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MicroRNAs and Corresponding Targets in Esophageal Cancer
as Shown In Vitro and In Vivo in Preclinical Models

ULRICH H. WEIDLE and ADAM NOPORA

Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany

Abstract. Squamous cell carcinoma of the esophagus is
associated with a dismal prognosis. Therefore, identification
of new targets and implementation of new treatment modalities
are issues of paramount importance. Based on a survey of the
literature, we identified microRNAs conferring antitumoral
activity in preclinical in vivo experiments. In the category of
miRs targeting secreted factors and transmembrane receptors,
Sfour miRs were up-regulated and 10 were down-regulated
compared with five out of nine in the category transcription
factors, and six miRs were down-regulated in the category
enzymes, including metabolic enzymes. The down-regulated
miRs have targets which can be inhibited by small molecules
or antibody-related entities, or re-expressed by reconstitution
therapy. Up-regulated miRs have targets which can be
reconstituted with small molecules or inhibited with
antagomirs.

More than 450,000 patients are affected by esophageal
cancer worldwide (1). The highest incidence is found in
eastern Asia, eastern and southern Africa, and southern
Europe (1). In the USA, the disease claimed 16, 170 deaths
in 2020 (2). Esophageal cancer is one of the most lethal
types of cancer and surgical resection, chemotherapy and
radiotherapy are primary treatments but have limited efficacy
and severe side-effects (3). Two histological subtypes have
been identified: esophageal adenocarcinoma and esophageal
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squamous cell carcinoma (ESCC) as epidemiologically and
biologically distinct types of cancer (4). ESCC is the major
histological subtype and accounts for 80% of esophageal
cancer worldwide (4). However, the incidence of esophageal
adenocarcinoma and ESCC vary with geographic location
(4). Barrett’s esophagus is a benign precursor lesion of
esophageal adenocarcinoma (5).

Characterization of the genomic landscape of ESCC has
revealed heterogeneity, and mutations in pathways of growth
factor receptors, cell-cycle regulation, apoptosis, angiogenesis
and DNA repair (6, 7). The US Food and Drug Administration
recently approved pembrolizumab and nivolumab, which both
target programmed death 1 for immunotherapeutic intervention
for advanced ESCC. Pembrolizumab was approved for
treatment of unresectable/metastatic tumors with high
microsatellite instability, and nivolumab for unresectable,
advanced or recurrent tumors (8, 9). Nevertheless, there is an
urgent need to identify new targets and treatment modalities
for ESCC. In this review, we focus on microRNAs (miRs)
shown to be ESCC-related in preclinical in vivo systems for
target identification and as new treatment modalities through
inhibition or reconstitution of function for ESCC.

MicroRNAs and Cancer

miRs are small regulatory RNAs that derive from hairpin
regions of precursor transcripts (10). Each miR associates with
an Argonaute protein, forming a silencing complex which binds
to complementary sequences of target transcripts and promotes
destabilization or translational repression of the bound
transcripts (10). miRs can interfere with several targets and act
as oncogenes or tumor suppressors in a context-dependent
manner (11, 12). They play a role in all aspects of cancer such
as proliferation, apoptosis, invasion, metastasis and
angiogenesis (13-16). In proof-of-concept experiments it has
been shown that deletion of miR-15 and miR-16 induced B-cell
lymphoma in mice by targeting BCL2 apoptosis regulator
(BCL2) (17) and expression of miR-17 in the liver of
transgenic mice caused hepatocellular carcinoma (18). The
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roles of miRs in ESCC have been summarized in several
reviews (19-21). In this review, we focus on miRs in preclinical
in vivo ESCC models in order to identify targets for therapeutic
intervention and to explore new entities for therapeutic
intervention by inhibition of deregulated miRs or replacement
therapy with miR mimics.

miRs Targeting Secreted Factors and
Transmembrane Receptors in In Vivo Models

Up-regulated miRs (Figure 1A).

miR-19a [targeting tumor necrosis factor o (TNFa)]. miR-
19a induced proliferation of ESCC cell lines EC109, EC
9706 and KYSE150 (22). An antisense oligo directed against
miR-19a induced apoptosis in EC9706 cells (22). Knock-
down of miR-19a inhibited in vivo tumorigenicity of EC9706
cells in nude mice (22). TNFa was identified as a direct
target of miR-19a (22). Pro- and anti-tumoral effects, such
as stimulation of cancer progression and metastasis, direct
cytotoxicity to tumor cells and stimulation of the immune
response against cancer, have been reported (23-26).
Therefore, the tumor-inhibitory function of TNFa in ESCC
has to be resolved in more detail.

miR-25 (targeting E-cadherin). Overexpression of miR-25
in patients with ESCC was associated with lymph node
metastasis and poor survival (27). miR-25 induced migration
but not proliferation in KYSE150 ESCCs (27). Targeting
miR-25 reversed epithelial-mesenchymal transition (EMT)
transition in ESCCs in vitro (27). E-Cadherin was identified
as a direct target of miR-25 (27). Up-regulation of miR-25
induced lung metastases after tail vein injection of EC-109
ESCC cells in immunocompromised mice (27). Down-
regulation of E-cadherin was correlated with development
and progression of cancer, high tumor grade and low patient
survival (28, 29). It has been shown that modulation of
expression of E-cadherin promotes migration of ESCC cells
(30). However, due to specificity issues inherent to up-
regulation of E-cadherin with small molecules, targeting
E-cadherin is a difficult issue from a drug-discovery point
of view.

miR-483-3p [targeting etoposide-induced 2.4 transcript
(EI24)]. miR-483-3p was overexpressed in ESCC, promoted
proliferation, G /G, transition and migration of ESCCs, and
inhibited sensitivity of ESCC to chemotherapy (31). miR-
483-3p promoted growth of ESCC xenografts in
immunocompromised mice (31). EI24 has been identified as
a direct target of miR-483-3p (31). EI24, a p53-response
protein, contains six transmembrane domains and suppresses
cell growth through caspase 9 and mitochondrial pathways
including in ESCC (32, 33). Furthermore, EI24 has been
shown to contribute to EMT (34).
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miR-584k [targeting A disentegrin and metalloprotease with
thrombospondin motifs 1 (ADAMTSI1)]. miR-548k over-
expression correlated with poor prognosis of patients with
ESCC (35). miR-548k mediated proliferation and cell-cycle
progression of KYSE30 and KYSES510 ESCCs and induced
migration and tube formation by human dermal lymphatic
endothelial cells (35). In nude mice implanted with
KYSE30-derived ESCCs transfected with miR-548k,
lymphangiogenesis, increased microlymphatic density and
metastasis to lymph nodes were observed (35). Tail vein
injection experiments indicated that miR-548k promotes lung
metastasis (35). ADAMTS1 was identified as a target of miR-
548 (35, 36). Overexpression of miR-548k promoted tyrosine
phosphorylation in dermal lymphatic endothelial cells (35).
Vascular endothelial growth factor receptor 3 (VEGFR3), a
stimulator of lymphangiogenesis and promoter of lymphatic
metastasis, is stimulated by ADAMTS1 (36-39). miR-548k
also down-regulates Kruppel-like factor 10 (KLF10), a
repressor of epidermal growth factor receptor (EGFR) (40).

Down-regulated miRs (Figure IB).

miR-126 (targeting VEGFA). Lower expression of miR-126
in ESCC tissues and cell lines compared to corresponding
normal tissues was observed (41). VEGFA was identified as
a target of miR-126 (41). miR-126 inhibited proliferation of
JH-Eso Ad1, OE19 and OE33 ESCC cells (41). In nude
mice, tumor growth was inhibited in OE33 cells transfected
with miR-126 (41). VEGFA can increase permeabilization of
blood vessels and growth of new blood vessels (42, 43).
Targeting of VEGFA with monoclonal antibodies has been
pursued successfully in clinical trials, leading to approval for
several tumor indications, but not ESCC (44).

miR-133b (targeting EGFR). miR-133b repressed proliferation,
apoptosis, anchorage-independent growth and EMT of
KYSE150 and ECA109 ESCCs and its expression was reduced
in ESCC tissues (45). miR-133b inhibited tumor growth and
lung metastases of KYSE150 and ECA109 ESCCs in nude
mice (45). EGFR was identified as a target of miR-133b (45).
miR-133b was shown to inhibit anchorage-independent growth,
migration and invasion of ESCC via integrin 34 (INTB4)/focal
kinase/growth-factor receptor bound protein 2, AKT
serine/threonine kinase 1 and extracellular signal-regulated
kinase signaling pathways (45). Gene amplification, aberrant
activation and activation mutations of EGFR have been
observed in several types of cancer (46, 47). EGFR has been
identified as an important target for ESCC (48): 70-88% of
patients with ESCC show high expression of EGFR and its
high expression correlates with poor prognosis (49, 50).

miR-193a-5p [targeting human epidermal growth factor
receptor 2 (HER2)]. miR-193a-5p inhibited HER2
expression and enhanced radiosensitivity of ESCCs in vitro
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Figure 1. Up-regulated (A) and down-regulated (B) miRs targeting secreted factors and transmembrane receptors in esophageal cancer cells in
preclinical in vivo systems. ADAMTSI: A disintegin and metalloprotease with thrombospondin motifs 1; CD44, 47, 133: cluster of differentiation
44,47, 133; EGFR: epidermal growth factor receptor; EI24: etoposide-induced 2 4 transcript; HER2: human epidermal growth factor receptor 2;
IGFIR: insulin growth factor-like receptor 1; INTa6: integrin a6; INTP6: integrin [6; INV: invasion; MET: metastasis; PROL: proliferation;
RAGE: receptor for advanced glycation end-products; SARA: SMAD anchor for receptor activation; TG: tumor growth; TGFSR2: transforming
growth factor receptor 2; TNFa.: tumor necrosis factor a; VEGFA: vascular endothelial growth factor A.

and in vivo in mice (51). It reduced colony formation in
KYSE70 and KYSE510 ESCCs and inhibited tumor growth
by down-regulation of HER2 in vitro and in vivo (51). High
expression of miR-193a-5p was correlated with successful
chemoradiation treatment of ESCC (51). HER2 was also
targeted in an orthotopic model of esophageal carcinoma
(52). HER? is up-regulated in 10-20% of ESCC and its up-
regulation is correlated with worse prognosis (53-56).

miR-375 [targeting insulin-growth factor like 1 receptor
(IGFIR)]. Down-regulation of miR-375 correlated with
advanced stage, distant metastasis, poor overall survival and
disease-free survival in patients with ESCC (57). Down-
regulation of miR-375 in ESCC was due to promoter
methylation (57). IGFR1 has been identified as a direct target
of miR-375 (57). miR-375 suppressed proliferation and
invasion of KYSE10 and KYSE30 ESCCs and their
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metastasis to the liver after tail vein injection into nude mice
(57). In clinical specimens of ESCC, IGF1R expression was
negatively correlated with miR-375 expression (57).
Targeting of the IGFIR pathway has been pursued in many
types of cancer (58). In ESCC, overexpression of IGFIR was
noted in 60% of tumors in patients (59). IGFIR is a marker
for prognosis and a potential therapeutic target for ESCC
(60, 61). The IGFIR pathway has been identified as a key
axis in progression of ESCC (62). Antitumoral effects have
been observed with figitumumab, a monoclonal antibody
directed against IGF1R in several preclinical in vitro and in
vivo models of ESCC (63).

miR-17/20a [targeting transforming growth factor 5 receptor
2 (TGFRB2) and SMAD anchor for receptor activation
(SARA)]. Down-regulation of miR-17/20a correlated with
ESCC lymph node metastasis and inhibited migration and
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invasion of 30D and 180-U ESCCs (64). miR-17/20a
suppressed lung metastasis of 30D cells after tail vein injection
into nude mice (64). miR-17/20a did not influence proliferation
and apoptosis of ESCCs (64). TGFRB2 and SARA were
identified as bona fide targets of miR-17/20a (64). A
heterotrimeric SMAD2, -3, -4 complex is translocated into the
nucleus to regulate transcription of genes such as INTB6, which
mediates migration and invasion (64, 65). The other target of
miR-17/20a, SARA, recruits SMAD2/SMAD3 complexes to
TGFRf2 at intracellular membranes (66). However, TGFf3
signaling can exert pro- as well as antitumoral effects in a
context-dependent manner and therefore has to be investigated
in further detail in ESCC (67, 68).

miR-92b (targeting INTav). miR-92b inhibited lymph node
metastasis and was associated with favorable prognosis in
patients with ESCC (69). miR-92b inhibited migration and
invasion of 30D ESCCs in vitro (69). In vivo, miR-92b
inhibited invasion into the peri-esophageal muscle after
orthotopic implantation of 30D cells into nude mice (69). In
the tail vein injection model, miR-92b inhibited lung
metastasis (69). INTav has been identified as a bone fide
target of miR-92b (69). Furthermore, miR-92b reduced
phosphorylation of focal adhesion kinase and reduced
activation of RAS-related C3 botulinum toxin substrate
(RAC1), both essential mediators of cellular motility in
ESCCs (69, 70). Integrins consist of 18a and 8f3
transmembrane receptors, inclusive 24 heterodimers, which
can cross-link components of the extracellular matrix with
the cytoskeleton and thus have an impact on invasion and
metastasis of tumor cells (71, 72).

miR-34a [targeting cluster of differentiation 44 CD44)]. miR-
34a was down-regulated in ESSC tissues and cell lines and
inhibited invasion and migration of ECA109 and TE-13 ESCC
cells (73). miR-34 inhibited tumor growth and metastasis in
nude mice (73). CD44 was identified as a target of miR-34a
(73). CD44 is a transmembrane protein with hyaluronic acid as
the major ligand, resulting in activation of pathways involved
in proliferation, survival, cytoskeletal changes, motility and
metastasis (74, 75). CD44 standard form and several splice
variants which contain additional peptide motifs that can
interact with growth factors and cytokines at the cell surface
may play a role in EMT and adaptive plasticity of cancer cells
(76, 77). It has been shown that up-regulation of CD44 in E-
cadherin-negative esophageal cancer cells results in activation
of invasion (78). Tumor-initiating cells in ESCC express high
levels of CD44 (79) and overexpression of CD44 is associated
with poor prognosis in patients with ESCC (80).

miR-133a (targeting CD47). CD47 expression in ESCC was
associated with lymph node metastasis (81). Expression of
CD47 was significantly lower in ESCC samples in

comparison to corresponding non-cancerous tissues (81).
CD47 was identified as a target of miR-133a (81). Pre-miR
133a strongly inhibited the tumorigenic potential of TE-8
ESCC in vivo in nude mice (81). CD47 is a transmembrane
molecule which inhibits phagocytosis and therefore is a
target which has received much attention in translational
oncology (82-84). It was shown that following blocking of
CD47 with monoclonal antibodies, ESCCs were
phagocytosed by M2 macrophages (85).

miR-377 (targeting CD133 and VEGF). Down-regulation of
miR-377 correlated with poor chemotherapy response and poor
survival in patients with ESCC (86). miR-377 inhibited tumor-
initiating cell properties (86). CD133 and VEGF were identified
as direct targets of miR-377 (86). In the tail vein injection
model, miR-377 inhibited lung colonization of KYSE270 cells
in mice (86). A systemic formulation of a miR-377 mimic
inhibited tumor growth, angiogenesis and metastasis of ESCC
cells in nude mice (86). CD133 is a marker of tumor-initiating
cells in cancer, but its quantitation has been hampered by the
inability of current antibodies to detect CD133 variants and de-
glycosylated epitopes (87, 88). CD133 is a regulator of
metastasis through cancer stem cells (89). CD133 promotes
stemness in ESCC cells and its higher expression is associated
with lymph node metastasis, clinical stage and histopathological
grade of ESCC (90, 91). As outlined previously, VEGFA is a
validated target for several types of cancer (42).

miR-185 [targeting receptor for advanced glycation end-
products (RAGE)]. Overexpression of miR-185 suppressed
migration and invasion of TE-11 and ECA109 ESCCs in
vitro (92). In the tail vein metastasis model, miR-185
suppressed metastasis of ECA109 cells (92). In patients with
ESCC, the level of plasma miR-185 was found to be
decreased (92). RAGE was identified as a target of miR-185
(92). RAGE, a 35-kDa transmembrane receptor of the
immuno-globulin super-family, and its ligands, high motility
group box 1 (HMGB1) and S100 group of proteins, release
cytokines after their interaction. Transcription factors which
are involved in TG and survival, EMT and metastasis are
also activated. RAGE is being evaluated as a target forcancer
therapy (93, 94). Expression levels of RAGE are related to
poor prognosis in patients with ESCC (95).

miRs Targeting Transcription Factors

Up-regulated miRs (Figure 2A).

miR-7-5p [targeting Kruppel-like factor 4 (KLF4)]. miR-7-
5p was up-regulated in ESCC tissues and inhibited
proliferation of ECA109 and TE-9 ESCCs (96). A miR-7-5p
antagonist induced apoptosis in ECA109 and TE-9 cells and
suppressed migration and invasion of ECA109 cells (96). A
miR-7-5p antagonist inhibited tumor growth of ECA109
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Figure 2. Up-regulated (A) and down-regulated (B) miRs targeting transcription factors in esophageal cancer cells in preclinical in vivo systems.
AKT: Serine-threonine kinase AKT; ARID3A: AT-rich interactive domain-containing protein 3A; CXX5: CCX-type zinc finger protein 5; DDP res:
cisplatin resistance; EMT: epithelial-mesenchymal transition; FOXK2: forkhead box protein K2; FOXO31: forkhead-box protein 31; FOXMI:
forkhead box protein M1; GSK3p: glycogen synthase kinase 3f3; INV: invasion; KLF4: Kriippel-like factor 4, MAPK: mitogen-activated protein
kinase; MET: metastasis; MYC: transcription factor MYC; mTOR: mechanistic target of rapamycin; p38: mitogen-activated protein kinase p38;
PITX2: paired-like homeodomain transcription factor 2; PPARy: peroxisome proliferator-activated receptor y; PROL: proliferation; SMAD4:
signaling protein SMAD4; SNAI2: snail family transcriptional repressor 2; SOX4: sex determining region Y-box 4; STAT3: signal transducer and
activator of transcription 3; TG: tumor growth; ZEBI : zinc finger E-box binding homeobox 2.

cells in vivo (96). KLF4 was identified as a direct target of
miR-7-5p (96). KLF4 is a member of the KLF family of
zinc finger transcription factors and contains three C2H2
zinc fingers. KLF4 is a stem cell factor which, together with
octamer-binding transcription factor 4, SOX2, homeobox
protein NANOG and transcription factor MYC, is involved
in the induction of pluripotent stem cells (97). Most studies
suggest that KLF4 acts as a tumor suppressor, but pro-
tumorigenic activity of KLF4 has also been reported (98).
KLF4 promoted ESCC differentiation by up-regulation of
keratin 13 expression (99). In ESCC, KLF4 was shown to
act as a tumor suppressor and was correlated with good
prognosis (100).

miR-10b [targeting peroxisome proliferator-activated receptor
gamma (PPARYy)]. miR-10b was up-regulated in patients with
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ESCC and targeted PPARy (101). Suppression of miR-10b in
ESCC cell lines enhanced chemosensitivity to cisplatin in vitro
and in vivo (101). PPARy enhanced resistance to cisplatin by
activating AKT/mechanistic target of rapamycin (mTOR)/
ribosomal protein70 S6 kinase (p70S6K) signaling (101).
PPARy is a member of the nuclear receptor superfamily and
was shown to act as a ligand-inducible transcription factor
which can exert tumor-suppressive and pro-tumorigenic
effects (102, 103). It has been shown that PPARYy ligands
suppress proliferation and induce apoptosis of ESCCs by
inhibiting toll-like receptor 4-dependent mitogen-activated
protein kinase signaling (104). Reduced PPARY expression is
correlated with poor prognosis in patients with ESCC (105).

miR-32 (targeting CXXCS5-type zinc finger protein 5).
Increased expression of miR-32 has been noted in ESCC



CANCER GENOMICS & PROTEOMICS 79: 113-129 (2022)

tissues and cells (106). Down-regulation of miR-32 inhibited
migration and invasion of EC9706 and KYSE450 ESCCs
(106). In vivo, miR-32 inhibitors reduce tumor weight and
number of metastatic nodules (106). CXXC5-type zinc finger
protein 5 (CXXCS5) was identified as a target of miR-32 (85).
miR-32 inhibitors reduced migration, invasion, EMT and
TGFp signaling (106). CXXCS5 inhibited WNT/Bcatenin
signaling, induced apoptosis by stimulating TGFB/SMAD
signaling and activated DNA repair via the serine-threonine
kinase ataxic telangiectasia mutated/p53 pathway (107-109).
In addition, CXXCS5 promoted TGFf induced cell-cycle
arrest (110). The role of CXXC5 in ESCC remains to be
resolved in further detail.

miR-99b/let7a/miR-125a [targeting AT-rich interaction
domain 3A (ARID3A)]. The miR-99b/let7a/miR-125a cluster
promoted ESCC migration and invasion in vitro and induced
experimental metastases in vivo (111). Transcription factor
zinc finger E-box binding homeobox factor 1 (ZEB1) bound
to the promoter of this cluster and regulated its transcription
(111). ARID3A was identified as a direct target of miR-
99b/let7a/miR-125a (111). ARID3A is a transcription factor
which regulates chromatin accessibility, proliferation,
differentiation and is critical for B-cell development (112).
ARID3A expression was found to be reduced in ESCC
compared to normal corresponding tissues (113). ARID3A
has been shown to be involved in carcinogenesis and
development of ESCC (114).

miR-602 [targeting forkhead box protein K2 (FOXK2)]. miR-
602 was increased in ESSC tissues and its expression level
significantly correlated with poor survival (115). DNA
hypomethylation was involved in increased expression of miR-
602 in ESCC (115). miR-602 promoted proliferation, colony
formation, migration and invasion by KYSE 150 and KYSE
450 ESCCs (115). In KYSE 450 cells transfected with miR-
602, tumor growth was significantly accelerated (115). miR-
602 antagomir directly injected into the tumor led to slower
tumor growth (115). In the tail vein assay, miR-602 induced
increased metastasis to the lungs, to liver, bones and adrenal
glands (115). FOXK2 was identified as a target of miR-602
(116). FOXK2 binds to purine-rich motifs on DNA and is
involved in proliferation, survival, DNA damage, metabolism,
invasion, migration and metastasis. However, the function of
FOXK?2 is context-dependent and depends on the tumor type
(117). Down-regulation of FOXK2 was associated with poor
prognosis in patients with gastric cancer (118).

Down-regulated miRs (Figure 2B).

miR-124 [targeting signal transducer and activator of
transcription 3 (STAT3)]. miR-124 was suppressed in ESCC
tissues and cell lines, inhibited proliferation and migration
and induced apoptosis in ECA190 and TE-1 ESCCs (119).
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In ECA109 engrafted tumors, miR-124 inhibited growth
(119). STAT3 was identified as a direct target of miR-124
(119). Activation of STAT3 by phosphorylation leads to its
dimer formation, translocation into the nucleus, recognition
of STAT3 binding elements and transcriptional activation of
target genes. STAT3 regulates expression of genes related to
the cell cycle, survival and the immune response, and is
associated with progression and malignancy in several types
of cancer (120, 121). STAT3 is being evaluated as a potential
target for treatment of cancer (122). It has been shown that
STAT3 is constitutively activated in ESCC tissues (123),
inhibits apoptosis (124) and mediates proliferation and
migration of ESCCs (125).

miR-130-3p (targeting SMAD4). miR-130a-3p directly
targeted SMAD4 in EC-1 ESCCs (126). miR-130a-3p
inhibited tumor axillary lymph node metastasis in nude mice
(126). miR-130a-3p inhibited EMT, invasion, and migration
induced by TGFP in EC-1 cells (126). Restoration of
SMAD4 expression rescued miR-130a-3p-suppressed EMT,
invasion and migration (126). SMAD4 forms heterotrimeric
complexes with SMAD?2 and SMAD3 which are translocated
into the nucleus and regulate expression of selected genes
(127). SMAD4 is required for TGFp-induced EMT (128). In
healthy and early-stage cancer cells, TGFp signaling has
tumor-suppressive functions; in late-stage cancer, it can
promote tumor progression, metastasis and chemotherapy
resistance (129, 130).

miR-133a (targeting SOX4). miR-133a was down-regulated
in ESCC tissues and cell lines KYSE150, KYSES510,
EC9706 and TE13 in comparison to SHEE non-transformed
esophageal cell line (131). miR-133a inhibited proliferation,
migration and invasion of ESCCs as mentioned above (131).
In vivo, miR-133a inhibited tumorigenicity of TE13 cells in
a mouse xenograft model (131). SOX4 was identified as a
direct target of miR-133a (131). SOX4 levels inversely
correlated with miR-133a in ESCC tissues (131). SOX4 is
up-regulated in many types of cancer and contributes to
cellular transformation, cell survival and metastasis (132,
133). SOX4 was found to induce WNT signaling and EMT
(134, 135). The role of SOX4 in ESCC remains to be
explored in further detail.

miR-145 (targeting MYC). miR-145 was down-regulated in
ESCC tissues and suppressed proliferation, invasion and
tumor growth of ESCC xenografts by targeting MYC (136).
MYC is a transcription factor which increases proliferation,
cell-growth and inactivates cell-cycle inhibitors (137-139).
MYC can be amplified in ESCC and its high expression is
significantly correlated with poor prognosis in patients with
ESCC (140, 141). Compounds identified by several MYC
inhibition approaches are close to clinical trials (142).
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miR-150 (targeting ZEBI). Low expression of miR-150
contributed to malignant potential, lymph node metastasis,
lymphatic and venous invasion, clinical staging and poor
prognosis of patients with ESCC (143). miR-150 inhibited
proliferation, migration and regulated morphology of TE-8
ESCCs (143). In a TE-8 xenograft model, miR-150 inhibited
tumor growth (143). ZEBI was identified as a target of miR-
150 (143). ZEB1 contains seven zinc-fingers and one
homeodomain and is a transcription factor that controls EMT
(144). Aberrant expression of ZEB1 fosters invasion,
migration and metastasis (145). It has been shown that ZEB1
promotes invasiveness of ESCC and confers an unfavorable
prognosis in patients with ESCC (146).

miR-204 (targeting FOXM1). miR-204 was down-regulated
in ESCC tissues in comparison to corresponding normal
tissues (147). miR-204 inversely regulated EMT in EC109
and TE10 ESCCs (147). Overexpression of miR-204
suppressed growth of EC109 cells in vivo (147). FOXM1
was identified as a direct target of miR-204 (147). FOXM1
is a member of the family of FOXO transcription factors
which are deregulated in many diseases, including cancer
(148). FOXM1 is required for proliferation of many normal
cells and as a master regulator is implicated in all hallmarks
of cancer (149). FOXM1 is overexpressed in many types of
tumors. Its oncogenic role is mediated by interaction with {3-
catenin and SMADs to induce WNT and TGFf} signaling
pathways (150). Silencing of FOXM1 inhibited proliferation
and migration of ESCCs (151). In ESCC, FOXMI can
activate phosphoinosite-3 kinase (PI3K)/AKT signaling and
its expression was correlated with poor prognosis (151).

miR-507 [targeting nuclear factor erythroid 2-related factor 2
(NRF2)]. Administration of miR-507 alone or in combination
with cisplatin inhibited tumor growth in vivo (152). NRF2, a
basic leucine zipper protein transcription factor, was identified
as a target of miR-507 (153). Under high oxidative stress levels,
the NRF2 pathway is activated. Normally, NRF2 is degraded by
Kelch-like-ECH-associated protein (KEAP1) and Cullin3
through ubiquitinylation. Non-ubiquitinylated NRF2 is
translocated into the nucleus, combines with musculoaponeurotic
fibrosarcoma transcription factors and binds to anti-oxidative
response elements in the promoter regions of anti-oxidative
stress genes (153). Tumor-suppressive as well as oncogenic
functions have been assigned to NRF2 (154-156). In NRF2-
addicted cancer, NRF2 is constitutively activated due to somatic
mutations in KEAPI or NRF2 and other mechanisms that disrupt
binding of KEAP1 to NRF2 (157). In ESCC, NRF2 has been
shown to induce proliferation and to be associated with radio-
and chemotherapy resistance (158, 159).

miR-630 [targeting snail family transcriptional repressor 2
(SNAI2)]. Reduced miR-630 expression was associated with

poor survival in patients with ESCC (160, 161). Transcription
factor SNAI2, also known as SLUG, has been identified as a
direct target of miR-630 (160). Ectopic expression of miR-630
inhibited proliferation, invasion, EMT and metastasis of ESCC
cell lines in vitro and in vivo. SNAI2 plays a role in EMT and
mediates anti-apoptotic activity (162, 163). Independently it
has been shown that its down-regulation by RNA interference
inhibited invasion and growth of ESCC (164).

miR-664a [targeting paired-like homeodomain transcription
factor 2 (PITX2)]. Low expression of miR-664a correlated
with tumor recurrence or metastasis in patient samples (165).
miR-664a overexpression in KYSE-140 and -109 ESCCs
reduced cell growth, colony formation, migration and
invasion in vitro (165). Tumor growth in vivo was inhibited
by miR-664 in KYSE-140 and ECA109 cells in
immunocompromised mice (165). The number and size of
lung metastases of these cell lines in mice were dramatically
reduced by miR-664 (165). PITX2 was identified as a direct
target of miR-664a (165). miR-664a was down-regulated by
promoter hypermethylation and inhibited the WNT/f catenin
pathway by targeting PITX?2 in ESCCs (165). PITX2 acts as
a transcription factor and participates in muscle formation
(166, 167). Up-regulation of miR-664a reduced ESCC cell
stem-like traits (168).

miRs Targeting Metabolic Enzymes (Figure 3)

miR-144 [targeting p53-inducible glycolysis and apoptosis
regulator (TIGAR)]. miR-144 was down-regulated in patients
with ESCC and correlated with poor prognosis (169).
Proliferation of EC9706 and ECA109 ESCCs was inhibited
by miR-144, which was associated with a pro-apoptotic
effect (169). In vivo, miR-144 inhibited tumor growth of
xenografts of these cell lines (169). TIGAR was identified
as a direct target of miR-144 (169). TIGAR acts as a
fructose-2,6 biphosphatase and as a regulator of glucose
breakdown (170). In some types of cancer, TIGAR is
aberrantly up-regulated and promotes carcinoma growth by
metabolic intermediates derived from the pentose phosphate
pathway (171). TIGAR also reprograms glucose metabolism
from glycolysis to the glutamine pathway through AMP-
activated kinase (171). In TIGAR-overexpressing xenografts
and patient-derived xenografts, efficacy was significantly
enhanced when a glutaminase inhibitor was combined with
chemotherapy agents (172).

miR-203a-5p [targeting ubiquitin-specific peptidase 26
(USP26)]. miR-203-5p was significantly down-regulated in
esophageal tumor tissue (173). Overexpression of miR-203a-
5p inhibited invasion and migration of KYSE150 and TE-1
ESCCs (173). Nude mice injected with a miR-203-5p mimic
showed reduced lung metastasis of KYSE150 cells after tail
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Figure 3. Down-regulated miRs targeting enzymes in esophageal cancer
cells mediating efficacy in preclinical in vivo systems DNA polf3: DNA
polymerase [5; LDHB: lactate dehydrogenase B; MET: metastasis;
MTDH]I: metadherin 1; OGT: O-linked-N-acetylglucosaminacetylation
transferase; PROL: proliferation; PSATI: phosphoserine aminotransferase
1; INV: invasion; TG: tumor growth; TIGAR: p53-inducible glycolysis and
apoptosis regulator; USP26: ubiquitin-specific protease 26.

vein injection (173). miR-203a-5p targets USP26 which
stabilizes EMT-related transcription factor SNAI1 (173). In
normal tissues, USP26 is exclusively expressed in testis
(174). USPs are critical for cancer progression and several
approaches to develop inhibitors of USPs for treatment of
cancer are being pursued (175-177). It was shown that
USP26 promotes ESCC by stabilizing SNAI1 (178).

miR-340 and miR-365 [targeting phosphoserine amino-
transferase 1 (PSATI)]. Both these miRs were down-
regulated in ESCC cell lines EC1, EC109, EC9706 and in
ESCC tissues (179, 180). Both inhibited invasion of EC9706
and EC109 ESCCs (179, 180). miR-340 as well as miR-365
transfectants reduced growth of EC9706 xenografts in nude
mice (179, 180). miR-340 and miR-365 inhibited EMT by
up-regulation of E-cadherin, down-regulation of SNAII and
vimentin, and reduction of phosphorylated glycogen synthase
kinase 3B (179, 180). PSATI, involved in serine
biosynthesis, is amplified in a significant subset of tumors
and RNAi directed against PSAT1 reduced cancer cell
survival and growth; therefore, discovery of PSATI1
inhibitors as anticancer agents is being pursued (181).
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PSAT1 plays a crucial role in development of ESCC and its
expression predicts poor survival (182).

miR-375 [targeting lactate dehydrogenase B and metadherin
(MTDH)]. miR-375 was down-regulated in ESCC clinical
specimens in comparison to neighboring normal tissue
sections, and a low level of miR-375 was associated with
poor prognosis (183). miR-375 inhibited proliferation and
migration of TE2 and T.Tn ESCCs (183). Lactate
dehydrogenase B (LDHB) and MTDH were identified as
direct targets of miR-375 (183). A miR-375/atelocollagen
complex administered subcutaneously suppressed growth of
TE2 and T.Tn xenografts in nude mice (184). miR-375 target
LDHB converts lactose to pyruvate, which is further
oxidized and is critical for mTOR-mediated tumorigenesis
(185). LDHB also controls apoptosis and autophagy in tumor
cells (186). The other miR-375 target, MTDH, functions as
a regulator of EMT in carcinomas (187). It plays a role in
tumor progression, invasion, resistance to chemotherapy in
many carcinomas including ESCC. MTDH is required for
proliferation, migration and invasion of ESCC (188, 189).

miR-485-5p  [targeting O-linked N-acetylglucosamine
transferase (OGT)]. miR-485-5p was expressed at low levels
in ESCC cell lines and inhibited cell proliferation, migration
and invasion in TE-1 and ECA109 ESCCs (190). Tumor
growth in nude mice was inhibited in TE-1 cells
overexpressing miR-485-5p (190). OGT was identified as a
direct target of miR-485-5p (190). OGT catalyzes addition of
N-acetylglucosamine through O-glycosidic linkage to serine
or threonine and an S-glycosidic linkage to cysteine (191,
192). OGT is aberrantly expressed in cancer and modifies
signaling proteins, transcription factors, metabolic enzymes,
histones and chromatin regulators (193).

miR-499 (targeting DNA polymerase 3). DNA polymerase 3
has been identified as the target of miR-499 in EC9706 and
KYSE30 ESCCs (194). miR-499 inhibited proliferation,
induced apoptosis and reduced the DNA-repair capacity of
EC9706 and KYSE30 ESCCs by targeting DNA polymerase
B (194). miR-499 also inhibited tumor growth of xenografts
derived from these cell lines in nude mice (194). DNA
polymerase [} is essential for short-patch base excision repair.
DNA polymerase § overexpression resulted in aneuploidy
and tumorigenesis in nude immunodeficient mice (195, 196).
Targeting DNA polymerase f is considered as an option for
cancer therapy (197).

Additional Targets
In addition miR-34a and miR-133b should be mentioned. They

target phospholipase epsilon 1 (PLCEL) (198) and squalene
epoxidase (SQE) (199), respectively. SQE is a rate-limiting
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enzyme in cholesterol biosynthesis (199). In vivo activity in
ESCC-related preclinical xenografts was demonstrated with the
corresponding targets, not with miR-34a and miR-133b.

Concluding Remarks

Up-regulated miRs indicate targets which have to be
reconstituted with low-molecular-weight compounds or
inhibited by miR antagonists such as locked nucleic acids
and antagomirs (200). All antagonists are oligonucleotides
with sequences complementary to endogenous miRs (200-
203). Down-regulated miRs identify targets which can be
inhibited by small molecules or antibody-related moieties, or
which can be re-expressed by replacement therapy with miR
mimetics or vector-based expression (200-203). miR
mimetics are double-stranded RNAs which reconstitute the
function of the corresponding miRs.

When deregulated miRs were grouped into categories as
secreted factors and transmembrane receptors, transcription
factors and metabolic enzymes, for secreted factors and
transmembrane receptors, four miRs were up-regulated and
10 were down-regulated in ESCC tissues in comparison to
matching normal tissues (Figure 1). VEGF (miR-126), EGFR
(miR-133b), HER2 (miR-193a), IGF1R (miR-375) and CD47
(133a) seem to be the most promising targets for inhibition
with small molecules and biological agents or reconstitution
of the corresponding miRs.

In the category of transcription factors, we identified five
miRs up-regulated and nine down-regulated with efficacy in
preclinical in vitro and in vivo systems (Figure 2). Drugs
targeting transcription factors such as estrogen receptor and
androgen receptor are among the most impactful drugs in
oncology (5). STAT3 (miR-124), SMAD4 (miR-130-3p),
SOX4 (miR-122a), MYC (miR-145), ZEB1 (miR-150),
FOXM1 (miR-204), NRF2 (miR-507), SLUG (miR-630) and
PITX2 (miR-664) have emerged as potential targets for
inhibition at the protein level or reconstitution of the
corresponding miRs. A subset of ESCCs is addicted to NRF2
this aspect is worth further detailed investigation (156). In
general, targeting transcription factors is associated with
technical issues of tractability with respect to inhibition and
specificity, as well as toxicity issues. Inhibitory efforts may
target protein—protein interactions with co-factors, inhibition
of transcription factor DNA binding, inhibition of expression
of regulators of transcription factors, altering levels of
ubiquitinylation and subsequent proteolysis (204-208).
Proteolysis targeting chimeras are under active investigation,
as well as cysteine reactive inhibitors, which target
intrinsically disordered domains of transcription factors
(204- 208).

Six miRs targeting enzymes were down-regulated (Figure
3). TIGAR (miR-144), PSAT1 (miR-340 and miR-365) and
LDHB (miR-375) are metabolic enzymes. These targets and
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their corresponding miRs deserve further validation for
treatment of ESCC. Transformed cells adopt metabolism and
support tumor initiation and progression and therefore
become addicted to these changes (209-211). Drugs targeting
metabolic enzymes such as the dihydrofolate reductase
inhibitor methotrexate and thymidylate inhibitor 5-
fluorouracil are well established in cancer therapy.

Inhibition of miRs and replacement therapy face several
technical problems which are not discussed in this review.
Among these issues are: delivery of the agents to tumor
tissues, optimization of their escape after internalization,
inappropriate biodistribution and optimization of their
pharmaco-kinetic and pharmaco-dynamic properties (211-
213). Further critical issues are off-site effects and cytokine-
release syndrome (213). Recently the field has witnessed
several drawbacks (214). However, cobomarsen, an
oligonucleotide-based inhibitor of miR-155, was shown to
slow growth of diffuse large cell B-cell lymphoma
xenografts without any toxic effects and is currently being
evaluated in several clinical studies in patients with
hematological malignancies and seems to be well tolerated
(215, 216). Nevertheless, clinical proof-of-concept of miR-
based therapies is still pending.
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