
Abstract. Background/Aim: Colon cancer is one of the most
common cancer types and the second leading cause of death
due to cancer. Many efforts have been performed towards the
investigation of molecular alterations during colon cancer
progression. However, the identification of stage-specific
molecular markers remains a challenge. The aim of this study
was to develop a novel computational methodology for the
analysis of alterations in differential gene expression and
pathway deregulation across colon cancer stages in order to
reveal stage-specific biomarkers and reinforce drug
repurposing investigation. Materials and Methods:
Transcriptomic datasets of colon cancer were used to identify
(a) differentially expressed genes with monotonicity in their
fold changes (MEGs) and (b) perturbed pathways with
ascending monotonic enrichment (MEPs) related to the
number of the participating differentially expressed genes
(DEGs), across the four colon cancer stages. Through an in
silico drug repurposing pipeline we identified drugs that
regulate the expression of MEGs and also target the resulting
MEPs. Results: Our methodology highlighted 15 MEGs and
32 candidate repurposed drugs that affect their expression.
We also found 51 MEPs divided into two groups according to
their rate of DEG content alteration across colon cancer
stages. Focusing on the target MEPs of the highlighted
repurposed drugs, we found that one of them, the neuroactive

ligand-receptor interaction, was targeted by the majority of
the candidate drugs. Moreover, we observed that two of the
drugs (PIK-75 and troglitazone) target the majority of the
resulting MEPs. Conclusion: These findings highlight
significant genes and pathways that can be used as stage-
specific biomarkers and facilitate the discovery of new
potential repurposed drugs for colon cancer. We expect that
the computational methodology presented can be applied in
a similar way to the analysis of any progressive disease.

Colon cancer is one of the most common cancer types and the
second leading cause of cancer-related deaths in the United
States (1). The most significant factor for patient survival,
prognosis and treatment is tumor staging (2, 3). As a rule, the
earlier the stage of colon cancer, the smaller it’s metastatic
potential. It is well known that cancer metastases are the major
cause of colon cancer-related deaths and there are no available
drugs to confine the spread to other organs (4). 

Despite the efforts to identify significant features that could
be used as important indicators for the better understanding of
the colon cancer progression (5-9), there is an increased trend
in the appearance and death rates from colon cancer.
Furthermore, the molecular characterization of colon cancer
stages and identification of predictive biomarkers remain a
challenge (10). Few studies in the literature have focused on
the comparison and identification of genes that may be
associated with clinical stages of colon cancer (11-13) and to
our knowledge, there are no computational methodologies to
facilitate the investigation of deregulation of molecular
mechanisms during colon cancer progression. In the present
study we developed a novel computational methodology for
the analysis of stage-specific alterations in differential gene
expression and pathway deregulation of colon cancer.
Specifically, we used publicly available transcriptomic datasets
of colon cancer and normal samples accompanied with their
clinical information, in order to identify monotonically
expressed genes (MEGs) i.e., differentially expressed genes
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(DEGs) with ascending or descending trend in their
differential expressions (log 2-fold changes-log2FC) during
colon cancer progression. Through an in silico drug
repurposing pipeline, we pointed out candidate repurposed
drugs which have been experimentally found to significantly
change the expression of the majority of these MEGs in colon
cancer cell lines. We further explored alterations in the
revealed molecular mechanisms that participate in cancer
progression by investigating the monotonically enriched
pathways (MEPs) i.e., the perturbed pathways with ascending
enrichment related to the participating DEGs across the four
colon cancer stages. 

Our computational approach yielded in 15 MEGs and 32
candidate repurposed drugs that affect their expression.
Furthermore, we found 51 MEPs that were divided into two
groups according to their perturbation rate across stages i.e.,
rate of DEG content alteration across colon cancer stages.
We also investigated which of the candidate repurposed
drugs also target the resulting MEPs and we found two drugs
(PIK-75 and troglitazone) that target most of them. On the
other hand, one MEP, namely the neuroactive ligand-receptor
interaction, is targeted by the majority of the candidate
repurposed drugs from our analysis.

Overall, our findings highlight genes and pathways
monotonically deregulated across colon cancer stages that
can be used as stage-specific biomarkers and as a stepping
stone in the direction of drug repurposing against colon
cancer. This methodology provides insights for further
experimentation and can be applied in a similar way to the
analysis of any progressive disease.

Materials and Methods

Data selection and preprocessing. We collected transcriptomic datasets
that contain colon cancer samples from all stages (Stage I-IV) and
normal samples from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/) (14) and from The Cancer
Genome Atlas database (TCGA) (https://www.cancer.gov/tcga). We

utilized the GEO datasets for our analysis (as reference sets) and the
TCGA datasets as validation sets. In GEO, when looking for
transcriptomic datasets with samples in all four colon cancer stages
accompanied with healthy ones, we found only five independent
microarray datasets whose accession numbers and the number of
samples are presented in Table I. We used Linear Models for
Microarray Data- LIMMA R package (15) to perform the differential
expression analysis in each dataset comparing samples from each
colon cancer stage with normal ones. Finally, we selected the DEGs
by applying selection thresholds of adjusted p-value < 0.05 and
absolute log2FC≥1. The number of DEGs from each comparison is
presented in Table II.

Furthermore, we retrieved RNA-seq data from TCGA using
TCGAbiolinks R package (16) in order to use them as validation
set. Specifically, we downloaded raw-counts from TCGA Colon
Adenocarcinoma (TCGA-COAD) and Rectum Cancer (TCGA-
READ). Concerning staging information, we separated the samples
based on their clinical records. Finally, each subset was statistically
analyzed in order to find the differentially expressed genes
comparing samples from each colon cancer stage and normal ones.
For the differential expression analysis we used DESeq2 R package
(17) and we set as threshold 10 total counts per gene to filter out
very low expressed genes. Moreover, the same selection criteria of
absolute log2FC≥1 and the adjusted p-value <0.05 were utilized.
The description of the TCGA datasets and the total number of DEGs
from each analysis are presented in Table I and Table II respectively. 

Finding and scoring the monotonically expressed genes. For each
dataset, we were interested in the DEGs with a monotonic trend
(constantly increasing or decreasing trend) in their log 2-fold
changes across colon cancer progression, noting them as MEGs.
Based on this concept, we examined the monotonically over-
expressed genes with an ascending trend in their log2FC and the
monotonically under-expressed genes with a descending trend in
their log2FC across colon cancer stages.

To further evaluate these MEGs, we investigated their linear
correlation in terms of log2FC across the four colon cancer stages.
To measure this correlation, we used linear regression to fit the log
fold changes of each MEG with line and we subsequently calculated
that line’s slope and coefficient of determination (R-squared) i.e.,
how close the log2FC of each MEG are to the fitted regression line.
Moreover, we calculated the distance between the extreme log2FC
of Stage IV and Stage I for each MEG and by combining those
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Table I. Detailed summary of the transcriptomic colon cancer datasets used in this study. The number of normal samples (N) and the number of
samples from each stage (I-IV) is presented for each dataset.

Gene expression omnibus               Dataset id                                  Normal                Stage I                Stage II                  Stage III               Stage IV 

                                                         GSE39582 (56)                             19                        33                        264                           205                        60
                                                         GSE71187 (57)                             12                        13                          28                             52                          6
                                                         GSE21815 (58, 59)                         9                        12                          27                             16                        11
                                                         GSE21510 (60)                             25                        15                          46                             39                        25
                                                         GSE35279 (61)                               5                        13                          30                             17                        14
The cancer genome atlas                 TCGA-COAD*                             41                        81                        187                           132                        66
                                                         TCGA-READ**                           10                        30                          51                             51                        24

*TCGA-COAD: The Cancer Genome Atlas – Colon Adenocarcinoma. **TCGA-READ: The Cancer Genome Atlas – Rectal Cancer.



measures we scored and ranked the MEGs of each dataset using a
weighted sum according to the following equation [1]:

[1]

Where, |ΔFCI,IV|i is the absolute distance of the log2FC between
Stage IV and Stage I, |ai| is the absolute value of slope and R2i the
coefficient of determination for each MEG. This weighted sum with
w1, w2 weights, combines the actual total increase or decrease of
the log2FC across stages with the trend parameters calculated
through the linear regression. In the present study we selected to
give precedence in the actual total change in the log2FC by setting
w1 and w2 0.6 and 0.4, respectively. 

According to these scores, each MEG in each dataset acquired a
ranking. The rank of each MEG was normalized according to
equation [2]:

[2]

where gi,j is the rank of the ith gene in jth dataset and Nj the total
number of MEGs in jth dataset.

Finally, we combined the normalized ranks from the five datasets
and we calculated a final score as a weighted sumfor the
monotonically over- and under-expressed genes separately, using the
following equation [3]:

[3]

where fi the number of appearances of MEG i in the datasets. In our
study, the weights w1 and w2 were set to 0.4 and 0.6, respectively
giving a precedence in the score to MEGs found in more datasets. 
In silico drug repurposing. The selected MEGs were used separately
as input in an in silico drug repurposing tool called Drug Gene Budger

(https://maayanlab.cloud/DGB/) (18). DGB is a web-based tool which
returns small molecules that are predicted to maximally affect the
expression of the genes of interest. Users can query the genes that they
want to reverse their expression and DGB results a ranked list of small
molecules which have been experimentally found to produce the
desired expression effect. The experimental data of DGB have been
extracted from the LINCS L1000 dataset (19), the Connectivity Map
(CMap) dataset (20), and the GEO database (14). In this study we
selected the results from LINCS L1000 and more specifically the
significant small molecules with q-value<0.05 and absolute log2FC≥1,
that reverse the expression of MEGs in the three colon cancer cell lines
(HT29, SW620 and SW948) that take part in L1000 data.

Monotonically enriched pathways (MEPs). To further investigate the
alterations in molecular mechanisms related to the colon cancer
progression, we explored the perturbed pathways with ascending
monotonic enrichment related to the number of the involved DEGs
across the four colon cancer stages. For this reason, we constructed a
consensus gene signature for each colon cancer stage by examining
the common over- and under-expressed genes from the differential
expression analysis of the five GEO datasets. Then we found the
molecular mechanisms in which the common DEGs of each stage are
involved. Specifically, by parsing the biological pathways from Kyoto
Encyclopedia of Genes and Genomes – KEGG (21), we found all
genes that are involved in each pathway. Finally, we investigated the
pathways with an ascending monotonic enrichment in the number of
the participating DEGs from Stage I to Stage IV.

MEPs network construction. MEPs from all clusters were used as
input in the PathIN - an integrated web tool that provides an easy
and flexible way for rapidly creating pathway-based networks, at
several functional biological levels: genes, compounds and reactions
(http://bioinformatics.cing.ac.cy/PathIN). We used PathIN to map
the MEPs on the reference pathway-to-pathway network parsed
from the KEGG database.

Results

MEGS found in colon cancer progression. We found the
following numbers of monotonically over-/under-expressed
genes per dataset: GSE39582 (146/151), GSE21815 (668/51),
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Table II. The total number of over- and under-expressed genes per colon cancer stage for each dataset from the Gene Expression Omnibus Database
(GEO) and The Cancer Genome Atlas (TCGA).

                                                                           Stage I                                 Stage II                                    Stage III                                  Stage IV

Dataset id                                                 Over              Under              Over             Under                Over                Under                Over               Under

GSE39582                                               1,335              1,138              1,251             1,123                1,256                1,149                1,245               1,138
GSE71187                                               3,421               3257              4,037             2,932                3,504                2,859                5,798               3,445
GSE21815                                               5,821                332               8,893               547                 8,632                  548                 8,024                 614
GSE21510                                               2,843              1,924              2,519             1,882                2,728                1,927                2,652               1,791
GSE35279                                                 899                 125                6475               480                  6990                  461                 6,126                 496
Colon adenocarcinoma (COAD)            9,618              4,327              9,390             4,351                8,522                4,017                8,205               4,476
Rectal cancer (READ)                            5,448              4,739              5,672             4,544                5,778                4,461                5,421               4,500



GSE21510 (73/71), GSE71187 (419/133) and GSE35279
(899/45) that are presented in the box plots of Figure 1A and
B. Moreover, as described in the Materials and Methods

section we investigated the linear relationships between their
log2FC across the four colon cancer stages, by calculating the
regression coefficient (Slope) and the coefficient of
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Figure 1. (A) Boxplot with monotonic over-expressed genes for the five Gene Expression Omnibus (GEO) datasets. (B) Boxplot with monotonic
under-expressed genes for the five GEO datasets. (C) Polar plot with the monotonic over- and under-expressed genes of each GEO dataset. Degrees
represent the corresponding slopes of monotonically expressed genes (MEGs) and color the R-squared values.



determination (R-squared) in a linear regression model. The
corresponding metrics for each MEG and for each dataset are
presented in a polar coordinate system in Figure 1C. 

For each MEG, we calculated a final weighted score FSi
that combines the normalized ranks and the frequency of
occurrence of each MEG across the five GEO datasets.
Following the sorting of MEGs according to their FSi score,
we highlighted those that surpassed the following criteria: 1)
their FSi is above 0.5 and 2) they are found as MEGs with
the same trend in at least one TCGA validation set. Following
these filtering criteria, we kept 12 MEGs with ascending
monotonicity (HOXB8, SNTB1, ATAD2, KLRG2, ITGBL1,
RDH12, LEMD1, TACSTD2, F2, RELL2, PMEPA1 and
HSPH1) and 3 MEGs with descending monotonicity
(PPARGC1A, SLC26A2 and CLCA1) respectively.

Candidate repurposed drugs for the highlighted MEGs. The
15 selected MEGs were separately used as input to the DGB
drug repurposing tool. We found candidate repurposed drugs
that regulate 7 out of 12 over-expressed MEGs and all the 3
under-expressed MEG. From these drugs we kept only those
that were experimentally found to regulate the resulting MEGs

in colon cancer cell lines. Then we used as filtering criteria
the q-value <0.05 and the absolute log2FC≥1 and we selected
for each MEG the maximum top 5 drugs, based on the log2FC
that quantify the observed change in the expression of each
gene. With this procedure, we ended up with 32 unique drugs
presented in the bipartite network of Figure 2.

MEPs found in colon cancer progression. We investigated the
common over- and under-expressed genes across stages and
datasets. For the case of Stage I, 151 common over-expressed
genes and 51 under-expressed genes were found across the 5
datasets. Following the same procedure, we concluded to 367
common over- and 141 common under-expressed genes for
Stage II, 360 and 127 for Stage III and 488 and 139 for Stage
IV respectively. Finally, we ended up with 51 MEPs, shown
in Figure 3. For each MEP, we normalized the number of
DEGs in each stage with the total number of genes that are
involved in this pathway. We then investigated the groups of
pathways with similar deregulation across stages.
Specifically, the 51 MEPs were grouped into 4 clusters
according to their monotonic enrichment in the four colon
cancer stages (Figure 3). The four clusters have been found
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Figure 2. Bipartite network with the resulting monotonically expressed genes (MEGs) and the corresponding candidate repurposed drugs that are
predicted to influence their expression.  Monotonically over- and under-expressed genes are presented as circular nodes with red and green color
respectively and drugs with grey rhombus-shaped nodes.



based on the normalized number of DEGs.The color scale in
the presented heat map represents a transformation of the
normalized number of DEGs in the scale of [0, 1]. 

As presented in Figure 3, cluster 1 (C1) consists of 20
pathways with smooth alteration rate between Stage II –
Stage III or/and Stage III – Stage IV. Cluster 2 (C2) included
also 20 pathways with the lowest deregulation across all
colon cancer stages and also slight or no alterations between
them. For the case of cluster 3 (C3), we observed nine
involved pathways with high total deregulation across the
colon cancer progression and high alteration rate between
Stage I and Stage II. Finally, cluster 4 (C4) also consists of
two pathways with the highest perturbation rate across stages
and quite high rate of alteration between Stage I and Stage
II or/and Stage III and Stage IV. Observing the four clusters,
we separated the MEPs into two groups: the first group
includes the MEPs with low perturbation rate (LPR) across
stages i.e., low rate of DEG content alteration. The second
group contains MEPs with high perturbation rate (HPR)
across the four colon cancer stages i.e., high rate of DEG
content alteration (Figure 3). 

Network connectivity between the MEPs. The LPR and HPR
MEPs from the two groups were mapped on the KEGG
pathway-to-pathway reference network with the help of

PathIN. In this network, the nodes represent the MEPS, the
edges represent the connectivity found in KEGG between
each pair of pathways while the edge weight represent the
number of common genes between the two pathways. As
shown in Figure 4, MEPs within and across groups are
linked as they are sharing biochemical connections.
Specifically, the majority of the LPR MEPs from the first
group are strongly associated. On the other hand, subgroups
from the HPR MEPs are biochemically connected, sharing
also a number of common genes. Following the network
statistics, the MEPs with the highest degree centralities are
apoptosis and mapk signaling pathway and they belong to
the LPR MEPs of the first group.

MEPs and repurposed drugs. To further enrich our analysis, we
investigated the MEPs that are targets of the highlighted
repurposed drugs. For this reason, we queried the corresponding
gene targets of each drug in the databases CLUE –The Drug
Repurposing Hub (https://clue.io/repurposing#download-data),
the DrugBank database (https://www.drugbank.com/) (22) and
PubChem (https://pubchem.ncbi.nlm.nih.gov/) (23). Then we
looked in which pathways these target genes are involved.
Finally, we compared these pathways with the resulting MEPs
in order to find which MEPs are also targets of the resulting
repurposed drugs. We applied this procedure to each group to
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Figure 3. Heatmap visualization of monotonically enriched pathways (MEPs). Color scale indicates the normalized number of differentially expressed
genes (DEGs) in each stage.



find drugs that affect MEPs with a similar tendency of
deregulation during the colon cancer progression. As shown in
Figure 5, 18 out of 32 repurposed drugs (PIK-75, CAY-10594,
everolimus, doxorubicin, triptolide, BRD-K05402890,
troglitazone, tanespimycin, tyrphostin-AG-1478, trichostatin-a,
BMS-536924, CD-1530, vemurafenib, emetine, pidorubicine,
vorinostat, mepacrine and selumetinib) target 33 out of 51
MEPs (ampk signaling pathway, axon guidance, camp signaling
pathway, cellular senescence, central carbon metabolism in
cancer, Epstein Barr virus infection, hematopoietic cell lineage,
human papillomavirus infection, microRNAs in cancer, mtor
signaling pathway, neuroactive ligand-receptor interaction,
platinum drug resistance, proteoglycans in cancer, purine
metabolism, steroid hormone biosynthesis, apoptosis, choline
metabolism in cancer, endocytosis, fc gamma r-mediated
phagocytosis, hepatitis b, herpes simplex virus 1 infection,
human immunodeficiency virus 1 infection, influenza a, Kaposi
sarcoma-associated herpesvirus infection, mapk signaling
pathway, measles, necroptosis, pathogenic Escherichia coli
infection, regulation of actin cytoskeleton, tuberculosis, yersinia
infection, antifolate resistance and progesterone-mediated
oocyte maturation). From these MEPs, two belong to HPR
MEPs and specifically antifolate resistance and progesterone-

mediated oocyte maturation. We prioritized the candidate drugs
based on the number of MEPs that they target and among them
we found that the most MEPs are targeted byPIK-75 (23 target
MEPs) and troglitazone (19 target MEPs) followed by
tanespimycin (7 target MEPs) and CAY-10594 (4 target MEPs).
The rest drugs target 1-3 MEPs. All the candidate drugs and the
number of MEPs they target are presented in Table III. It is
worth noting that the first two candidate repurposed drugs, PIK-
75 and troglitazone target both LPR and HPR MEPs.
Specifically, PIK-75 targets 22 LPR MEPs (ampk signaling
pathway, axon guidance, camp signaling pathway, cellular
senescence, central carbon, metabolism in cancer, Epstein Barr
virus infection, human papillomavirus infection, microRNAs in
cancer, mtor signaling pathway, platinum drug resistance,
proteoglycans in cancer, apoptosis, choline metabolism in
cancer, fc gamma r-mediated phagocytosis, hepatitis b, herpes
simplex virus 1 infection, human immunodeficiency virus 1
infection, influenza a, Kaposi sarcoma-associated, herpesvirus
infection, measles, regulation of actin cytoskeleton and yersinia
infection) and one HPR MEP (progesterone-mediated oocyte
maturation). On the other hand, 18 LPR MEPs and one HPR
MEP are targeted by troglitazone (LPR MEPS: cellular
senescence, Epstein Barr virus infection, hematopoietic cell
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Figure 4. Pathway network from monotonically enriched pathways (MEPs) biochemical connectivity. Low perturbation rate monotonically enriched
pathways (LPR MEPs) from the first group are presented with cyan color and high perturbation rate monotonically enriched pathways (HPR MEPs)
from the second group with orange color. Edge width corresponds to the common genes that the two pathways are shared.



lineage, human papillomavirus infection, mtor signaling
pathway, proteoglycans in cancer, apoptosis, hepatitis b, herpes
simplex virus 1 infection, human immunodeficiency virus 1
infection, influenza a, Kaposi sarcoma-associated herpesvirus
infection, mapk signaling pathway, measles, necroptosis,
pathogenic, Escherichia coli infection, tuberculosis and yersinia
infection; HPR MEP: antifolate resistance). The MEPs that
were targeted by the majority of the drugs are: (i) the
neuroactive ligand-receptor interaction MEP (targeted by 7
repurposed drugs:BMS-536924, CD-1530, doxorubicin,
emetine, everolimus, triptolide and vemurafenib), (ii) the camp
signaling MEP (targeted by 6 repurposed drugs: BRD-
K05402890, CAY-10594, doxorubicin, everolimus, PIK-75 and
triptolide). 

Discussion

Despite the enormous amount of omics data and the huge
efforts to identify important molecular indicators that could
be used for better understanding of molecular pathology in
multistage diseases, the understanding of the molecular
alterations during colon cancer progression remains a
challenge. The simple way of the differential expression
analysis across cancer stages is not enough to highlight
related genes and molecular mechanisms that mark the
phases and the progression of colon cancer. 

In this study, we analyzed five transcriptomic datasets from
the Gene Expression Omnibus database (GEO), with colon
cancer samples from different stages and normal samples, in
order to find DEGs with monotonicity in their log2FCduring
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Figure 5. Circos plot that summarizes the associations between repurposed drugs and monotonically enriched pathways (MEPs).

Table III. Ranking of candidate repurposed drugs based on the number
of monotonically enriched pathways (MEPs) that they target.

Candidate repurposed drugs                             Number of MEP targets

PIK-75                                                                                23
Troglitazone                                                                       19
Tanespimycin                                                                       7
CAY-10594                                                                          4
Everolimus                                                                           3
Doxorubicin                                                                         3
Tyrphostin-AG-1478                                                           3
Trichostatin-a                                                                       3
Triptolide                                                                             2
BRD-K05402890                                                                 2
BMS-536924                                                                       1
CD-1530                                                                              1
Vemurafenib                                                                         1
Emetine                                                                                1
Pidorubicine                                                                         1
Vorinostat                                                                             1
Mepacrine                                                                            1
Selumetinib                                                                          1



the colon cancer progression. We found 15 MEGs, 12 over-
expressed with ascending monotonicity and 3 under-expressed
with descending monotonicity respectively. We searched in the
literature to find the biological relevance of the resulting 15
MEGs and reached some significant observations. For the case
of the 12 over-expressed MEGs, ithas been reported that
HOXB8 and ATAD2 are important factors for the development
and progression of colon cancer and may be used as possible
drug targets for colon cancer therapy (24, 25). A recent
publication has also proposed the significant role of syntrophin
beta 1-SNTB1 as prognostic marker for colon cancer
metastasis (26). Moreover, it has been found that integrin beta-
like 1 -ITGBL1 is involved in the colon cancer development
and metastasis (27) whileTACSTD2 and LEMD1 belong to the
significant up-regulated genes of colon cancer (28, 29). For the
case of under-expressed MEGs found in our analysis, it has
been indicated that the lower levels of PPARGC1A and
SLC26A2 could increase colon cancer risk, proliferation and
propagation and they have been proposed as possible candidate
targets for cancer therapy (30, 31). Finally, low expression of
CLCA1 has been related to unfavorable prognosis in colon
cancer and it has been indicated that could be a possible
prognostic marker (32, 33). High CLCA1 expression has also
been shown to suppress colon cancer belligerence (34).

Through a computational drug repurposing pipeline, we also
found drugs and small molecules that affect the expression
levels of the highlighted MEGs. Among the 32 resulting
candidate repurposed drugs, some were found to affect the
expression of more than one MEGs. Specifically, trichostatin-a
that belongs to the class of organic compounds and it is used as
an antifungal antibiotic, regulates the expression of three
monotonically over- expressed genes (SNTB1, TACSTD2 and
HSPH1) and two under-expressed (SLC26A2 and CLCA1). It
has been reported that trichostatin-a has anticancer effects in the
domain of cell proliferation and apoptosis and it has been
suggested as possible therapy for colon cancer (35). Moreover,
vorinostat, a member in the family of compounds that inhibit
HDAC and also used in the management of cutaneous T cell
lymphoma, was found to influence the expression of two over-
and one under-monotonically expressed gene SNTB1,
TACSTD2 and SLC26A2 respectively. It is also in 6 clinical
trial studies for colon cancer in the ClinicalTrials.gov with
National Clinical Trial number (NCT) numbers NCT00336141,
NCT02316340, NCT00942266, NCT00138177, NCT00126451
and NCT01023737. SN-38, the active metabolite of irinotecan
(a chemotherapeutic drug for metastatic colorectal cancer)(36),
was also found as a candidate repurposed drug from our
analysis regulating the expression of one over- and one under-
monotonically expressed gene (SNTB1 and PPARGC1A).
Doxorubicin, another antineoplastic drug of our list that also
affects one over- and one under- monotonically expressed gene
(HSPH1 and SLC26A2), is used to treat various types of cancer
including colon cancer (37). 

We further investigated the perturbed pathways with an
ascending monotonic enrichment in the colon cancer
progression i.e., pathways with ascending monotonic
enrichment in terms of their participating DEGs across the
four colon cancer stages. We ended up with 51 MEPs that
were mapped into four clusters forming two groups: (i) LPR
MEPS with low perturbation rate (i.e., low rate of DEG
content alteration) across colon cancer stages and (ii) HPR
MEPs with high perturbation rate respectively. We noticed
that MEPs within and across the two groups are strongly
associated in a pathway-to-pathway network (Figure 4).
Hippo signaling pathway and tight junction pathway are
strongly connected since they are sharing 27 common genes.
Hippo pathway is involved in tumorigenesis in several
cancer types, and it has been reported that is also connected
in cancer growth and progression (38, 39). Moreover, it has
become increasingly evident that tight junctions are involved
in cancer metastasis and changes of their protein expression
are found in several colon cancer cases (40). It is worth
noting that one HPR MEP, namely the p53 signaling
pathway, is associated with 9 LPR MEPs (measles, human
papillomavirus infection, platinum drug resistance, apoptosis,
Epstein Barr virus infection, hepatitis b, cellular senescence,
mapk signaling pathway and Kaposi sarcoma-associated
herpes virus infection). From them, the Epstein Barr virus
infection MEP is sharing with the p53 signaling pathway the
highest number of common genes. It is well known  that p53
signaling pathway is responsible for the alterations of critical
regulators of the cell cycle, the angiogenesis, the DNA
replication and apoptosis (41). Furthermore, two LPR MEPs,
the endocytosis and platinum drug resistance, were also
found to be connected with two HPR MEPS, the mismatch
repair and antifolate resistance respectively. It is already
known that the alterations of endocytosis are involved in
tumorigenesis as they affect proliferation and migration (42).
Following the pathway network statistics, two LPR MEPS
have the highest degree centralities: apoptosis and mapk
signaling pathway. Apoptosis is one of the most deregulated
pathways in colon cancer and mapk signaling has an
important role in tumor growth and progression (43).

Based on the ranking of the highlighted drugs (Table III),
the top two drugs with the highest number of targeted MEPs
are PIK-75 and troglitazone. These two drugs target both
LPR and HPR MEPs. PIK-75 is a PI 3-kinase p110alpha
inhibitor and it is known to have anti-cancer activity and
anti-inflammatory properties (44). Troglitazone is an
antidiabetic and anti-inflammatory drug which has potential
anti-cancer properties on several cancer types including
prostate cancer (45). PIK-75 is targeting 22 LPR MEPS and
one HPR and troglitazone 18 LPR and one HPR MEPs also
(Figure 5). Overall, 13 LPR MEPs are targeted by both
drugs: cellular senescence, Epstein Barr virus infection,
human papillomavirus infection, mtor signaling pathway,
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proteoglycans in cancer, apoptosis, hepatitis b, herpes
simplex virus 1 infection, human immunodeficiency virus 1
infection, influenza a, Kaposi sarcoma-associated
herpesvirus infection, measles and yersinia infection. We
can observe that 6 from these common targeted MEPs
belong to the group of viral infectious diseases. It is well
known that the most common oncoviruses, human
papillomavirus (HPVs) and the Epstein Barr virus (EBV),
contribute to many cancer types including colorectal cancer
(46, 47).  Moreover, it has been proposed that Epstein Barr
virus infection is involved in the etiopathogenesis of
inflammatory bowel diseases (48). However, the association
of viral infections with colon cancer is still under
consideration (49). Recent studies have shown that
senescent cells are involved in various pathologic conditions
and in the progression of several diseases (50). It has been
also reported that cellular senescence could be a promising
strategy for cancer therapy (51). The mtor pathway plays a
pivotal role in cell proliferation and it is deregulated in
many cancer types (52). As mentioned above, PIK-75and
troglitazone target one HPR MEP each, namely
progesterone-mediated oocyte maturation and antifolate
resistance respectively. It has been reported that
progesterone-mediated oocyte maturation may be used as
diagnostic marker and possible target for colon cancer
treatment (53). Mechanisms of antifolate resistance are a
pivotal cause of difficulty in cancer chemotherapy (54).
Finally, we observe that the most targeted MEP is
neuroactive ligand-receptor interaction signaling pathway
(Figure 5). This pathway has been associated with many
cancer types and more specifically is associated with the
progression of bladder, prostate and renal cancer (55).

In summary, in our study we highlighted the importance
of 15 MEGs as prognostic markers for colon cancer
progression. Four of them (SNTB1, ATAD2, HOXB8 and
ITGBL1) have been indicated to be associated with the
development of colon cancer (62- 65). We further identified
51 MEPs that were mapped into two groups according to
their perturbation rate across colon cancer stages. By
examining their network connectivity, we highlighted the
hippo signaling pathway and the tight junction pathway. It
has been reported that hippo pathway components were
associated with tumor differentiation, colon cancer stages
and metastasis (66). On the other hand, the role of tight
junction in human colon cancer development is still
unknown. Through a computational drug repurposing
pipeline, we also found repurposed drugs that influence the
expression levels of the 15 highlighted MEGs. Among the
32 resulting candidate repurposed drugs, 18 also target the
resulting MEPs. The two drugs with the highest number of
MEPs that they target are the p110α inhibitor PIK-75 and
the antidiabetic drug troglitazone. Finally, the MEP that is
targeted by the majority of the candidate repurposed drugs

from our analysis is the neuroactive ligand-receptor
interaction. This pathway may be a promising therapeutic
target for future investigation and treatment of colon cancer
patients.

This study provides new computational evidence that the
monotonicity of the gene differential expression and the
pathway deregulation are associated with the colon cancer
progression. This observation offers alternative views in drug
repurposing efforts as well. Despite all the positive findings
of this study, there are some possible limitations related to
the database biases that may exist (a common problem in
bioinformatics research), the inherent heterogeneity in
biological material sampling and annotation regarding the
different datasets used and the possible differences in drug
selectivity on pathway targeting.  Undoubtedly, this is a
large-scale computational methodology and the need for
further experimental validation of the findings is obvious.
Nevertheless, many of our findings have been already
associated to the colon cancer staging and progression and
this testifies to a preliminary validity of our approach. Based
on this implicit validation note, the association of the rest of
the findings can be further investigated. The presented
findings highlight significant genes and pathways that act as
novel potential stage-specific biomarkers and facilitate stage-
specific drug repurposing against colon cancer. Furthermore,
this work describes a computational methodology that can
be applied in a similar way to the analysis of any progressive
disease.
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