as tumor suppressors
(TS) (12-14). These effects are achieved by a multitude of
functional properties, such as transcriptional regulation, post-
transcriptional regulation of mRNA stability, modulation of
chromatin structure and chromatin positioning by recruitment
of chromatin-modifying enzymes, regulation of splicing,
translation and protein stability, assembly of membrane-less
nuclear bodies, self-activation of genes by natural antisense
transcripts and mRNA modification (15-17). IncRNAs can
modulate signaling pathways, such as AKT, NOTCH, p53,
WNT/f catenin and hypoxia inducible factor 1(HIF-1) driven
processes (18). Among the mechanisms involved in
physiological functions of IncRNAs are sponging of
microRNAs as well as physical interaction with nucleic acids,
protein, and lipids via interactor elements (18).

Down-regulated IncRNAs and IncRNAs
Involved in Signaling

IncRNA NKILA targets nuclear factor kB signaling. IncRNA
NFkB interacting (NKILA) was down-regulated in ESCC
samples and correlated with poor prognosis (19, 20). NKILA
inhibited proliferation of Ecal09 and Eca9706 ESCC cells
as well as migration and invasion of Ecal09, Eca9706,
KYSE30 and KYSE180 ESCC cells in vitro. Knockdown of
NKILA stimulated growth of Ecal09 cells and increased
lung metastases of Ecal09, Eca9706 and KYSE30 cells after
tail vein injection into nude mice (19, 20). It was shown that
NKILA inhibited signaling of nuclear factor kB (NFxB), an
inducible transcription factor. NFxB signaling is activated by
phosphorylation of nuclear factor of k light polypeptide gene
enhancer in B-cells, inhibitor oo (IkBa) through IkB kinase
(IKK), which leads to translocation of NFkB into the
nucleus. NKILA interferes directly with IkBow and blocks its
phosphorylation sites leading to interruption of NFxB
signaling (19-21) (Figure 1, Figure 2, Figure 3, Figure 4, and
Figure 5A). Matrix metalloproteinase 14 (MMP14), a
transmembrane protease which activates MMP2 and confers
aggressive biological properties was identified as a
downstream effector of NFxB signaling (19, 22). MMP14
mediates proliferation, migration and invasion of ESCC cells
and high MMP14 correlates with poor survival (23-25).
NFxB signaling plays a role in cancer formation, promotion
of inflammation (26), and cancer development and
progression (27). Therefore, this pathway is a target of anti-
cancer drug development (28). It has been shown that
targeting NFxB signaling suppresses TG, angiogenesis and
metastases in preclinical models of ESCC (29).

IncRNA GASLI targets Wnt/f3-catenin signaling. Growth
arrest associated IncRNA1 (GASL1) (Figure 1) was down-
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regulated in ESCC cell lines, induced cell-cycle arrest,
inhibited cell migration and invasion in vitro and TG in vivo
(30). GASL1 inactivated WNT/B-catenin signaling by
inhibition of dickkopfl (DKK1), wingless-type MMTV
integration site family, member 3a (WNT3A), 3-catenin and
inhibited transcription factor ¢-MYC (Figure 1). The
molecular basis of these findings is not yet resolved. WNT
signaling is frequently deregulated in cancer (31, 32).
WNT3a and DKKI1 are associated with poor prognosis in
patients with ESCC (33, 34). Involvement of DKKI1 in
invasive growth of ESCC cells has been reported (35).
Furthermore, DKKT1 is involved in maintaining stem cell-like
properties of ESCC cells (36). It has been shown
independently that inhibition of Wnt/B-catenin signaling
results in attenuation of growth of ESCC cells (37).

IncRNA  ADAMTS9-AS2  inhibits Cadherin3. ADAM
metallopeptidase with thrombospondin typel motif 9
antisense RNA 2 (ADAMTS-AS2) has been shown to be
expressed at low levels in ESCC patients. ADAMTS-AS2
inhibited proliferation, migration and invasion of ESCC cells
via down-regulation of Cadherin 3 (CDH3) (38). Over-
expression of ADAMTS-AS2 in ESCC cells inhibited TG in
nude mice. Down-regulation of CDH3 by ADAMTS-AS2
was achieved by recruitment of DNA methyltransferases 1
and 3 (DNMT1/DNMT3) to the CHD3 gene as shown by
RNA pull-down experiments (1) (Figure 1). CDH3 belongs
to the cadherin superfamily of Ca-dependent cell-cell
adhesion proteins composed of five extracellular cadherin
repeats, a transmembrane region and a conserved cytoplasmic
tail (39). CDH3 is involved in metastasis through activation
of RHO GTPases (40). CDH3 is frequently over-expressed in
breast cancer and CRC, which leads to enhancement of
migration, invasion and tumor aggressiveness (41, 42). In
ESCC, over-expression of CDH3 has been demonstrated (43).

IncRNA IRFI-AS activates interferon response. Down-
regulation of interferon-regulatory factor 1 antisense RNA
(IRF1-AS) (Figure 1) predicted poor clinical outcome in ESCC
patients (44). IRF1-AS inhibited proliferation and promoted
apoptosis of KYSE30 and KYSE180 ESCC cells in vitro and
in vivo in nude mice. Interestingly, IRF1-AS stimulated
expression of its own gene by interacting with interleukin
enhancer binding factor 3 (ILF3) and DExH-box helicase 9
(DHX9). Both are located in the nucleus, have RNA binding
motifs and function as transcriptional co-activators (45, 46)
(Figure 1 and Figure 5B). IRFI1-AS activates interferon
response in vitro and in vivo. IRF1 interacts with other
transcription factors to stimulate or to repress specific genes in
the nucleus and acts as a negative regulator of cell proliferation
(47, 48). IRF1 binds to IFN specific response elements via an
N-terminal helix-turn-helix DNA binding domain to induce the
interferon response (49, 50).
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Figure 1. Down-regulated long non-coding RNAs with efficacy in preclinical esophageal squamous cell carcinoma related in vitro and in vivo models.
Upward arrows indicate up-regulation, downward arrows indicate down-regulation. ADAMTS9-AS2: ADAM metalloproteinase with thrombospondin
type 9 motif antisense RNA2; DHX9: DExH-box helicase 9; DKK 1 : dickkopf-related protein 1; DNMT1,3: DNA methyltransferase 1,3; EMT: epithelial-
mesenchymal transition; ILF3: interleukin enhancer binding factor 3; GASLI: growth-arrest-associated long non-coding RNAI; HSP27: heat shock
protein 27; IkBa.: nuclear factor kB inhibitor a; IRF1: interferon regulatory factor 1; IRF1- AS: interferon regulatory factor 1- antisense RNA; LAMC2:
laminin y2; LINC 0051: long intergenic non-protein coding RNA 0051; MET: metastasis; MTA2: metastasis-associated 2; c-MYC: transcription factor
c-MYC; NFkB: nuclear factor kB; NKILA: NFkB interacting IncRNA; SNHG5: small nucleolar RNA host gene 5; TG: tumor growth; TINCR: terminal
differentiation inducing non protein coding RNA; WNT3A: wingless-type MMTV integration site family, member 3A; ZNF 750: zinc finger 750.

IncRNA SNHGS targets metastasis-associated 2 protein.
Small nucleolar RNA host gene 5 (SNHGS) (Figure 1) has
been shown to be down-regulated in ESCC tissues and cell
lines and correlated with cancer progression and survival
(51). Over-expression of SNHGS inhibited proliferation,
migration and invasion of ESCC cells in vitro and in vivo.
SNHGS reversed EMT and was shown to directly interact
with metastasis-associated 2 (MTA2). SNHGS5 down-
regulated MTA2 at the transcriptional level and caused
ubiquitin-mediated degradation of MTA2 (Figure 1 and
Figure 5C). The latter is a regulator of nucleosome
remodeling and histone deacetylation complex and also
functions as a hub for cytoskeleton organization and
transcription (52). The MTA family consists of three
members, MTA1, MTA2 and MTA3 and expression of
MTA2 correlates with aggressive phenotype and
invasiveness of several types of tumors (53, 54). MTA2 has
been shown to promote metastasis of ESCC (55).

IncRNA LINC00551 targets heat shock protein 27. Long
intergenic non-protein coding RNA 00551(LINC 00551)
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(Figure 1) has been shown to be down-regulated in ESCC
tissues and correlated with poor survival (56). LINC 00551
over-expression inhibited ESCC cell proliferation and
invasion, whereas its knockdown promoted ESCC
proliferation in vitro and in vivo. LINC 00551 was found
to bind to heat shock protein 27 (HSP27) and decreased its
phosphorylation. Heat shock proteins are regulators of
proliferation, survival and apoptosis of cancer cells by
their involvement in protein folding and maturation
protecting them from degradation (57). HSP27 activates
WNT/B-catenin signaling, the hippo pathway and
oncogenic and metastatic pathways via transforming
growth factor B (TGF-B)/SMAD signaling (58). In ESCC,
expression of HSP27 correlates with lymph node
metastasis and regulates pyruvate kinase isoenzyme M2 to
promote ESCC progression (59). Several heat shock
protein inhibitors for treatment of cancer have been
identified, however, they showed limited efficacy in
clinical studies due to toxicity issues and activation of heat
shock factor-1 (HSF-1) leading to protective heat-shock
responses (60, 61).
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Figure 2. Upregulated long non-coding RNAs mediating increase of transcription factors with efficacy in preclinical esophageal squamous cell
carcinoma related in vitro and in vivo models. Upward arrows indicate upregulation, downward arrows indicate down-regulation. BAALC-AS1:
BAALC-antisense 1; c-MYC: transcription factor c-MYC; EZH2: enhancer of zeste homolog 2; G3BP2: GAPSH3 domain binding protein 2;
LINCO00152: long intergenic non-coding RNA 00152; LINC02042: long intergenic non-protein coding RNA 2042; NF-YA: nuclear transcription
Jactor Y-subunit a; PANDA: p21 nuclear RNA DNA damage activated IncRNA; SAFA: scaffold attachment factor A; TG: tumor growth; YBI: Y-

box binding protein 1; ZEBI: zinc finger e-box binding homeobox 1.

IncRNA ZNF750 targets Laminin y2. IncRNA zinc finger
750 (ZNF750) (Figure 1) has been shown to be under-
expressed in ESCC tissues in comparison to corresponding
normal tissues (62). ZNF750 inhibited migration of ESCC,
induced epidermal differentiation of ESCC cells and
attenuated growth of UMSCC1 ESCC derived xenografts in
immuno-compromised mice. ZNF750 mediated transcription
of terminal differentiation inducing non-coding RNA
(TINCR), a potential biomarker and therapeutic target for
cancer (62, 63). In addition, ZNF750 repressed laminin y2
(LAMC?2) at the transcriptional level (62). Laminins are
secreted components of the extracellular matrix, which are
composed of three non-identical chains (a,  and 7).
Laminins regulate cell adhesion, differentiation, migration
and metastases (64). Over-expression of LAMC2 predicts
poor prognosis in colorectal cancer (CRC) patients and
promotes proliferation, migration and invasion (65). Also, in
ESCC, expression of LAMC?2 is associated with recurrence
and poor prognosis (66).

Up-regulated IncRNAs and IncRNAs
Activating Transcription Factors

Linc 02042 targets c-MYC. Long intergenic non-protein
coding RNA 2042 (LINC 02042) (Figure 2 and Figure 6A)
has been shown to be up-regulated in ESCC (67). It inhibited
proliferation, migration and invasion of KYSE30 and
KYSE150 ESCC cells in vitro and TG of KYSE30 cells in
vivo in nude mice. LINC 02042 stabilized c-MYC mRNA by
binding to LINC 02402-Y box binding protein 1 (YBXI)
complex of the 3°- untranslated region (UTR) of ¢c-MYC
(67). A positive feedback loop was implemented by
transactivation of LINC 02042 by c-MYC (67). YBX1 is a
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multi-functional protein that can modulate RNA stability by
binding to AU-rich elements on the 3°-UTR of mRNAs (68,
69). ¢c-MYC is a nuclear transcription factor, which is
frequently deregulated in cancer mediating proliferation,
invasion, metastasis, cell growth, ribosome biogenesis and
metabolism of cancer cells (70-74). However, due to its
ubiquitous expression and its disordered structure,
druggability of c-MYC is still unclear.

BAALC-AS1 targets c-MYC. IncRNA BAALC antisense
RNA 1 (BAALC-AS1) (Figure 2 and Figure 6A) has been
shown to be up-regulated in ESCC and correlated with poor
prognosis (75). It promoted proliferation, migration, colony
formation and viability of KYSE 450 and -510 ESCC cells
and TG of their xenografts in nude mice. These effects were
found to be due to the stabilization of c-MYC. BAALC-AS1
released RAS GAPSH3 domain-binding protein 2 (G3BP2)
from c-MYC mRNA by direct binding and thereby inhibited
the degradation of c-MYC RNA 3'-UTR by G3BP2. The
latter has RNA binding sites and affects mRNA stability of
c-MYC (76, 77). A positive forward loop was implemented
by stimulation of BAALC-AS1 by ¢-MYC (75). In ESCC,
expression of G3BP2 is related to lymph node metastasis and
prognosis (78).

Linc 00152 up-regulates zinc finger e-box binding homeobox
1. Long intergenic non-coding RNA (LINC 00152) (Figure 2
and Figure 6B) has been shown to be highly expressed in
ESCC tissues and enhanced oxaliplatin resistance of ESCC
cells (79). Down-regulation of LINC 00152 inhibited EMT
and resistance to oxaliplatin in KYSE150 and TE-1 ESCC
cells. In nude mice, LINC 00152 promoted TG of KYSE 150
xenografts after subcutaneous implantation. These effects were
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Figure 3. Up-regulated long non-coding RNAs mediating modulation of signaling and cell-cycle related targets with efficacy in preclinical esophageal
squamous cell carcinoma in vitro and in vivo models. Upward arrows indicate up-regulation, downward arrows indicate down-regulation. ATM:
Ataxia telangiectasia mutated; CCAT1: IncRNA colon cancer-associated transcript 1; CDKN2C': cyclin-dependent kinase 4 inhibitor C; CHK2:
checkpoint kinase 2; E2F4: transcription factor E2F4; EZH2: enhancer of zeste homolog 2; EED: polycomb protein EED; EMT: epithelial
mesenchymal transition;, GADD45A: growth arrest and DNA inducible 45A; HOXB13: homeobox transcription factor B13; LINC00337: long
intergenic non-protein coding RNA 00337; MALATI: metastasis associated lung adenocarcinoma transcript 1; LINCO0673: long intergenic non-
protein coding RNA 00673; LINCO1980: long intergenic non-protein coding RNA 1980; LINP1: IncRNA in non-homologous end joining pathway;
MOA NR: mode of action not resolved; PRC2: polycomb repressive complex 2; SPRY4: sprouty homolog 4; SUV39HI: histone-lysine-N-
methyltransferase; SUZI12: polycomb protein SUZ12; TG: tumor growth; TPX2: targeting protein for xlp2.

mediated by up-regulation of transcription factor zinc finger
e-box binding homeobox 1 (ZEB1). The latter has been shown
to be involved in invasion and metastasis of ESCC (80). LINC
00152 released enhancer of zeste homolog 2 (EZH2) from the
ZEB1 gene by binding to the polycomb repressive complex 2
(PRC2), thus reducing trimethylation of lys 27 in histone 3
and promoting expression of ZEB1. EZH2 is a histone-lysine
N-methyltransferase which facilitates heterochromatin
formation and promotes tumorigenesis (81). EZH2 inhibitor
Tazemetostat has been recently approved for the indication
epithelioid sarcoma (82). EZH2 expression correlates with
aggressiveness and prognosis of ESCC (83).

IncRNA PANDA interacts with nuclear transcription factor Y,
subunit o and nuclear matrix protein scaffold attachment
factor A. High expression of p21-associated nuclear RNA DNA
damage activated (PANDA) (Figure 2 and Figure 6C) has been
shown to be associated with advanced clinical stage and shorter
overall survival in ESCC patients (84). Down-regulation of
PANDA suppressed ESCC cell proliferation and colony
formation, arrested G1/S transition in vitro and development of
tumors in vivo in nude mice. Depletion of PANDA reduced
expression levels of E2F1, cyclins D1, D2 and E, and BCL2.
The reduction in the expression of these cell-cycle regulators
and anti-apoptotic genes was due to binding of nuclear
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Figure 4. Up-regulated long non-coding RNAs mediating modulation of additional targets with efficacy in preclinical esophageal squamous cell
carcinoma related in vitro and in vivo models. Upward arrows indicate up-regulation, downward arrows indicate down-regulation. BDH2: 3-
Hydroxybutyrate dehydrogenase type 2; CASC9: IncRNA cancer susceptibility 9; CASC15: IncRNA cancer susceptibility 15; EZH2: enhancer of
zeste homolog 2; EZR: ezrin; EZR-AS1: ezrin-antisense 1 IncRNA; FTO: fat mass and obesity associated protein; LOC 100133669: long non-coding
RNA 100133669; MOA-NR: mode of action not resolved; PDCD4: programmed cell death 4; PHB: prohibitin; PHBP1: prohibitin pseudogene 1;
SIM?2: single-minded 2; SMYD3: SET- and MTN-domain containing 3; TG: tumor growth; TIM50: mitochondrial inner membrane translocase

subunit 50; TP73-AS1: TP73 antisense RNAI.

transcription factor Y, subunit oo (NF-YA) to PANDA. NFYA
consists of three subunits, regulatory subunit NF-YA and
subunits NF-YB and NF-YC, which bind to CCAAT motifs on
DNA. NF-YA drives a plethora of cell-cycle regulatory genes
and acts as a key player in the regulation of proliferation of
cancer cells (85, 86). In addition, PANDA bound to nuclear
matrix protein scaffold attachment factor A (SAFA) to switch
the tumor proliferation program through CyclinD1/2-Cyclin E1
and BCL2 pathways. SAFA can bind to DNA, RNA and non-
coding RNA such as PANDA (87, 88).

IncRNAs Targeting Cell-cycle and
Signaling Related Components

IncRNA CCAT1I targets sprouty homolog 4 and homeobox
transcription factor B13. IncRNA colon cancer associated
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transcript 1 (CCAT1) (Figure 3 and Figure 6D) has been
shown to be up-regulated in ESCC tissues and correlated
with poor prognosis (89). Knockdown of CCAT1 in Eca-109
and TE-1 ESCC cells inhibited cell proliferation and
migration in vitro. CCAT1 also regulated proliferation and
migration of Eca-109 xenografts in nude mice. From a
mechanistic point of view, CCAT leads to down-regulation
of sprouty homolog 4 (SPRY4) and up-regulation of
homeobox transcription factor HOXB13 (90, 91). SPRY4 is
an inhibitor of transmembrane tyrosine kinase receptor
transduced mitogen-activated protein kinase (MAPK)
signaling (90). The other target, HOXBI13, acts as an
oncogenic transcription factor (91). Inhibition of expression
of SPRY4 was achieved by recruitment of PRC2 and
SUV39H1 by interaction with CCAT1 (89). PRC2 is a
histone methyltransferase composed of catalytic subunit
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Figure 5. Mode of action of selected down-regulated long non-coding RNAs. A) NKILA inhibits phosphorylation of IkB and subsequent translocation
of transcription factors p50 and p65 into the nucleus. B) IRF1-AS1 stimulates transcription of interferon and interferon-stimulated genes by interaction
with co-factors and enhances expression of its own gene. C) IncRNA SNHGS5 promotes degradation of MTA2 and inhibits expression of the MTA2
gene. Corresponding IncRNAs are shown by red hair-pin structures. DHX9: DExH-box helicase 9; GASLI: growth arrest associated IncRNA; IkB:
nuclear factor of k light chain polypeptide gene enhancer in B cells inhibitor; IKKa,f: inhibitor of nuclear factor kB kinase subunit a or f3; IRF1:
interferon regulatory factor 1; IRF-AS1: interferon-regulatory factor 1 antisense RNAI; IKKa.f3: IkB kinase a.3; 1SGs: interferon-stimulated genes;
ILF3: interleukin enhancer binding factor 3 (ILF3); MTA2: metastasis associated 2; NEMO: NFkB essential modulator; NKILA: NFkB interacting
IncRNA; p50: NFkBI; p65: NFkB2; ub: ubiquitin; SNHGS5: small nucleolar RNA host gene 5 IncRNA; ub: ubiquitinylation.

EZH2 and polycomb proteins SUZ12 and EED (92-94) pathway. ATM is a mediator of DNA repair, is recruited to
resulting in tri-methylating histone H3 Lys 27, which is a  DNA double-strand breaks and subsequently phosphorylates
repressor of transcription. SUV39H1 also acts as a histone =~ CHK2 (98-100). The latter plays an important role in cancer
methyltransferase and a transcriptional repressor by histone  development and cell checkpoint control of cancer (101,
H3 lysine 9 trimethylation (95). These interactions occurred ~ 102). Mechanistic details of inhibition of ATM/CHK?2 by
in the nucleus. In addition, HOXB13 was upregulated by = MALAT are not yet resolved.
CCAT1 due to sponging of miR-7 in the cytoplasm which
facilitates growth and migration of ESCC cells (96). IncRNA LINCO1980 up-regulates growth arrest and DNA-
inducible 45A. LINCO1980 has been shown to be up-
IncRNA MALAT1 targets the ataxia telangiectasia mutated-  regulated in ESCC and correlated with poor prognosis (103).
checkpoint kinase 2 pathway. Metastasis associated lung It promoted ESCC growth in vitro and in vivo, accelerated
adenocarcinoma transcript 1 (MALAT1) (Figure 3) has been  cell-cycle progression and prevented apoptosis. Growth
shown to be up-regulated in advanced ESCC tissues (97).  arrest and DNA-inducible 45A (GADD45A) was identified
Knockdown of MALAT1 decreased growth and invasion of  as a possible target of LINCO1980 based on micro-array
EC109 and EC9706 ESCC cells in vitro and growth of  analysis. GADDA45A promoted ESCC growth and
xenografts in vivo after subcutaneous implantation into nude ~ LINC01980 up-regulated GADD45A. GADD family of
mice. Knockdown of MALAT1 induced cell-cycle arrest by  proteins consist of three 18 Kd members, which are localized
activation of the Ser-Thr kinase ataxia telangiectasia mutated  in the nucleus and the cytoplasm (104). Each of the
(ATM)-checkpoint kinase 2 (CHK?2) pathway. Conversely, =~ GADD45 gene products has both TS and tumor promoting
high expression of MALAT1 promoted ESCC proliferation  functions dependent on the cell type, tissue and transforming
by dephosphorylation and inhibition of the ATM/CHK2 event (105, 106). GADD45A can induce cell-cycle arrest,
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apoptosis and DNA repair; however, tumor-promoting
activities of GADD45A have also been reported (105, 106).
GADD45A has been shown to be over-expressed in CRC
and pancreatic cancer (107, 108). The molecular mechanisms
underlying up-regulation of GADD45A by LINCO1980 have
not been resolved. GADD45A does not seem to be a high
priority target for the treatment of ESCC based on the
limited data presently available.

IncRNA LINPI induces epithelial-mesenchymal transition.
High expression of intergenic IncRNA in the non-homologous
end joining pathway 1 (LINP1) correlated with poor prognosis
in patients with ESCC (109). Knock-down of LINP1 promoted
cell-cycle arrest at G2/M and apoptosis, and inhibited EMT in
EC907 ESCCs in vitro. In vivo, knockdown of LINP1 mediated
inhibition of TG of EC907 xenografts in nude mice.
Suppression of EMT was mediated by down-regulation of N-
cadherin, vimentin, snail and slug. The mechanistic details
underlying these effects were not resolved. EMT is a cell
biological program with a series of phenotypic states and is
involved in invasiveness and metastasis. Also, intermediate cell
types between the epithelial and mesenchymal cell state play a
role in this process (110-112). In breast cancer, it has been
shown that LINP1 acts as an oncogene (113).

IncRNA LINC00673 down-regulates cyclin-dependent kinase
2 inhibitor C. Up-regulation of long intergenic non-protein
coding RNA 00673 (LINC00673) (Figure 3 and Figure 6E)
correlated with poor prognosis in ESCC patients (114). In
KYSE30 and KYSES510 ESCC cells, knockdown of
LINCO00673 inhibited proliferation and cell-cycle arrest at the
G1/S checkpoint in vitro and reduced TG in vivo in nude
mice. It was found that LINC00673 inhibited expression of
cyclin-dependent kinase 2 inhibitor C (CDKN2C) through
recruitment of EZH?2 to the promoter region of CDKN2C
generating H3K27me3, which inhibited gene expression
(114). CDKN2C interacts with cyclin-dependent kinases 4
and 6 (CDK4/6) and prevents their activation (115, 116).
Three CDK4/6 inhibitors have been approved for treatment
of hormone receptor+/HER2+ breast cancer: palbociclib,
ribociclib and abemaciclib (117, 118). Ongoing clinical
studies in other types of solid tumors including ESCC have
been reported (119). Limited activity has been shown in
palbociclib treated patients with advanced esophageal or
gastric cancer in Phase II clinical studies (120).

IncRNA LINC00337 up-regulates targeting protein for xlp2.
Long intergenic non-protein coding RNA 00337 (LINC00337)
(Figure 3) has been shown to be up-regulated in ESCC and
corresponding cell lines (121). Down-regulation of LINC00337
suppressed autophagy and enhanced chemosensitivity to
cisplatin. In nude mice, down-regulation of LINC00337 led to
aggravated growth of Ecal09 ESCC xenografts after
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subcutaneous implantation (121). LINC00337 interacted with
transcription factor E2F4, which mediated transcription of the
targeting protein for xIp2 (TPX2) (121). E2F4 is involved in
controlling the cell-cycle (122). TPX2 functions as a spindle
and microtubule assembly factor and regulates cell growth
during M-phase and its expression correlates with progression
of tumors (123, 124). TPX2 recruits and activates aurora kinase
A (AURKA) (125). Several AURKA inhibitors are under
clinical investigation (126). In ESCC, TPX2 mediates
proliferation, invasion and metastasis and is associated with
poor clinical outcome (127-129).

IncRNAs Targeting Further Components

CASCI5 targets single-minded 2. IncRNA cancer
susceptibility candidate 15 (CASC15) (Figure 4 and Figure
6F) has been shown to be increased in ESSC tissues (130).
CASC15 knockdown decreased proliferation and promoted
apoptosis in Ecal09 and KYSE450 ESCC cells in vitro.
Silencing of CASCI1S5 inhibited growth of KYSE450
xenografts in nude mice. CASC1S5 attenuated expression of
transcription factor single-minded 2 (SIM2) and decreased
stability of SIM2 mRNA via fat mass and obesity associated
protein (FTO). It has been shown that SIM2 can suppress
EMT in ESCC (131). FTO is a o-keto glutamate-dependent
dioxygenase, which mediates oxidative demethylation of
different RNA species affecting their splicing and stability
(132, 133). FTO regulates acute myeloid leukemia (AML)
by targeting 3'UTR of ankyrin repeat and SOCS box
containing 2 and retinoic acid o transcripts (134). In ESSC,
FTO has been shown to promote proliferation and migration
through up-regulation of MMP13 (135).

Lnc TP73-AS1 up-regulates type2-hydroxybutyrate dehydro-
genase. TP73-AS1 has been shown to be up-regulated in ESCC
and its knockout inhibited proliferation and induction of
apoptosis in EC9706 and KYSE30 ESCC cells in vitro (136)
(Figure 4). siRNA directed against TP73-AS1 attenuated
proliferation of EC9706 and KYSE30 cells in vivo. Knockdown
of TP73-AS1 inhibited cytosolic 3-hydroxybutyrate
dehydrogenase type 2 (BDH2). Knockdown of the latter
attenuated proliferation and induced apoptosis of EC9706 and
KYSE30 cells. BDH2 over-expression partially rescued
proliferation and suppressed apoptosis in IncRNA TP73-AS1
knockdown cells. BDH2 plays a role in utilization of ketone
bodies in mitochondria and the tricarboxylic acid cycle (137).
Furthermore, BDH2 functions as an anti-apoptotic factor
through survivin (138). However, the function of BDH2 seems
to be context-dependent, because it functions as a TS in gastric
cancer and hepatocellular carcinoma (139, 140).

IncRNA Casc9 down-regulates programmed cell death 4. Lnc
RNA cancer susceptibility 9 (CASC9) up-regulation
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predicted poor prognosis in ESCC (141) (Figure 4).
Knockdown of Casc9 in KYSE150 and KYSE450 ESCC
cells inhibited cell growth in vitro and in vivo. CASC9
promoted ESCC cell growth by negatively regulating
programmed cell death 4 (PDCD4). CASC9 recruited EZH2
to the promoter of PDCD4 and increases H3K27me3, which
inhibits transcription (141). PDCD4 acts as a TS, is up-
regulated after initiation of apoptosis and inhibits translation
(142-144). In ESCC cells, PDCD4 induces apoptosis,
suppresses proliferation and inhibits AKT (145, 146).

IncRNA LOCI00133669 targets mitochondrial —inner
membrane translocase subunit 50. Lnc RNA100133669
(LOC100133669) (Figure 4) has been shown to be up-
regulated in ESCC tissues and correlated with poor prognosis
(147). In KYSEI150 and KYSE510 ESCC cell lines,
LOC100133669 promoted proliferation and accelerated entry
of cells from G2/M phase to GO/G1 phase. In vivo, TG is
reduced in KYSE150 cells with knockdown of LOC100133669
after subcutaneous implantation into nude mice.
LOC100133669 interacts with mitochondrial inner membrane
translocase subunit 50 (TIMS50) and inhibits its degradation by
interfering with ubiquitinylation. TIM50 functions as a subunit
of the TIM23 complex which is essential for directing
preproteins into mitochondria (148-150). TIM50 also is
involved in energy production, metabolism, cell death, cell
signaling and oxidative stress (151). TIM50 also has been
shown to mediate NSCLC proliferation and invasion via the
extracellular regulated kinase (ERK) pathway (152).

IncRNA EZR-AS1 up-regulates ezrin. EZR-AS1 up-regulated
ezrin (EZR) expression in KYSE150 ESCCs to promote
migration in vitro (153) (Figure 4 and Figure 6G). In vivo,
silencing of EZR-AS1 reduced TG of KYSE150 xenografts
in nude mice. Lnc RNA EZR-AS1 formed a complex with
RNA Pol II and recruited H3 lysine 4 (H3K4)
methyltransferase SET- and MTN-domain containing 3
(SMYD3) to a binding site present in a GC region
downstream of the EZR promoter resulting in local
enrichment of H3K4me3 leading to enhanced expression of
EZR (153). Ezrin/radixin/moesin (ERM) proteins function as
general cross-linkers between plasma membrane proteins and
the cytoskeleton and play a role in functional expression of
membrane proteins on the cell surface (154). EZR mediates
invasion and metastases in the process of tumorigenesis
(155). In ESCC, EZR promotes growth and invasiveness and
predicts a poor prognosis (156, 157). SMYD3 methylates
various histone and non-histone targets and plays an
oncogenic role (158). In ESSC patients, expression of
SYMD3 is negatively correlated with survival time (159).

IncRNA PHBPI increases expression of prohibitin. Prohibitin
pseudogene PHBP1 (Figure 4) has been shown to be over-
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expressed in human ESCC tissues (160). Knockdown of PHBP1
inhibited proliferation and colony formation in vitro in Eca9706
and TE-1 ESCC cells. In nude mice, TG of Eca9706 and TE-1
xenografts after knockdown of PHBP1 was found. mRNA
stability of prohibitin (PHB) was increased by PHBP1 through
PHBP1/PHB RNA-RNA duplex formation. This indicates that
the mRNA of a pseudogene, a natural antisense transcript, can
stabilize the mRNA of its cognate gene and lead to increased
expression of its gene product. PHB is a protein of the inner
mitochondrial membrane, which is involved in cancer cell
proliferation, apoptosis and metastasis (161, 162). PHB can
modulate transcription by interacting with transcription factors
including nuclear receptors directly or indirectly (163, 164). In
ESCC, increased expression of PHB correlates with poor
prognosis (165). In pancreatic cancer, PHB has been identified
as a prognostic marker for worse prognosis (166). However,
proapoptotic functions of prohibitin have also been reported,
indicating context-dependent function (162).

Technical Issues

We have identified 7 down- and 16 up-regulated IncRNAs
showing efficacy in ESCC-related preclinical in vitro and in
vivo models. Down-regulated IncRNAs can be reconstituted by
expression of the corresponding IncRNAs with plasmid or
retroviral vectors (167). Up-regulation of the corresponding
targets with small molecules is limited by issues of specificity.

In case of up-regulated IncRNAs, inhibition with siRNA
and shRNA (both of them double-stranded) or antisense
oligonucleotides (ASO) (single-stranded) are also options
(168). siRNA or shRNA delivered into cells initiate
degradation of complementary RNAs (169). Binding of ASO
to their targets induces RNAseH-dependent endonucleolytic
cleavage of target RNA (170). Their therapeutic applications
have been optimized by introducing chemical modifications
leading to phosphothioates, generation of gapmers, locked
nucleic acids, morpholino oligonucleotides and peptide
nucleic acids (168). Also, modulation of IncRNAs by
clustered regularly interspersed short palindromic sequences-
crispr associated proteins (CRISPR-CAS) based intervention
is a future option (168). IncRNAs fold into complex
secondary and tertiary structures and interact with DNA,
RNA and proteins (171, 172). It remains to be seen whether
some of these interactions can be targeted with small
molecules. Proof-of-concept experiments have shown that a
stabilizing triple helix in MALAT-1 can be targeted with
small molecules (173).

However, major hurdles for the approaches described above
have been identified. These include immunogenicity of the
identified agents, specificity and delivery issues, which are not
discussed in detail in this review (174). Delivery has been
improved by conjugation of IncRNAs to antibodies, cell-
penetrating peptides and metal nanoparticles (174).
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Thus far, 11 RNA therapeutics that down-regulate genes
or interfere with pre-mRNA splicing have been approved
by the Food and Drug Administration (FDA) or European
Medicines Agency (EMA) (174). None of them has been
used in the treatment of patients with cancer. However,
four cancer-related approaches are in Phase II/III clinical
studies such as an siRNA targeting G12D mutated KRAS
and three ASOs targeting growth factor receptor-bound
protein 2 (GRB2), signal transducer and activator of
transcription 3 (STAT3) and heat shock protein 27
(HSP27) (174).

Conclusion

Down-regulated IncRNAs NKILA, GASL1, ADAMTS9-
AS2, IRF-AS1, SNHGS5, LINC00551, and ZNF750 are
candidates for reconstitution therapy. Inhibition of signaling
pathways such as NFkB (IkBa), WNT and IRF1, HSP27,
DNMT1/3, MTA2 and CDH3 emerge as further options to
be validated in more detail.

LINC02042, BAALC-AS1, LINC00152, and PANDA are
up-regulated and target transcription factors such as c-MYC,
NFYA, and SAFA. Due to issues of druggability, the
targeting of transcription factors is problematic (175-177) but
recent developments in the field of proteolysis targeting
chimera (PROTACS) might lead to breakthroughs in this
field. PROTACS consist of two covalently linked modules,
one binding to the target protein, the other one recruiting
ubiquitin ligase mediating intracellular proteolysis of the
target protein (178-181).

Up-regulated IncRNAs CCAT1, MALATI1, LINC01980,
LINP1, LINC00673, and LINC00337 target signaling and cell-
cycle related entities. Up-regulation of CDKN2C by inhibition
of EZH?2 and up-regulation of SPRY-4 by inhibition of PRC2
and SUV39HI1 emerge as therapeutic options.

CASC15, TP73-AS1, and CASC9 target further
components, not covered by the previously discussed
categories. Inhibition of the metabolic enzyme BDH2
(182) by small molecules might be an interesting option,
but validation of this target in more detail is necessary.
Inhibition of EZH2 to down-regulate PDCD4 might
emerge as another approach for treatment of ESCC.
Inhibition of TIMS50 and Ezrin might be limited by
specificity and druggability issues. The role of prohibitin
in ESCC merits further investigation.

It is unclear, whether interactions of IncRNAs with
corresponding proteins, DNA or RNA can be targeted with
small molecules. Inhibition of up-regulated IncRNAs with
siRNA or ASO presently seems to be the most promising
approach as a new treatment modality for the treatment of
ESCC. In vivo studies in patient-derived xenografts (PDX)
of ESCC would increase the translational impact of the
approaches described above.
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