
Abstract. Background/Aim: Prediction of response to
azacitidine (AZA) treatment is an important challenge in
hematooncology. In addition to protein coding genes (PCGs),
AZA efficiency is influenced by various noncoding RNAs
(ncRNAs), including long ncRNAs (lncRNAs), circular RNAs
(circRNAs), and transposable elements (TEs). Materials and
Methods: RNA sequencing was performed in patients with
myelodysplastic syndromes or acute myeloid leukemia before
AZA treatment to assess contribution of ncRNAs to AZA
mechanisms and propose novel disease prediction biomarkers.
Results: Our analyses showed that lncRNAs had the strongest
predictive potential. The combined set of the best predictors
included 14 lncRNAs, and only four PCGs, one circRNA, and
no TEs. Epigenetic regulation and recombinational repair
were suggested as crucial for AZA response, and network
modeling defined three deregulated lncRNAs (CTC-482H14.5,
RP11-419K12.2, and RP11-736I24.4) associated with these
processes. Conclusion: The expression of various ncRNAs can
influence the effect of AZA and new ncRNA-based predictive
biomarkers can be defined. 

Myelodysplastic syndromes (MDS) are a heterogenous group
of clonal malignancies characterized by ineffective
hematopoiesis resulting in peripheral cytopenia and
hypercellular bone marrow dysplasia. MDS patients have an
increased tendency to transform to acute myeloid leukemia
(AML). When the disease progresses to leukemia, prognosis is
clearly unfavorable, with an estimated survival of less than one
year (1). The prognosis of MDS patients is assessed based on
the Revised International Prognostic Scoring System (IPSS-R)
and depends on the number and severity of cytopenia,
percentage of bone marrow (BM) blasts and cytogenetics (2). 

Azacitidine (AZA) is a hypomethylating agent (HMA)
that is currently used as a standard care for patients with
higher-risk MDS or AML with 20-30% BM blasts when not
eligible for intensive chemotherapy and allogeneic
transplantation. AZA is a cytidine analogue that, at low
doses, inhibits DNA methyltransferases, resulting in DNA
hypomethylation. At high doses, AZA is directly cytotoxic
to abnormal BM hematopoietic cells because of its
incorporation into DNA and RNA (3). Although AZA is
extensively used, 30-40% of patients fail to respond or
relapse after treatment (4). The International Working Group
(IWG) proposed standardized response criteria for evaluating
clinically significant responses in MDS (5). Stratification of
patients who will benefit from those who will not respond to
AZA is essential. In addition to the high costs associated
with the treatment, an important issue lies in prolonged
exposure to AZA as current recommendations are for a
minimum of 6 months of treatment before deeming it a
failure. Therefore, proper prediction biomarkers that could
potentially prevent prolonged unnecessary adverse effects in
AZA-nonresponsive patients are needed.
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There have been many efforts to characterize clinical,
biological, or molecular parameters predictive of AZA
treatment outcome (6-12). Because DNA hypermethylation
can contribute to tumorigenesis by silencing tumor
suppressor genes, it was supposed that the methylation
pattern may be predictive of AZA response. Although both
global and gene-specific hypermethylation have been
performed in MDS (13, 14), little relation between the
degree of demethylation following hypomethylating
treatment and hematologic response has been evidenced (15).
Furthermore, due to the number of somatic mutations found
in regulators of DNA methylation, it has been hypothesized
that such mutations may impact the response to AZA. Some
studies have suggested the utility of DNMT3A (7, 8) and
TET2 (9, 10) mutations as predictive markers for AZA
response, yet these datasets have not been largely confirmed.
To date, no clinical, cytogenetic or molecular markers of
AZA treatment outcome to support clinical decisions have
been validated (16).  

Gene expression profiling has repeatedly been performed
in MDS and has identified many protein coding genes
(PCGs) and signaling pathways associated with disease
pathophysiology (17) and treatment (11). To provide
biological insights into the contribution of noncoding RNAs
(ncRNAs) to the AZA response or resistance and to propose
novel appropriate molecular markers able to predict the
response, whole transcriptome RNA sequencing (RNA-seq)
was performed in CD34+ BM cells in patients with higher-
risk MDS and AML with myelodysplasia-related changes
(AML-MRC) before AZA therapy. A more detailed analysis
of PCG data was not the major aim of this study, as they
have already been addressed in a previous study (18). This
study focused on the noncoding transcriptome and paid
special attention to the examination of various classes of
ncRNAs as predictive markers of the AZA response and
compared their power to predict the response with the
predictive power of PCGs. In addition to regular analysis of
RNA-seq data that standardly examines the expression of
PCGs and several classes of noncoding transcripts (mainly
long noncoding RNAs, lncRNAs), the NGS data with regard
to circular RNAs (circRNAs) and transposable elements
(TEs) was also analysed. To the authors’ knowledge, this is
the first study addressing and integrating transcriptional data
of these molecules in MDS.

Materials and Methods

Patients. The study included 26 patients with a diagnosis of MDS or
AML-MRC and 9 healthy controls. BM samples were obtained from
the patients before the first administration of AZA during routine
clinical assessment at the Institute of Hematology and Blood
Transfusion and the First Department of Internal Medicine of the
General Faculty Hospital in Prague. The study included only patients
with no known history of previous malignancy, chemotherapy or

radiation therapy, and none of the patients received hematopoietic
stem cell (HSC) transplantation. The patient’s diagnoses were
assessed based on the standard WHO 2016 classification criteria
(19), and all the patients were classified according to the IPSS-R
categories (2) at the time of sample collection. AZA was
administered at 75 mg/m2 subcutaneously for 7 days and repeated
every 4 weeks. The response status of the patients was evaluated
according to IWG criteria (5). Patients with complete remission
(CR), partial remission (PR), marrow CR with hematological
improvement (mCR with HI), or stable disease with HI (SD with HI)
were considered responders (RESPs, N=11). Patients with SD
without HI and with progressive disease (PD) accounted for
nonresponders (nRESPs, N=15). The control group contained nine
hematologically healthy donors (four males and five females; mean
age 41 years; range=27-69 years). Written informed consent was
obtained from all tested subjects and the study was approved by the
Scientific Board and the Ethics Committee of the Institute of
Hematology and Blood Transfusion and the General Faculty
Hospital, and performed in accordance with the ethical standards of
the Declaration of Helsinki. The detailed clinical and laboratory
characteristics of the cohort, including the patient classification into
subgroups, IPSS-R categories, AZA response, blood counts,
cytogenetics, and mutational status, are summarized in Table I.

Cell separation and nucleic acid extraction. Mononuclear cells
(MNCs) were separated from BM aspirates by Ficoll-Paque density
gradient centrifugation (GE Health care, Munich, Germany). CD34+
cells were isolated from MNCs using magnetic cell separation
system from Miltenyi Biotec (Bergisch Gladbach, Germany). The
acid-guanidine-phenol-chloroform method was used to extract total
RNA and DNase I (Qiagen, Hilden, Germany) treatment was
applied to prevent genomic DNA contamination. Each RNA was
quantified using Qubit 3 Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA), and RNA integrity was assessed using the
TapeStation 4200 HS RNA kit (Agilent Technologies, Santa Clara,
CA, USA).

RNA sequencing. For RNA-Seq, a rRNA depletion-based approach
(RiboCop rRNA Depletion Kit v1.2, Lexogen, Vienna, Austria) was
used followed by library construction with NEBNext Ultra II
Directional RNA Library Prep Kit for Illumina (New England
Biolabs, Ipswich, MA, USA). Each library was marked with unique
indexed primers. Library quality and size were assessed using a
TapeStation 4200 HS D1000 kit and quantified with a Qubit 3
Fluorimeter. Libraries were subsequently equimolarly pooled and 2
x 125 bp paired-end sequenced with a HiSeq SBS V4 kit on a HiSeq
2500 instrument (Illumina, San Diego, CA, USA).

Bioinformatical data processing. FASTQ files were subjected to
initial quality control by FastQC (20), and adaptor trimming and
low-quality sequence removal were performed by Trimmomatic
(21). For identification of “regular” transcripts (i.e., PCGs and
lncRNAs), the reads were aligned to the human genome version
hg38 using STAR (22). Genomic features in mapped data were then
counted using the StringTie tool (23). For circRNA identification,
the reads were mapped to the human genome version hg19 using
BWA (24) because genomic coordinates of circRNAs in the
circBase database are in hg19. The mapped data were further
processed by CIRI2 software (25). The SalmonTE tool (26) was
used for the detection of TEs from raw FASTQ files and for further
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processing of TE data. All other subsequent statistical analyses were
performed in the R statistical environment with appropriate
Bioconductor packages. The pcaMethods (27) was applied for
sample clustering. Differential expression analysis (DEA) was
performed with edgeR (28) and DESeq2 (29). For DEA, only those
transcripts that had at least 5 counts-per-million (CPM) in at least
this number of libraries, which corresponded to half of the smallest
sample group, were retained. In standard settings, only the
transcripts with |logFC|>1 (absolute value of binary logarithm of
fold change) and FDR<0.05 (false discovery rate; p-value adjusted
for multiple testing) were considered significantly deregulated. 

Three different supervised machine learning methods were used
for the identification of a subset of transcripts applicable as the best
prognostic classifiers of patient response. The methods that can cope
with a large number of features and are not prone to overfitting were

selected. All the methods had been applied to RNA-seq data
classification. In particular, the following methods were employed:
support-vector machines with recursive feature elimination (SVM-
RFE) (30), lasso and elastic-net regularized generalized linear
models (GLMNET) (31), and variance modeling at the
observational level (voom) extensions of the nearest shrunken
centroids (voomNSC) (32). Considering unbalanced classes (the
number of RESP and nRESP patients differs) the area under the
ROC curve (AUC) was used for the evaluation of classifier
performance. To assess the generalization ability of the classifiers,
the evaluation was performed with the aid of 10 times repeated 10-
fold cross-validation.

To define a formula calculating the prediction score of a patient
based on the weight of the individual selected transcripts, GLMNET
was applied to fit generalized linear models via penalized maximum
likelihood. When the response was binary (RESP from nRESP
patients in our case), it fit a logistic regression model:

Prediction score=logPr(RESP|X=x)Pr(nRESP|X=x)=β0+βTx

where β0 stands for intercept, β for regression coefficients of
individual transcripts (T), and x for an expression vector of a
patient. The prediction score is equal to a logarithm of patient
response odds; thus, a score >0 predicts future AZA response, and
a score <0 suggests AZA failure.

Pathway analysis was conducted using the Gene Set Enrichment
Analysis (GSEA) method (33). As a reference, the c5
(c5.all.v7.0.symbols.gmt [Gene Ontology, GO]) gene set from the
Molecular Signatures Database was utilized. Computational modeling
was applied for the construction of coexpressional networks as
previously described (34). Briefly, ncRNA network analysis was
implemented as follows. The GO terms significantly enriched in
deregulated PCGs were identified. Then, ncRNAs (from all three
classes of noncoding transcripts: lncRNAs, circRNAs, and TEs) were
found whose expression profiles were most correlated with the PCGs
associated with the given GO term. Specifically, ncRNAs were scored
with preranked GSEA, and the enrichment score statistic was
calculated based on absolute Spearman correlation between the
ncRNA under consideration and the set of PCGs associated with the
GO term. Eventually, a network was displayed that included nodes
corresponding to the highest scoring ncRNAs and the core PCGs
representing the given GO term. The core PCGs were those that most
often contributed to the enrichment signal for the highest scoring
noncoding transcripts. The edges between the network nodes
represented the upper quartile correlations (bold line) and the above
median correlations (regular line).

Results
Characterization of transcriptomic data. Deep RNA-seq was
performed on 35 samples obtained from CD34+ BM cells
isolated from 26 patients (clinical details are summarized in
Table I) and 9 healthy controls and, on average, 75,8 M
(range=56.8-99.9 M) of raw pair-end reads per sample were
detected. The output data were aligned to hg38 and, on
average, 87% reads per sample uniquely mapped to the
genome. Overall, 19,873 PCGs and 38,343 ncRNAs were
detected with at least one read across all the samples. Using
the CIRI2 software, the data were further realigned to hg19
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Table I. Patient characteristics. 

Number of patients                                                                      26
Age (years)                                                                            69 (44-82)
Gender (male/female)                                                               14/12
Diagnosis
  MDS-MLD                                                                                 1
  MDS-EB1                                                                                   1
  MDS-EB2                                                                                  18
  AML-MRC                                                                                 6
IPSS-R category of MDS*
intermediate/high/very high/NA                                            5/9/6/6

Medullary blasts (%)                                                         16.7 (6.6-27.4)
Hemoglobin (g/l)                                                                  98 (66-127)
Neutrophils (×109/l)                                                           2.1 (0.1-11.8)
Platelets (×109/l)                                                                  90 (20-578)
Cytogenetic features
  Normal karyotype                                                                      8
  Isolated del(5q)                                                                         5
  Complex                                                                                     4
  Other                                                                                           9
IPSS-R karyotype 
Good/intermediate/poor/very poor                                        15/7/1/3

Somatic mutations
  No. of mutations per patient: 0/1/2/3/4/5/6                    4/6/6/6/1/1/2
  Most frequent mutations
  TP53                                                                                         9
  SF3B1                                                                                       6
  RUNX1                                                                                    5
  TET2                                                                                         5
  DNMT3A                                                                                  4
Follow-up
  Mean follow-up from sample collection (months)            18 (4-47)
  Number of deceased patients                                                   19
AZA treatment
   Months from sample collection to AZA administration      1.3 (0-3.3)
  Number of RESPs/nRESPs                                                   11/6/9
  Cycles administered                                                            11 (3-38)

*The IPSS-R category was not assessed in AML-MRC patients. Average
numbers are calculated as the mean of the cohort. MDS: Myelodysplastic
syndrome; MLD: multilineage dysplasia; EB: excess blasts; AML-MRC:
acute myeloid leukemia with myelodysplasia-related changes; IPSS-R:
Revised International Prognostic Scoring System; AZA: azacytidine;
RESPs: responders; nRESPs: nonresponders; NA: not available.



and mapped the sequences to the circBase database
containing 58,216 circRNAs. On average, 3.7% of reads per
sample mapped to circRNAs and 49,280 circRNAs were
identified across all the samples. Finally, data analysis with
the SalmonTE tool showed that 5.7% of raw reads mapped
to TE sequences. Of the 687 elements utilized by the tool,
627 TEs were detected across all samples. 

Only the transcripts that had ≥5 CPMs at least in any 5
samples were considered as expressed (12,330 PCGs, 2,059
ncRNAs, 6,015 circRNAs, and 554 TEs) and were therefore
used for subsequent data analyses. The majority of the
ncRNAs were composed of antisense RNAs (20%, N=418)
or long intergenic noncoding RNAs (lincRNAs, 15%,
N=375). Therefore, for the purpose of simplification, the
“lncRNA” term was used for this category of transcripts
within the paper. Regarding circRNAs, the majority of them
were of exonic origin (94%, N=5,628) whereas only a
minority of them were intronic (4%, N=233) or intergenic
(2.5%, N=145). Within TE data analysis, the expression of
410 LTR (68%; e.g., 235 ERV1, 41 ERV2, and 133 ERV3)

and 196 non-LTR (32%; e.g., 166 L1 and 70 SINE)
retrotransposons was detected. 

Disease-specific transcriptome. In the initial step, the
patient-specific transcriptome must be characterized.
Although this was not a major aim of this study, it was
necessary to explore the general molecular background in
disease pathogenesis to better understand AZA-related
changes.  Additionally, there was almost no information
about circRNA and TE transcription in MDS. This data was
therefore of particular interest.  

Four PCA clustering analyses (i.e., separate analyses for
PCGs, lncRNAs, circRNAs, and TEs) were performed to
compare the contribution of different transcript groups to the
disease pathogenesis. Based on PCA, the degree of
variability was evaluated in gene expression among the
samples. All four PCA analyses showed that healthy controls
grouped into a compact homogenous sample cluster whereas
expression in patient samples was more heterogeneous and
future response status cannot be predicted based on any type
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Figure 1. Principal component analysis (PCA). Clustering of samples was performed separately with four different types of RNA-seq output data.
PCGs: Protein coding genes, lncRNAs: long noncoding RNAs, circRNAs: circular RNAs; TEs: transposable elements; green – healthy controls; red
– responders, yellow – patients with stable disease without hematological improvement, blue – patients with progressive disease. 



of genome-wide transcriptomic data. Interestingly, patients
were most clearly differentiated from healthy controls based
on the levels of PCGs and lncRNAs, yet information about
circRNA or TE expression was not sufficient for
stratification of patients and controls (Figure 1).

In the next step, DEA was performed between samples
obtained from patients and those from normal individuals.
All patient samples were included in these analyses,
irrespective of their future AZA response status. Table II
summarizes the most deregulated transcripts of each RNA
category in MDS/AML-MRC patients compared to healthy
controls. 

Regarding PCGs, DEA revealed 457 significantly
deregulated transcripts (|logFC|>1, FDR <0.05). In patients,
331 PCGs were up-regulated (based on logFC, the 12 most
up-regulated genes were COL4A5, DSC2, CASS4, SLITRK5,
LGALSL, CD5L, TPSB2, LOXL4, HBA1, MFAP3L, HBA2,
and CANCB4) and 126 PCGs were down-regulated (the 12

most down-regulated genes were ARPP21, PAX5, EBF1,
AKAP12, POU2AF1, RAG1, MME, AREG, CD79A, NEIL1,
CD24, and LEF1). These differences were comparable to
those published in earlier gene expression profiling studies
(34-37). For example, down-regulation of LEF1 significantly
correlated with clinical outcome and might be promising for
assessing prognosis in MDS (37). Importantly, the similarity
of the PCG data presented in this study with the previous
findings proved the validity of our RNA-seq outputs. GSEA
further revealed that the PCG deregulation in the patients was
predominantly associated with epigenetic regulation of gene
expression (normalized enrichment score (NES)=2.02,
p=0.002) and chromatin silencing (NES=1.97, p=0.002). Core
enrichment genes for these two pathways included multiple
histone proteins, especially those from the HIST1H and
HIST2H families. Other significantly deregulated pathways
included DNA ligation involved in DNA repair (NES=1.82;
p<0.001; core enrichment genes: HMGB1/2, LIG1/3,

Dostalova Merkerova et al: Noncoding RNAs in Azacitidine-treated MDS and AML

209

Table II. The top deregulated transcripts between patients with myelodysplastic syndromes/acute myeloid leukemia with myelodysplasia-related
changes and healthy controls from each RNA category defined by differential expression analysis. 

                    PCGs                                   lncRNAs                                                            circRNAs                                                              TEs

           Up            Down                 Up                   Down                               Up                                               Down                             Up             Down

1      COL4A5     ARPP21            MEG3                RP13-          chr2:116066814-116101488         chr3:35721278-35732497          X5A_         LTR87*
                                                                              685P2.5                        (DPP10)                      (hsa_circ_0001281; ARPP21)       LINE

2        DSC2          PAX5        MIRLET7BHG         RP11-           chr10:31661946-31676195         chr17:81042813-81043199       MLT2F      LTR80B*
                                                                             424C20.2        (hsa_circ_0000228; ZEB1)                       (METRNL)

3       CASS4         EBF1         RP6-159A1.4          AOX2P         chr3:171969049-172028671       chr5:157744372-157786654     LOR1b_     LTR18A*
                                                                                                  (hsa_circ_0003692; FNDC3B)             (hsa_circ_0001548)                LTR

4     SLITRK5     AKAP12         MT-RNR2             RP11-            chr7:37136223-37172839         chr5:158368701-158368987        MIR3      L1M3C_5*
                                                                              374F3.4      (hsa_circ_0079884; ELMO1)*                       (EBF1)

5      LGALSL    POU2AF1       MT-RNR1         SCARNA12       chr5:50073902-50093067         chr5:143042459-143052262       MIRb*        LTR68*
                                                                                                   (hsa_circ_0072437; PARP8)*                  (AC008696.2)

6        CD5L          RAG1            TRG-AS1             AOX3P            chr20:3888572-3893281          chr5:158500403-158526471       PABL_        MLT1I*
                                                                                                  (hsa_circ_0006873; PANK2)*                        (EBF1)                          BI**

7       TPSB2         MME       RP11-398F12.1         RP11-        chr1:54506428-54509198 hsa_     chr5:157744372-157745153         X21_         L1ME4*
                                                                             124N14.4        circ_0012634 (TMEM59)*                                                               LINE*

8       LOXL4         AREG      RP11-262H14.1         IGHD          chr2:230701563-230744844      chr10:125798030-125806240     LTR06*      LTR26E*
                                                                                                  (hsa_circ_0007381; TRIP12)*     (hsa_circ_0000264; CHST15)

9        HBA1         CD79A     RP11-541N10.3         RP11-           chr8:86193458-86193868*             chr1:2234416-2236024          LTR75*    MER57E3*
                                                                             861A13.4                                                                (hsa_circ_0007120; SKI)

10    MFAP3L       NEIL1        AC093627.10     AC002454.1     chr21:36206706-36259393*         chr16:16101672-16196574        HERV-           L2*
                                                                                                                                                                         (ABCC1)                      K14CI*

The top 10 up-regulated (UP) and 10 down-regulated (DOWN) transcripts with the highest logFC values (FDR<0.05) in patients compared to
controls are listed in each row. *Transcripts that reached only raw p<0.05.



PARP1/2, XRCC1, etc.) and regulation of alternative mRNA
slicing via spliceosomes (NES=1.82; p=0.002; core
enrichment genes: splicing factors such as SRSF2-4/6/9-10
and SF3A1, etc.). All these pathways were suppressed in
patient samples compared to healthy controls, suggesting that
transcriptional regulation and reparatory processes were
disrupted at multiple levels in myelodysplasia. GSEA output
is summarized in Figure 2. Because PCG profiling has
repeatedly been performed in MDS and many signaling
pathways associated with disease pathophysiology have been
described (34-37), the expression of various classes of
noncoding transcripts was a focus of this study. 

Among the lncRNAs identified by standard RNA-seq data
analysis, 80 differentially expressed transcripts (|logFC|>1,
FDR<0.05; 64 up-regulated/ 16 down-regulated, Figure 3A)
were found. MEG3 and MIRLET7BHG were the most up-
regulated lncRNAs and RP13-685P2.5 and RP11-424C20.2
were the most down-regulated lncRNAs (Figure 3B).
Interestingly, increased expression of MEG3 has already
been associated with poor outcome in high risk MDS (38).
MIRLET7BHG is a precursor gene for let7b miRNA which
is also up-regulated in MDS (39). 

Furthermore, circRNA data were analyzed by DEA. Of the
6,015 circularized transcripts used for the analysis, a significant
change (|logFC|>1, FDR<0.05) was observed in the level of 23
circRNAs (3 up-regulated/20 down-regulated). Up-regulation
was detected of circRNAs spliced from DPP10, ZEB1, and
FNDC3B genes and down-regulation of circRNAs processed
from ARPP21, METRNL, EBF1, SKI, ABCC1, and AKAP12
genes. More detailed information about the deregulated

circRNAs, including their sequences and localizations in the
genome, is shown in Table III.

DEA performed on TE data showed that the most
significantly deregulated clades of TEs between patient and
healthy control samples were ERV1 (mean logFC=0.14,
p=9.34E-09), ERV3 (mean logFC=0.15, p=5.74E-04), and
SINE (mean logFC=–0.12, p=1.27E-03) (Figure 4A). At the
level of individual elements, only four of them were identified
with significant deregulation (|logFC|>1 and FDR<0.05): up-
regulation of LOR1b_LTR (ERV1 clade), MLT2F (ERV3
clade), X5A_LINE (CR1 clade), and MIR3 (SINE clade (Figure
4B). However, 80 TEs were significant at the cutoff level FDR
<0.05, and the illustrative heatmap in Figure 4C shows their
levels in the patient and control samples.  

Pre-treatment transcriptional differences related to future
AZA response. Following the collection of BM samples, all
tested patients started to receive AZA therapy. To assess
expression differences in various groups of transcripts with
relation to their predictive power, patients were divided into
two groups of samples, RESP (N=11) and nRESP (SD and
PD, N=16) and DEA was performed. Table IV shows lists of
the most deregulated transcripts from each category. Overall,
DEA between RESPs and nRESPs identified significant
(|logFC|>1, FDR <0.05) deregulation of 202 PCGs (111 up-
regulated/91 down-regulated in RESP), 34 lncRNAs (34
down-regulated), 21 circRNAs (4 up-regulated/17 down-
regulated), and down-regulation of one TE. The three PCGs
most up-regulated in RESPs were SEC14L5, TUBB1, and
TREML1, and the most down-regulated PCGs were
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Figure 2. Continued
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Figure 2. Pathway analysis of differentially expressed genes in patients with myelodysplastic syndromes/acute myeloid leukemia with myelodysplasia-
related changes compared to healthy controls. A plot of gene set enrichment analysis results shows p-values (logarithmically scaled) and normalized
enrichment scores (NES) of the top 10 most enriched pathways in each group of samples sorted according to descended NES values. The four most
significant gene sets (marked by asterisks; negative regulation of gene expression - epigenetic; chromatin silencing; DNA ligation involved in DNA
repair; and regulation of alternative mRNA slicing via spliceosome) were selected for detailed visualization of the data. Enrichment plots and
expression heatmaps of core enrichment genes are shown for these four gene sets. 
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ADGRB3, LRAT, and ARHGAP20. Interestingly, several of
the most up-regulated PCGs were involved in megakaryocyte
differentiation (e.g., TUBB1, TREML1, PPBT, ITGB3, and
THBS1). Detailed pathway analysis of PCG results is
described below in a separate chapter. Among the lncRNAs
with significantly altered levels between RESPs and nRESPs
(details included in Table V), four lincRNAs were found
from the 21p11.2 chromosomal locus (CH507-513H4.3-6)
and several other lncRNAs from different categories
(lincRNAs, antisense RNAs, rRNAs, miRNA precursors,
etc.), the majority of which are completely unannotated (their
details are included in Table VI). Regarding deregulated
circRNAs, significant deregulation was observed in a
circRNA processed from KDM1A histone demethylase gene,
a circRNA from MED21 (transcriptional regulator of RNA
polymerase II), two circRNAs processed from zing-finger
transcription factors (ZNF208 and ZNF608), and circRNAs
backspliced from transmembrane proteins (SLC8A1/3,
PLXNC1), etc. Among TEs, only L1 element L1PBB_5
showed significant down-regulation between RESPs and
nRESPs, but some other TEs were moderately altered at raw
p<0.05 (Table IV).

Molecular markers for the prediction of patient response to
AZA. Based on differences in gene expression levels, this
study aimed to predict future responses to AZA treatment,
which can help us individualize patient care in routine
clinical practice. Although DEA was effective in the
identification of individual transcripts stratifying RESPs
from nRESPs, machine learning methods also take into
consideration relations among molecules and might thus
eliminate similarly expressed genes from the final set of
predictive markers. A classifier combining several
independent molecular markers of diverse characteristics
should provide more reliable classification of patients
compared to simple information on an individual gene level.  
In this study, a machine learning approach was used and
three different classification algorithms (SVM-RFE,
voomNSC, and GLMNET) were applied to identify the most
powerful set of molecular markers. Using all datasets
together (i.e., PCGs, lncRNAs, circRNAs, and TEs), the
highest classification accuracy was clearly reached by
GLMNET (Figure 5) and this algorithm was therefore
chosen for further investigations. The GLMNET
performance graph suggests that the classifier was able to
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Table III. Differentially expressed circRNAs between patients with myelodysplastic syndromes/acute myeloid leukemia with myelodysplasia-related
changes and healthy controls (|logFC|>1, FDR<0.05). 

Genomic locus                                                 circBase ID                 Gene                Type        Strand    logFC    CPM (CTR)   CPM (PTS)        FDR

circRNAs up-regulated in patients
chr2:116066814-116101488                                    -                         DPP10              Exon            +           5.1                0.0              185.1          1.14E-03
chr10:31661946-31676195                        hsa_circ_0000228            ZEB1               Exon            +           2.7            120.8              847.8          2.45E-04
chr3:171969049-172028671                      hsa_circ_0003692         FNDC3B            Exon            +           2.6              98.2              614.2          1.95E-04

CircRNAs down-regulated in patients
chr3:35721278-35732497                          hsa_circ_0001281         ARPP21             Exon            +         –4.7            231.0                  3.8          1.59E-05
chr17:81042813-81043199                                      -                       METRNL            Exon            +         –4.7            789.5                16.7          1.89E-17
chr5:157744372-157786654                      hsa_circ_0001548                -               Intergenic        +         –4.5            279.3                  7.6          1.09E-05
chr5:158368701-158368987                                    -                          EBF1              Intron           -          -4.3            294.2                  9.5          9.69E-06
chr5:143042459-143052262                                    -                     AC008696.2          Exon            +         –4.2            305.0                11.3          9.69E-06
chr5:158500403-158526471                                    -                          EBF1               Exon            -          –4.2            484.8                27.7          2.24E-08
chr5:157744372-157745153                                    -                              -               Intergenic        +         –3.9            240.9                11.0          3.57E-04
chr10:125798030-125806240                    hsa_circ_0000264         CHST15             Exon            -          –3.7            219.0                11.6          1.31E-03
chr1:2234416-2236024                              hsa_circ_0007120             SKI                 Exon            +         –3.6            292.9                18.7          1.52E-04
chr16:16101672-16196574                                      -                         ABCC1              Exon            +         –3.6            310.5                19.7          1.40E-04
chr6:151669845-151674887                      hsa_circ_0078299         AKAP12             Exon            +         –3.6            715.9                65.4          6.58E-09
chr2:55252221-55254621                          hsa_circ_0054597            RTN4               Exon            -          –3.5            132.7                  4.7          2.49E-02
chr6:90916287-90981660                          hsa_circ_0001626          BACH2              Exon            -          –3.0            248.6                24.9          6.93E-03
chr1:230313963-230339036                      hsa_circ_0000192         GALNT2             Exon            +         –2.9            186.8                15.9          2.97E-02
chr5:142779220-142780417                      hsa_circ_0001543          NR3C1              Exon            -          –2.4            701.5              121.6          1.09E-05
chr17:2297336-2298748                                          -                           MNT                Exon            -          –2.4            280.0                47.7          2.92E-02
chr18:77170402-77171501                        hsa_circ_0048023         NFATC1             Exon            +         –2.3            342.7                62.6          1.36E-02
chr2:242644067-242651486                      hsa_circ_0001124            ING5               Exon            +         –2.0            588.4              140.1          1.15E-03
chr3:59997096-59999990                                        -                          FHIT               Intron           -          –1.9          1047.6              276.2          1.03E-04
chr18:77455224-77464917                        hsa_circ_0006209          CTDP1              Exon            +         –1.8            550.7              139.5          7.99E-03

CPM: Counts per million.



reasonably distinguish between RESPs and nRESPs because
the observed AUC areas were significantly higher than the
value of 0.5 (corresponding to a random classification), and
a significant difference could be observed for a broad scale
of signature sizes. The GLMNET classifier also reached the
optimum performance for a limited signature size of 100
transcripts (AUC=0.85) and its performance did not further
grow with its extension. This observation led us to the
conclusion that it was possible to distinguish between the
patient classes with a relatively small set of transcripts. 

In addition to the choice of an appropriate data-
classification algorithm, contribution of different transcript
categories to the response prediction was tested by evaluating
each transcript category separately. Surprisingly, lncRNAs
overperformed the other types of molecules, as they provided
the best classification power between RESPs from nRESPs
(AUC=0.83 defined by GLMNET) (Figure 6A). 

After optimization of the methodology, GLMNET was
employed to identify a particular small set of the most
powerful markers. A compromise was reached between the
signature size (the number of used transcripts) and its

performance, and the size was kept as small as possible while
approaching the best possible AUC of 0.85 observed earlier.
The final set contained 19 transcripts, of which 14 were
lncRNAs, only 4 PCGs and 1 circRNA, and none TE (Figure
6A and B, Table VII). This distribution reinforces the earlier
observation that lncRNA molecules represented the core of the
RESP/nRESP classification signature. Furthermore, a formula
calculating the prediction score of a patient was defined based
on the weights of the 19 transcripts selected by GLMNET.
The regression score was calculated as follows:

Prediction score=−12.43+βTx

The score uses expression values (x) and regression
coefficients (β) for these 19 transcripts (T) (β coefficients
can be found in Table VII). When simplified and binarized,
a score >0 predicts that the tested patient will respond to
AZA, whereas a score <0 suggests future AZA failure.

Pathway analysis of transcripts associated with the AZA
response. To explore cellular processes associated with patient
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Figure 4. Deregulation of transposable elements in patients with myelodysplastic syndromes/acute myeloid leukemia with myelodysplasia-related
changes and controls. (A) Boxplot showing deregulation (logFC) of different clades of TEs. (B) List of the four most significantly (|logFC|>1,
FDR<0.05) deregulated transposable elements and (C) their expression boxplots. (D) Illustrative heatmap of 80 transposable elements deregulated
with the cutoff FDR<0.05. 



capability to benefit from AZA treatment, GSEA was
performed on PCGs (Figure 7). Many of the processes
associated with the AZA response were also generally
deregulated in myelodysplasia (described above and
summarized in Figure 2). In particular, epigenetic regulation
of gene expression and DNA repair, which were generally
suppressed in patients (compared to healthy donors), were
suppressed specifically in AZA nRESPs and activated in AZA
RESPs. Based on these observations, two GO gene sets were
selected, recombinational repair (NES=1.95; p=0.006; core
enrichment genes included BRCA1/2, H2AFX, POLQ, RAD51,
MCM8, and XRCC2; Figure 8A and B) and negative
epigenetic regulation of gene expression (NES=1.91; p=0.014;

core enrichment genes included multiple HIST1H transcripts
and other epigenetics-related factors, e.g., DNMT1/3B and
EZH2; Figure 9A and B), for further investigation. 

This study further aimed to explore specific noncoding
transcripts related to these two processes (epigenetic
regulation and DNA repair) in the context of future AZA
responses. Computational modeling was applied and
coexpressional networks were constructed based on
correlation rates among all transcripts (PCGs, lncRNAs,
circRNAs, and TEs) deregulated between AZA RESPs and
nRESPs. Interaction graphs for both GO terms displaying 20
PCGs the most representative given GO term (the most
deregulated leading-edge genes) and 12 noncoding
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Table IV. The top deregulated transcripts between responders and nonresponders from each RNA category defined by differential expression analysis. 

                     PCGs                                   lncRNAs                                                            circRNAs                                                              TEs

           Up            Down                 Up                   Down                               Up                                               Down                             Up             Down

1     SEC14L5    ADGRB3            RP11-             C20orf200        chr2:40655612-40657441           chr1:23376879-23385660      MLT1H2*    L1PBB_5
                                                  520F9.2*                                 (hsa_circ_0005232; SLC8A1)      (hsa_circ_0003889, KDM1A)
2       TUBB1         LRAT               RP11-              MT-RNR2       chr7:149191294-149318263        chr12:94603365-94613939       LTR24*    X21_LINE*
                                                  520F9.1*                                                 (ZNF746)                                     (PLXNC1)
3     TREML1   ARHGAP20       IL8RBP*             CH507-        chr4:105439733-105440611                chr22:17117929-                 LTR2*      MER66B*
                                                                              513H4.6               (hsa_circ_0124919)                     17119630 (TPTEP1)
4        PPBP        ABI3BP             CTB-                CH507-          chr2:40655612-40657444            chr21:9827155-9827307         LTR41*      MLT2F*
                                                 158D10.3*           513H4.4       (hsa_circ_0000994; SLC8A1)
5      LGALSL      LRCH2       AC115617.2*         CH507-          chr1:12638745-12639440          chr5:124036706-124036962     LTR40B*      LTR77*
                                                                              513H4.3      (hsa_circ_0010023; DHRS3)*     (hsa_circ_0001523; ZNF608)
6       ITGB3          RP5-              MEG8*              CH507-          chr6:17671287-17672025            chrY:22669237-22683186       MER9B*    LTR38A1*
                         900K19.2                                    513H4.5                      (NUP153)*
7       THBS1        PYGO1             RP11-                RNA5-           chr3:59908071-59999990           chr19:22157530-22171711       AluYd8*      LTR2B*
                                                 1143G9.4*             8SN4                           (FHIT)*                                       (ZNF208)
8        PRLR         CNTN1             RP11-            RNA5-8SN3       chr2:47177501-47206046           chr6:77981056-77983024      L1MB6_5*      L2B*
                                                 354E11.2*                                (hsa_circ_0008101; TTC7A)*
9        HPSE        RASSF6             CTD-              RNA5-8S5                chr4:178272533-                 chr4:183812555-183836728     MLT1D*      HARLE
                                               2540B15.13*                                    178274882 (NEIL3)*              (hsa_circ_0002212; DCTD)                           QUIN*
10      HBG2        NLGN1          FAM45B*             RP11-          chr1:118003110-118045592        chr12:27183090-27185614            -          MER74A*
                                                                              259P6.2     (hsa_circ_0002059; MAN1A2)*                    (MED21)

The top 10 up-regulated (UP) and 10 down-regulated (DOWN) transcripts with the highest logFC values (FDR<0.05) in responders compared to
nonresponders are listed in each row. *Transcripts that reached only raw p<0.05.

Table V. Differentially expressed lncRNAs between azacitidine responders and nonresponders (|logFC|>1, FDR<0.05, all of them were down-
regulated in RESP patients).

lncRNA type                                                          lncRNAs significantly down-regulated in responders

lincRNAs                                                               AC007092.1, AP000476.1, AP001171.1, CH507-513H4.3, CH507-513H4.4, CH507-513H4.5, 
                                                                               CH507-513H4.6, RP11-1195F20.2, RP11-266K4.14, RP11-77P16.4, RP1-90L6.2
Antisense RNAs                                                    C20orf200, CTD-2516F10.2, RP11-190A12.10
miRNA precursors                                                 MIR3687-1, MIR6724-1/2/3
rRNAs/mitochondrial-rRNAs                               MT-RNR1/2, MT-TI, RNA5-8S5, RNA5-8SN3/4
Miscellaneous lncRNAs                                        AC103965.1, AC116366.4, HCG4P7, RP11-259P6.2, RP11-353N4.5, 
                                                                               RP11-553L6.5, RP11-573G6.4, SCARNA6, SNORA47



transcripts (the most correlated with these PCGs) are shown
in Figure 8C and Figure 9C. Although no TE was identified
as related to any of the two processes, four circRNAs
(hsa_circ_0001580 from KDM1B gene, hsa_circ_0008737
from CAMTA1 gene, chr2:136,620,176-136,622,733 from
MCM6 gene, and chr17:59,853,761-59,878,835 from BRIP6
gene) were associated with recombinational repair pathway,
and three circRNAs (chr2:61,722,589-61,727,029 from
XPO1 gene, chr5: 134,681,712-134,688,690 from H2AFY
gene, and chr14:97,299,803-97,342,457 from VRK1 gene)
with epigenetic regulation processes. Regarding lncRNAs,
several transcripts with unknown functions were included in
the networks, associating them with a cellular process for the
first time (e.g., epigenetic regulation: CTC-298B17.1, CTB-
83J4.2, RP11-449P15.1; DNA repair: AC004159.2,
RP5894D12.5, C20orf166; others can be found in Figure 8C
and Figure 9C). Interestingly, three of the lncRNAs defined
by GLMNET as the strongest predictors of AZA response
were defined by computational modeling as significantly
associated with recombinational repair (CTC-482H14.5,
RP11-419K12.2, and RP11-736I24.4) and/or negative
epigenetic regulation of gene expression (CTC-482H15.5).
CTC-482H14.5 (up-regulated in nRESPs) is an antisense
RNA of the KDM4B gene, RP11-419K12.2 (down-regulated
in nRESPs) belongs to the lincRNA category, and RP11-

736I24.4 (down-regulated in nRESPs) is a transcribed
unprocessed pseudogene of the OTUD7A gene. Additional
descriptions of these lncRNAs are included in Table VIII.

Discussion

Over the last several years, the understanding of pathogenesis
of MDS and AML-MRC has expanded. Multiple publications
have described alterations of PCGs involved in chromatin
modification, DNA methylation, RNA splicing, cohesin
complex, transcription factors, cell signaling, and DNA
damage (40). In this study, suppression of a multitude of PCGs
associated with epigenetic mechanisms, DNA repair, and RNA
splicing was documented, confirming the previous findings
and proving validity for our current data. However, the
expression of various classes of noncoding transcripts and
their involvement in the abovementioned MDS/AML-
associated pathways were focused in relation to their
contribution to the response to AZA treatment. Classic types
of lncRNAs ordinarily identified by classic RNA-seq data
analyses were examined but special attention was paid to two
additional classes of noncoding transcripts: circRNAs and
TEs. The deregulation of lncRNAs in MDS has previously
been addressed (34), but circRNAs and TEs have only
marginally been studied in the context of this disease.  
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Table VI. Differentially expressed circRNAs between azacitidine responders and nonresponders (|logFC|>1, FDR<0.05). 

Genomic locus                                                 circBase ID                 Gene                Type        Strand    logFC    CPM RESP   CPM nRESP       FDR

circRNAs up-regulated in RESP
chr2:40655612:40657441                          hsa_circ_0005232          SLC8A1             Exon            -           2.6             479.1               86.0          2.48E-03
chr7:149191294:149318263                                    -                              -               Intergenic        -           2.4             595.5              111.1          2.42E-03
chr4:105439733:105440611                                    -                              -                  Intron           -           2.0             727.3             173.4          2.42E-03
chr2:40655612:40657444                          hsa_circ_0000994          SLC8A1             Exon            -           1.9           3043.2             848.2          2.23E-04

circRNAs down-regulated in RESP
chr1:23376879:23385660                          hsa_circ_0003889          KDM1A             Exon            +         –4.6                 0.0             122.4          3.40E-02
chr12:94603365:94613939                                      -                        PLXNC1             Exon            +         –4.5                 0.0              111.4          3.77E-02
chr22:17117929:17119630                                       -                        TPTEP1             Exon            +         –3.8               24.2             365.7          2.23E-04
chr21:9827155:9827307                                          -                              -               Intergenic        -         –3.8               11.4             312.7          1.74E-03
chr5:124036706:124036962                      hsa_circ_0001523          ZNF608             Exon            -         –3.5               10.4             165.2          3.40E-02
chrY:22669237:22683186                                        -                              -               Intergenic        -         –3.0               29.2             261.9          3.40E-02
chr19:22157530:22171711                                      -                        ZNF208             Exon            -         –2.6               82.0             554.3          9.44E-04
chr6:77981056:77983024                                        -                              -               Intergenic        -         –2.5               59.1             314.4          3.82E-02
chr4:183812555:183836728                      hsa_circ_0002212           DCTD              Exon            -         –2.4             115.9             632.8          9.44E-04
chr12:27183090:27185614                                      -                        MED21             Intron           +         –2.4               46.7             270.0          4.57E-02
chrX:79544404:79565732                                        -                     CHMP1B2P          Exon            -         –2.2             119.0             566.8          2.48E-03
chr6:147527106:147560406                      hsa_circ_0078150          STXBP5             Exon            +         –2.2             160.9             751.4          9.44E-04
chr4:9642694:9643074                                            -                              -               Intergenic        +         –2.2             187.4             872.3          7.08E-04
chr14:70633355:70635201                        hsa_circ_0000551          SLC8A3             Exon            -         –1.9             148.8             574.7          1.71E-02
chr18:6237962:6312055                            hsa_circ_0046760        L3MBTL4            Exon            -         –1.9             130.0             475.2          3.40E-02
chr4:82025523:82065484                                        -                         PRKG2              Exon            -         –1.9             148.0             533.1          3.40E-02
chr21:16363521:16415895                        hsa_circ_0002711           NRIP1              Exon            -         –1.5             555.6           1587.1          2.33E-02

CPM: Counts per million.



The expression profiles of the four types of transcripts
(PCGs, lncRNAs, circRNAs, and TEs) were compared, and it
was noticed that although PCGs and lncRNAs were able to
stratify MDS/AML-MRC patients from healthy controls, the
transcription of circRNAs and TEs was more heterogeneous,
with substantial interindividual variability among patients.
Therefore, PCGs and lncRNAs seem to be more relevant
molecules in disease pathogenesis. However, circRNAs and
TEs are much less numerous groups of transcripts than PCGs
and lncRNAs, which might worsen the clustering output.
Additionally, some bioinformatical bias might affect the
results. For example, low numbers of reads covering circRNA
junctions in comparison to the detection of linear transcripts
or repetitiveness in TE sequences affecting read alignment
might influence data processing. As information on circRNAs
and TEs has only recently started being uncovered, the
possibility of false discoveries and some differences in the
number of detected molecules must be expected. For data
annotation, only one bioinformatical tool for each type of
transcripts was chosen (i.e., CIRI2 for circRNAs and
SalmonTE for TEs). Although these tools are widely

recommended, multiple annotation tools with different
algorithm strategies should ideally be combined in more
detailed, ongoing studies to achieve more reliable results.
However, the comparison of multiple bioinformatics tools was
out of the scope of this early study. The major focus of this
study was an early characterization of expression changes of
circRNAs and TEs and their comparison with standard gene
expression data in relation to AZA treatment prediction.  

CircRNAs are circularized transcripts produced by the so-
called back-splicing process. They can act as regulators of
gene expression but only limited information about the precise
functions of individual circRNAs is available thus far. Due to
their unusual stability and expression specificity, they appear
to be important candidates for clinical biomarker research
(41). In MDS/AML-MRC, several circRNAs processed from
genes encoding known regulators of hematopoiesis and/or
oncogenesis were deregulated, e.g., down-regulation of
circRNAs derived from METRNL (42), EBF1 (43), SKI (44),
ABCC1 (45), and AKAP12 (46), and up-regulation of
circRNAs derived from ZEB1 (47, 48) and FNDC3B (49, 50).
For example, the SKI protooncogene is an important regulator
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Figure 5. Application of three different machine learning classification algorithms (SVM-RFE, voomNSC, and GLMNET) for classification of
response to the azacitidine treatment. The graph suggests that GLMNET outperforms the other methods and that a limited set of transcripts is
sufficient for the best split. The larger signatures only lead to overfitting.
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of hematopoietic stem cell activity and its overexpression
leads to myeloproliferative disease (44). In this study, the
expression of SKI-derived hsa_circ_0007120 was down-
regulated in MDS/AML-MRC. This circRNA was found to be
strongly down-regulated during the differentiation of
mesenchymal stem cells into cardiomyocyte-like cells,
suggesting its involvement in cell proliferation and
differentiation-related processes (51). Furthermore, the protein
encoded by the AKAP12 gene acts as a tumor suppressor
regulating cell cycle progression and inhibiting Src-mediated
oncogenic signaling (52). The AKAP12 promoter is
unmethylated and expressed in normal HSPCs but exhibits
profound methylation and transcriptional silencing in leukemic
myeloblasts (46). In MDS/AML-MRC, down-regulation of
both, linear and circular (hsa_circ_0078299) forms of AKAP12
was detected, suggesting common regulation within the locus.
Interestingly, hsa_circ_0078299 was identified as a candidate
biomarker of human stroke with a potential role in gene
expression control and inflammation, and SRSF2 splicing
factor was predicted as its target gene (53). Another potentially
relevant circRNA deregulated in MDS/AML-MRC patients is
hsa_circ_0000228 transcribed from the ZEB1 gene. The
product of the ZEB1 gene, a zinc finger transcription factor,

acts as a transcriptional regulator in hematopoiesis,
coordinating HSC self-renewal, apoptosis, and multilineage
differentiation fates. Additionally, it is required to suppress
leukemic potential in AML (48). Several ZEB1-derived
circRNAs have been shown to function as oncogenes in breast
cancer (54), gastric cancer (55, 56), and hepatocellular
carcinoma (57) by sponging various complementary miRNAs.
Although the expression of the linear form of ZEB1 was not
changed in the MDS/AML-MRC patient samples, an
increased rate of circularization of ZEB1 transcripts (i.e., an
increase in hsa_circ_0000228) might exert specific roles in
regulatory processes in CD34+ cells.

TEs represent detrimental units of DNA whose
harmfulness lies in their inherent mobile nature. Their
expression can lead to insertional mutagenesis, chromosomal
rearrangements, and genomic instability (58). The
significance of TEs has previously been addressed in various
subtypes of primary AML (59-62), and it has been shown
that TE expression was able to predict prognosis independent
of mutation-based and coding gene expression-based risk
stratification (59). In addition to AML, Colombo et al. (60)
also compared the activity of TEs in high-risk and low-risk
MDS on a limited number of samples (six high-risk and six
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Table VII. Final set of the most powerful markers of future patient response to azacitidine defined by GLMNET. The lncRNAs marked with asterisks
are discussed in the text in detail. 

Gene name                                  Gene id                                             Description                        Mean expr.   logFC     FDR    DEA rank   Coefficient β

CYP2S1                          ENSG00000167600.13                      PCG: cytochrome P450                 407.2       –1.09       0.349        3,745          0.00008
                                                                                                      superfamily member
GIMAP2                         ENSG00000106560.10              PCG: immune-associated GTPase        3087.1          1.01       0.003               3        –0.00007
LRRC19                           ENSG00000184434.7             PCG: pathogen-recognition receptor          14.1       –1.28       0.669      12,212          0.00082
DNAH10OS                     ENSG00000250091.2                  PCG: uncharacterized protein             184.8          1.23       0.005               5        –0.00088
AC010127.5                    ENSG00000224490.5               LNC: antisense RNA to TTC21B            22.9       –0.97       0.231        2,079          0.01516
*CTC-482H14.5              ENSG00000267550.1               LNC: antisense RNA to KDM4B              6.4          1.49       0.061           279        –0.00724
RP11-557C18.3               ENSG00000253607.1                LNC: antisense RNA to DERL1               6.6       –2.36       0.194        1,447          0.05217
RP4-580N22.1                 ENSG00000229463.2                              LNC: lincRNA                           17.0       –1.21       0.205        1,643          0.06677
*RP11-419K12.2             ENSG00000285108.1                              LNC: lincRNA                           62.7       –2.07    <0.001               1          0.00823
MIR4512                          ENSG00000266589.1                       LNC: miRNA precursor                    12.1       –0.99       0.124           809          0.08748
MIR3164                          ENSG00000265539.1                       LNC: miRNA precursor                      9.6       –0.65       0.603        9,933          0.01013
RF00019                          ENSG00000199875.1                     LNC: miscellaneous RNA                  18.1       –1.02       0.111           684          0.13092
RPS6P16                         ENSG00000243250.1            LNC: ribosomal protein pseudogene         16.2       –0.85       0.344        3,649          0.00485
RP11-478C6.2                 ENSG00000248564.1             LNC: pseudogene similar to ZNF74          39.0       –0.90       0.137           937          0.00403
RP11-177A2.5                 ENSG00000232750.2            LNC: ribosomal protein pseudogene         13.9       –1.16       0.191        1,417          0.00039
RP4-740C4.7                   ENSG00000272420.1           LNC: sense intronic RNA to MORN1        34.9       –0.73       0.343        3,632          0.02876
AC097382.5                    ENSG00000187904.3             LNC: sense overlapping TBC1D14           32.7       –0.59       0.388        4,527          0.13947
*RP11-736I24.4              ENSG00000284783.1                 LNC: transcribed unprocessed              15.2       –0.84       0.217        1,842          0.00167
                                                                                                     OTUD7A pseudogene
hsa_circ_0006595        circRNA processed from                    CIRC: exonic circRNA                      5.4          1.90       0.048           208        –0.02487
                                           AL451062.3 gene                              from AL451062.3 
                                        (ENSG00000284989)

Mean expression values indicate average normalized expression of a given transcript in all samples, logFC and FDR values are computed by DEA
between RESPs and nRESPs, and DEA rank indicates the order of a given transcript in DEA (when sorted according to FDR). Coefficient values β
express the weight of the individual selected transcripts in the logistic regression model and are applicable to the regression formula calculating
the prediction score (score=–12.43+βTx).



low-risk MDS patients) and noticed that TE expression is
significantly down-regulated in high-risk disease. They
proposed that the induction of TEs in low-risk cases may be
a potential mechanism for immune-mediated clearance of
cancer cells via the viral recognition pathway, whereas TE
suppression in high-risk cases may enable immune escape of
cells (60). In this study, CD34+ BM cells from only high-
risk MDS patients were examined. Therefore, it was not
possible to compare TE activity in low-risk disease.
However, the rate of TE deregulation in our high-risk MDS
samples was much lower than that of PCGs and other types
of noncoding transcripts, negating the fundamental roles of
TEs in high-risk disease pathogenesis.  

Prediction of response to AZA therapy is an important
challenge of applied research in MDS/AML. Current research
activities are usually focused on the identification of an ideal,
single biomarker whose alterations (such as a mutational
change or transcription deregulation) would be predictive of
treatment response with high sensitivity and specificity. The
patient capability to respond to AZA and the identification of
prediction markers have been repeatedly addressed (11, 12,
18). However, given the genomic heterogeneity of the disease,
no universal biomarker has been identified thus far. This
failure is likely triggered by complex interactions among
multiple genomic alterations, affecting the resulting
phenotype. Therefore, a combined approach studying different
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Figure 7. Pathway analysis of differentially expressed genes in azacitidine responders and nonresponders. Plot of gene set enrichment analysis
results shows p-values (logarithmically scaled) and normalized enrichment scores (NES) of the top 10 most enriched pathways in each group of
samples sorted according to descended NES values. Two significant gene sets (marked by asterisks; recombinational repair and negative regulation
of gene expression - epigenetic) were selected for further evaluation. Heatmap shows the top 50 protein coding genes differentially regulated between
the two groups of samples.



types of molecules and their relations is required to yield an
understanding of how these alterations define responsiveness
to therapy. In addition to alterations in PCGs, the efficiency
of AZA therapy can be influenced by the expression of various
noncoding transcripts, contributing together to the clinical
effects of the drug. At the level of individual genes, several
noncoding RNAs significantly deregulated between AZA
RESPs and nRESPs were identified. However, the
pathological importance of most of them was somewhat
questionable given that they are completely unannotated in
current databases. This was especially the case for the most
deregulated lncRNAs (e.g., down-regulation of four lincRNAs
CH507-513H4.3-6 in AZA RESPs) because the only
information available about them is often their genomic
location. CircRNAs appeared to be a more relevant category
of noncoding transcripts, as altered circularization was
observed of several genes potentially relevant for AZA
responsiveness (e.g., KDM1A histone demethylase or MED21
regulating transcription with RNA polymerase II). Regarding

TEs, only one TE was significantly deregulated between AZA
RESPs and nRESPs (down-regulation L1 element L1PBB_5
in AZA RESPs), with merely slight changes in the expression
profiles of other TEs. The absence of altered TE transcription
doubts the hypothesis suggesting that the clinical effects of
AZA might be caused, at least partly, by demethylation of TE
regions leading to increased production of TE transcripts,
which might in turn activate the innate immune system
through the viral defense pathway (60, 63).  

Considering the above-discussed data on alterations of
individual transcripts predisposing to AZA response or
failure, a multibiomarker approach combining several
features of different natures seems more appropriate to
predict the response with high robustness. By machine
learning methods, we compared the four categories of
transcripts, and unexpectedly, lncRNAs substantially
overperformed the prediction potential of PCGs. However,
neither circRNAs nor TEs provided significant potential to
stratify AZA RESPs and nRESPs. The combined set of the
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Figure 8. Association of the recombinational repair pathway with the azacitidine response. (A) gene set enrichment analysis enrichment plot, (B)
expression heatmap of core enriched genes, and (C) coexpression network of transcripts associated with this process. Blue – down-regulation in
nonresponders, red – up-regulation in nonresponders, circle-noncoding transcript, square - protein coding gene.



best predictors of AZA response finally included 19 genes,
and surprisingly, 14 of them were of lncRNA nature, whereas
only four PCGs, one circRNA, and no TE were added to this
final list of the most powerful stratifying molecules.  

To better understand the contribution of deregulated
noncoding transcripts to the molecular biology of MDS/AML
treatment, important cellular pathways associated with AZA
were first defined. Previously, the quiescent phenotype of
HSCs was proposed as a key factor in the prediction of
treatment outcome in MDS (64). In a preceding publication,
it was identified that the BM of AZA RESPs contains actively
cycling cells poised for erythromyeloid differentiation,
whereas in nRESPs, BM HSPCs display a signature of a
quiescent state (repression of genes related to active cell
cycling, replication, and DNA damage response) (18). These

metabolic pathways seem to be closely interconnected with
epigenetic modifications; the noncycling status has been
associated with decreased expression of the HIST1 cluster and
therefore with the transcription-nonpermissive chromatin
configuration maintaining cell quiescence (18). In this study,
it was confirmed that AZA nRESPs display suppressed
expression of epigenetic regulators and many chromatin
related genes (especially those from the HIST1H and HIST2H
families) in addition to genes involved in recombinational
repair. In the process of epigenetic modulation, DNMT1 (a
maintenance DNA methyltransferase) was defined as one of
the core PCGs related to the AZA response. Previously, it was
demonstrated that DNMT1 serves as a pharmacologic target
of HMAs (65), and down-regulation of DNMT1 expression
in AZA nRESPs has been attributed to noncycling status and
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Figure 9. Association of negative epigenetic regulation of gene expression with azacitidine response. (A) gene set enrichment analysis enrichment
plot, (B) expression heatmap of core enriched genes, and (C) coexpressional network of transcripts associated with this process. Blue – down-
regulation in nonresponders, red – up-regulation in nonresponders, circle - noncoding transcript, square - protein coding gene.



reduced replication of HSPCs in these patients (18). Another
core PCG of epigenetic mechanisms involved in the response
to AZA was the EZH2 gene, which was also specifically
down-regulated in our cohort of AZA nRESPs. EZH2, a
histone methyltransferase gene, is recurrently mutated in
MDS/AML patients, and its mutations are associated with a
poor prognosis of these patients (66). EZH2 is significantly
suppressed in MDS (67), and its CpG methylation level is
reduced by AZA (68). Regarding the DNA damage response,
another pathway described in the context of the AZA
response (18), we identified RAD51, BRCA1/2, and several
members of the MCM gene family as core PCGs down-
regulated in the patients with future AZA failure. Alterations
in RAD51 (36, 69) and BRCA (70) genes have previously
been reported in MDS. The expression of MCM genes, which
are involved in the initiation and elongation phases of DNA
replication, was reduced following epigenetic therapy (71).
Similar to downmodulation of epigenetic machinery,
attenuation of DNA repair and response pathways has also

been described as a characteristic feature of HSC quiescence,
which underlies DNA damage accumulation in these cells
(72). In summary, suppression of epigenetic regulation and
recombinational repair seem to be crucial for the cell
behavior of MDS/AML-MRC HSPCs with respect to the
AZA response. Therefore, ncRNAs related to these two
processes were explored to identify noncoding transcripts
necessary for AZA-triggered mechanisms.

Although many deregulated noncoding transcripts are being
described in cancer, their functional characterization is difficult.
Construction of co-expression networks of PCGs with other
RNAs, which are regulated similarly to PCGs, enables
functional analysis of transcripts with unknown functions. This
“guilt-by-association” strategy works with the principle that
genes with related functions tend to have similar expression
profiles. PCGs in a coexpressional module are associated with
signaling pathways, attributing the same functions to unknown
RNAs in this network. In this study, coexpressional networks
were constructed for genes associated with epigenetic regulation
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Table VIII. LncRNAs predicting future azacitidine response (assessed by GLMNET as the best predictors) and significantly (FDR<0.05) associated
with recombinational repair and/or negative epigenetic regulation of gene expression GO terms. 

Name                                 Gene ID                       Aliases                Description          Localization          FDR         NES            Leading Edge PCGs
                                                                                                                                             (hg38)

CTC-482H14.5      ENSG00000267550.1       AC022517.1,         antisense RNA       chr19:5,178,       GO RECOMBINATIONAL REPAIR:
                                                                        Lnc-KDM4B-2           to KDM4B         119-5,178,464
                                                                                                                                                                   6,88E-10      1,70         MCM7, MCM3, FANCM, 
                                                                                                                                                                                                         MCM8, MCM5, DMC1, 
                                                                                                                                                                                                             RPA1, TIMELESS, 
                                                                                                                                                                                                                 BLM, RAD54L
                                                                                                                                                  
                                                                                                                                                                    GO NEGATIVE REGULATION OF GENE 
                                                                                                                                                                    EXPRESSION, EPIGENETIC:
                                                                                                                                                  
                                                                                                                                                                   3,40E-02      1,29         KMT2D, EZH2, CDC45, 
                                                                                                                                                                                                        AEBP2, DNMT1, RBBP4, 
                                                                                                                                                                                                                SIRT1, ATAD2, 
                                                                                                                                                                                                                 DPY30, PHF1

RP11-419K12.2     ENSG00000285108.1       AC103718.2,              lincRNA           chr8:129,664,      GO RECOMBINATIONAL REPAIR:
                                                                       Lnc-GSDMC-35                                         195-129,
                                                                                                                                            724,677           3,55E-02      1,25              SLX4, RAD51AP1, 
                                                                                                                                                                                                              CDC45, RAD51C, 
                                                                                                                                                                                                              RAD54L, AUNIP, 
                                                                                                                                                                                                               BRCA2, XRCC3, 
                                                                                                                                                                                                               RECQL4, GINS4

RP11-736I24.4       ENSG00000284783.1        AC091057.4            transcribed         chr15:30,750,      GO RECOMBINATIONAL REPAIR:
                                                                                                          unprocessed             406-30,
                                                                                                            OTUD7A               759,859           4,07E-03      1,32           POLL, GEN1, HELQ, 
                                                                                                           pseudogene                                                                              RAD51AP1, NIPBL, 
                                                                                                                                                                                                               XRCC2, FANCB, 
                                                                                                                                                                                                       RAD54L, RAD52, GINS4

NES: Normalized enrichment score.



and recombinational repair pathways. Unsurprisingly, no TE
was related to these processes, repeatedly suggesting little
significance of these elements in high-risk MDS. In contrast,
several lncRNAs and circRNAs co-regulated with core PCGs
of the two processes were defined. Interestingly, the majority of
the circRNAs found by co-expressional networks were
processed from genes already known to be involved in MDS-
related processes (recombinational repair - MCM6 and BRIP6;
epigenetic regulation - KDM1B and H2AFY; transcription, cell
cycle and proliferation regulators - CAMTA1, XPO1 and VRK1).
In particular, KDM genes seem to be closely related to
responsiveness to AZA. KDMs encode demethylases of histone
lysine residues (KDM1 mediates demethylation of H3K4 and
H3K9, KDM4 can act on H3K9, H3K36, and H1K26), yet they
can also demethylate a number of nonhistone proteins such as
p53, E2F1, DNMT1, or STAT3. KDMs are often differentially
expressed in leukemia, and cooperate with transcription factors
to activate or repress gene expression (73). In this study,
deregulation of several noncoding transcripts was observed
related to KDMs – CTC-482H14.5 (asRNA to KDM4B gene,
down-regulated in AZA RESPs), hsa_circ_0003889 (circRNA
processed from KDM1A, down-regulated in AZA RESPs), and
hsa_circ_0001580 (circRNA processed from KDM1B, up-
regulated in AZA RESPs). Unlike these noncoding transcripts,
the levels of KDM PCGs (namely KDM1A/1B/4B) were not
altered between AZA RESPs and nRESPs, suggesting that these
ncRNAs play specific roles independent of their host genes. 

Finally, the best predictor genes defined by GLMNET
were linked to cellular processes related to MDS. Among
these predictors, three ncRNAs potentially associated with
epigenetic regulation and/or recombinational repair were
identified. First, CTC-482H14.5 is an antisense RNA of the
KDM4B gene and is coexpressed with several MDS-related
PCGs, e.g., MCMs (recombination repair) and DNMT1
(epigenetic regulation). Second, RP11-419K12.2 and RP11-
736I24.4 link to recombinational repair through coregulation
with several RAD genes, XRCC2/3, BRCA2, or FANCB.
RP11-419K12.2 is a lincRNA with an unknown function
located in proximity to GSDMC (gasdermin C, melanoma-
derived leucine zipper-containing extranuclear factor), and
RP11-736I24.4 is a transcribed unprocessed pseudogene of
OTUD7A (OTU deubiquitinase 7A). OTUD7A is a possible
tumor suppressor gene controlling NF-ĸB expression through
TRAF6 (74), a critical process implicated in the pathogenesis
of MDS (75). Therefore, novel functions in epigenetic
regulation and recombinational repair processes were
predicted for these three unexplored lncRNAs, pointing to
possible mechanisms by which their deregulation can be
associated with AZA responsiveness. 

In conclusion, this study addressed the expression and
roles of various types of noncoding transcripts in AZA
treatment of high-risk MDS and AML-MRC patients,
suggesting particular ncRNAs associated with AZA

responsiveness. Importantly, it was shown that lncRNAs
can be utilized as novel predictive markers and that the
combination of several markers of different natures is a
more robust approach than monitoring the expression of a
single gene. To the authors’ knowledge, this is the first
study identifying particular members of circRNA and TE
transcript families deregulated in high-risk MDS and AML-
MRC. In particular, deregulation of several circRNAs
produced from hematopoiesis- and oncology-relevant genes
was identified, whereas altered transcription of TEs seemed
of less significance in this disease. However, the data in
this pilot study have to be validated in independent cohorts
of patients, different bioinformatical approaches analyzing
circRNA and TE levels should be used, and functional
studies proving the predicted roles in cellular processes
have to be performed before rendering final conclusions
about the roles of these noncoding transcripts in
myelodysplasia.
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