
Abstract. Background/Aim: Coronavirus disease 2019
(COVID-19) poses a great challenge for the treatment of
cancer patients. It presents as a severe respiratory infection in
aged individuals, including some lung cancer patients. COVID-
19 may be linked to the progression of aggressive lung cancer.
In addition, the side effects of chemotherapy, such as
chemotherapy resistance and the acceleration of cellular
senescence, can worsen COVID-19. Given this situation, we
investigated the role of paclitaxel (a chemotherapy drug) in the
cell proliferation, apoptosis, and cellular senescence of
gefitinib-resistant non-small-cell lung cancer (NSCLC) cells
(PC9-MET) to clarify the underlying mechanisms. Materials
and Methods: PC9-MET cells were treated with paclitaxel for
72 h and then evaluated by a cell viability assay, DAPI
staining, Giemsa staining, apoptosis assay, a reactive oxygen
species (ROS) assay, SA-β-Gal staining, a terminal
deoxynucleotidyl transferase dUTP nick-end labeling assay
and Western blotting. Results: Paclitaxel significantly reduced
the viability of PC9-MET cells and induced morphological
signs of apoptosis. The apoptotic effects of paclitaxel were
observed by increased levels of cleaved caspase-3 (Asp 175),
cleaved caspase-9 (Asp 330) and cleaved PARP (Asp 214). In
addition, paclitaxel increased ROS production, leading to DNA
damage. Inhibition of ROS production by N-acetylcysteine
attenuates paclitaxel-induced DNA damage. Importantly,
paclitaxel eliminated cellular senescence, as observed by SA-
β-Gal staining. Cellular senescence elimination was associated
with p53/p21 and p16/pRb signaling inactivation. Conclusion:

Paclitaxel may be a promising anticancer drug and offer a new
therapeutic strategy for managing gefitinib-resistant NSCLC
during the COVID-19 pandemic.

Recent studies have reported that cancer patients have a
higher mortality rate than usual due to the 2019 coronavirus
disease (COVID-19), especially those patients with lung
cancer (1-3). Consequently, COVID-19 has altered lung
cancer treatment provision, but the type and extent of these
variations are still unknown. Chemotherapy side effects, such
as resistance to chemotherapy (e.g. resistance to gefitinib)
and cellular senescence, may also make treatment more
challenging, demanding promising drug therapy during the
COVID-19 pandemic. 

In the United States, lung cancer accounts for nearly a
quarter of all cancer deaths (4). Non-small-cell lung cancer
(NSCLC) is the most common subtype and accounts for 85%
of lung cancer cases. Most NSCLC patients are diagnosed in
the advanced stage, so surgery is no longer possible, despite
significant advances in the early detection and prevention of
lung cancer (5-8). Paclitaxel, the most widely used anticancer
drug, is used to treat various cancers (9-12). However, the
mechanisms underlying its anticancer activities on PC9-MET
cells have not been fully clarified. Targeted cancer therapies
may be more effective than traditional chemotherapy, as
standard chemotherapy interferes with all dividing cells.

Reactive oxygen species (ROS) production is increased by
the effects of chemotherapy or radiotherapy on the
downstream signaling cascade that regulates the cell survival
or death (13-15). ROS production may therefore be targeted
to prevent cancer or enhance the treatment response (15, 16).
ROS production is recognized as hallmark of DNA damage
(17). Chemotherapy drugs enhance the ROS production,
thereby increasing genotoxicity (18). The primary source of
endogenous DNA damage and double-strand break (DSB)
production in cancer is oncogene-induced replication stress
(19). ATM/ATR kinases and a network of sensory proteins
play an essential role in the DNA damage response (20).
H2AX phosphorylation at Ser 139 (γH2AX) is an early
cellular response to the induction of DNA DSBs (21) and
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represents the most well-established chromatin modification
related to DNA repair and damage response (22).

Depending on the type and extent of damage, DNA
damage can trigger apoptotic cell death (23). Caspases, a
family of protease enzymes, play an essential role in
achieving apoptosis. There are two main signaling pathways
that activate the caspase cascade: intrinsic (mitochondrial
pathway) and extrinsic (death receptor pathway) (24).
Following DNA damage, these pathways activate caspase-3,
which plays a central role in apoptotic signaling, while
caspase-9 and caspase-8 are the initiators of the intrinsic and
extrinsic pathways, respectively (25).

Cancer cells can undergo senescence in response to
chemotherapeutic agents (9). Due to the shortening of
telomeres at the ends of chromosomes, this replicable
senescence can occur in cancer cells (26). Therapy-induced
cellular senescence may have a short-term benefit against the
tumor, but it can also activate invasion-related genes and
exacerbate tumor progression (27).

Many researchers are now focusing on suitable
chemotherapy drugs for repurposing to treat COVID-19 (28,
29). Additionally, preliminary findings suggest that
chemoresistance and cellular senescence are associated with
COVID-19 complications (30-32). In the current study, we
hypothesized that paclitaxel might exert growth inhibitory
and cellular senescence-suppressing effects on gefitinib-
resistant NSCLC cells, which might be a novel treatment that
can reduce COVID-19 severity. To evaluate our hypothesis,
this study investigated the molecular mechanisms by which
paclitaxel inhibits the proliferation of PC9-MET cells and the
mechanisms underlying the senescence system. 

Materials and Methods

Cell line and cell culture. We established the gefitinib-resistant the
PC9-MET subline as previously described (33). PC9-MET cells
were cultured in RPMI 1640 medium (Invitrogen, Grand Island, NY,
USA) containing 10% fetal bovine serum (FBS; Invitrogen) and
maintained at 37˚C in a humidified atmosphere containing 5% CO2.

Drug preparation. Paclitaxel [C47H51NO14] was obtained from
FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). This
drug was dissolved in 0.1% dimethyl sulfoxide (DMSO) for in vitro
experiments.

Cell proliferation assay. The cytotoxicity of different paclitaxel
concentrations in PC9-MET cells was assessed using a water-
soluble tetrazolium salt (WST-1) assay (Cell Proliferation Reagent
WST-1; Roche, Tokyo, Japan). Into each well of a 96-well
microtiter plate, 100 μl of a growing cell suspension (4×103
cells/well) was seeded, and 100 μl of paclitaxel solution at
concentrations of 50 and 100 nM (or 0.1% DMSO as a control) was
added to each well (33). After incubation for 72 h at 37˚C in 5%
CO2 atmosphere, 10 μl of WST-1 solution was added to each well,
and the plates were incubated at 37˚C for an additional 4 h (33).

The absorbance was measured at 450 nm with a microplate enzyme-
linked immunosorbent assay reader (Multiskan FC; Thermo
Scientific, Tokyo, Japan).

Giemsa and DAPI staining. PC9-MET cells were treated in 12-well
plates with paclitaxel (50 and 100 nM) or with 0.1% DMSO as a
control for 72 h. DAPI (Invitrogen) was used to stain cells fixed in
4% paraformaldehyde in phosphate-buffered solution (FUJIFILM
Wako Pure Chemical Corporation, Tokyo, Japan) and permeabilized
with 0.1% Triton X-100 (Sigma-Aldrich, Tokyo, Japan). The cell
nuclei morphology was observed using a BZ-X710 All-in-One
Fluorescence Microscope (Keyence, Osaka, Japan). Giemsa staining
(Merck KGaA, Darmstadt, Germany) was performed with
methanol-fixed cells, and morphological changes were evaluated
under a light microscope.

Intracellular ROS assay. We used the Cellular Reactive Oxygen
Species Detection Assay Kit (Deep Red Fluorescence, ab186029;
Abcam, Tokyo, Japan) to determine the intracellular ROS level. In
brief, after treatment with paclitaxel (50 and 100 nM) or with 0.1%
DMSO as a control for 72 h, cells were harvested and incubated
with ROS Deep Red Dye Working Solution at 37˚C for 60 min.
Subsequently, cells were subjected to a flow cytometry analysis.
Fluorescent intensities were measured with a FACSCanto II (BD
Biosciences) flow cytometer using APC channel. 

A terminal deoxynucleotidyl transferase dUTP nick-end labeling
(TUNEL) assay. For 72 h, PC9-MET cells were treated with
different concentrations of paclitaxel (50 and 100 nM) or with 0.1%
DMSO as a control. We used the in situ Direct DNA Fragmentation
(TUNEL) Assay Kit (ab66108; Abcam) to measure DNA
fragmentation in apoptotic cells. In brief, cells were fixed with 1%
paraformaldehyde in phosphate-buffered saline (PBS) and placed on
ice for 15 min. Subsequently, the samples were treated with a
staining solution and incubated at 37˚C for 60 min. After rinse
buffer addition, cells were resuspended in propidium iodide/RNase
A solution and incubated at room temperature for 30 min for a flow
cytometry analysis.  

Apoptosis assay. PC9-MET cells were treated with different
concentrations of paclitaxel (50 and 100 nM) or with DMSO as a
control for 72 h. Apoptotic cell death was quantified by flow
cytometry using the FITC Annexin V Apoptosis Detection Kit with
propidium iodide (BioLegend, San Diego, CA, USA). 

Western blotting. For 72 h, PC9-MET cells were treated with
paclitaxel (50 and 100 nM) or with 0.1% DMSO as a control.
Whole protein lysates were isolated using the M-PER mammalian
protein extraction reagent (Thermo Scientific), which included a
phosphatase inhibitor cocktail and a protease inhibitor cocktail
(Sigma-Aldrich). Protein concentrations were assessed using the
BCA protein assay reagent (Thermo Scientific). Total cellular
protein (40 μg) was separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to
polyvinylidene fluoride membranes (Bio-Rad Laboratories,
Hercules, CA, USA). Milk-blocked blots were incubated at 4˚C
overnight with primary antibodies against the following proteins:
cleaved caspase-3 (Asp 175), cleaved caspase-9 (Asp 330), cleaved
PARP (Asp 214), p53, p21, p16, pRb and γH2AX (ser 139) and then
with the appropriate horseradish peroxidase-conjugated secondary
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antibodies. All antibodies were obtained from Cell Signaling
Technology, Beverly, MA, USA, except for anti- γH2AX that was
obtained from Abcam. Proteins of interest were revealed using
SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo
Fisher Scientific, Rockford, IL, USA) and viewed using the
Invitrogen iBright FL1000 Imaging System (Thermo Fisher
Scientific). Bands were quantified with the densitometric program
of iBright Imaging System and normalized against β-actin.

Senescence-associated β-galactosidase staining. For 72 h, PC9-
MET cells (1×106) were cultured in 25-cm2 flasks (Falcon) and
treated with paclitaxel (50 and 100 nM) or with 0.1% DMSO as a
control. To detect senescent cells, the Senescence-β-gal Staining Kit
(Cell Signaling Technology, Beverly, MA, USA) was used
according to the manufacturer’s instructions. The cells were washed
twice with PBS and incubated in 1 ml of fixative solution at room
temperature for 15 min. After removing the fixative solution and
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Figure 1. Effect of paclitaxel on the viability and morphology of PC9-MET cells. (A) After 72 h of treatment with different concentrations of paclitaxel
(50 and 100 nM), the cell viability was analyzed by the WST-1 cell proliferation assay. From three independent experiments, data were acquired
and presented as the mean±SD. A one-way ANOVA with Dunnett’s multiple comparison test determined the significance: *p<0.05 compared with
the DMSO-treated group. (B) DAPI and (C) Giemsa staining of PC9-MET cells treated with different paclitaxel concentrations for 72 h. 



washing the fixed cells twice, the cells were stained with 1 ml of β-
galactosidase staining working solution and incubated at 37˚C for
12 h under light protection. After staining, the cells were washed,
and the senescent cells were identified using a light microscope
(Olympus, Tokyo, Japan).

Statistical analysis. All data are expressed as the means±standard
deviation (SD) of three independent experiments and analyzed by a
one-way analysis of variance with Dunnett’s multiple comparison
test or with Sidak’s multiple comparison test. Differences between
the groups with p<0.05 were considered statistically significant. All
graphs were created using the GraphPad PRISM 7.0 software
program (GraphPad Software Inc., San Diego, CA, USA).

Results
Paclitaxel inhibits the growth of PC9-MET cells. Previous
studies suggested that paclitaxel might inhibit the
proliferation of cancer cells by inducing apoptosis (34, 35).
Therefore, it was crucial to determine whether or not
paclitaxel affected the growth of PC9-MET cells. As shown
in Figure 1A, paclitaxel inhibited the growth of PC9-MET
cells in a concentration-dependent manner. Conversely,
paclitaxel-treated cells were stained with Giemsa and DAPI
to investigate morphological changes. As indicated in Figure
1B and C, treatment of PC9-MET cells with paclitaxel
produced apoptotic features, such as nuclear fragmentation.

Paclitaxel treatment causes ROS-mediated DNA damage.
Many chemotherapy drugs induce apoptosis through ROS-
mediated cell damage (36, 37). Compared to the DMSO-
treated cells, paclitaxel increased the ROS level in a

concentration-dependent manner (Figure 2A). To prove that
the cell death caused by paclitaxel was due to DNA
fragmentation, we conducted a TUNEL assay. As presented in
Figure 3A, after 72 h of paclitaxel treatment, the proportion
of fragmented cells increased from 1.24% to 74.4%. 

Although our data revealed that paclitaxel-induced DNA
damage was associated with increased ROS production in PC9-
MET cells, it remains unclear whether or not paclitaxel inhibits
ROS-mediated damage to DNA using NAC (ROS scavenger).
To this end, we pre-incubated PC9-MET cells with NAC before
paclitaxel treatment. As indicated in Figure 2B and Figure 3B,
our data showed that NAC pretreatment significantly inhibited
ROS production and DNA damage. Taken together, these results
strongly support the hypothesis that paclitaxel induces ROS-
mediated DNA damage in PC9-MET cells.

DNA damage caused by paclitaxel leads to γH2AX
formation. Previous studies have suggested that many
chemotherapy agents can kill cancer cells by inducing DNA
damage (38, 39). Phosphorylated H2AX (γH2AX) is a strong
marker of DNA DSBs due to its early appearance and
essential role in the DSB response (40). As shown in Figure
4, paclitaxel markedly increased the expression of γH2AX
protein compared to DMSO-treated group. These outcomes
show for the first time that the anticancer effect of paclitaxel
is, at least in part, due to paclitaxel-induced DNA damage in
PC9-MET cells.

Paclitaxel induces apoptosis in PC9-MET cells. To quantify
the percentage of cells undergoing apoptosis, we conducted
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Figure 2. Effects of paclitaxel on ROS production. (A) After treatment with different concentrations of paclitaxel (50 and 100 nM) for 72 h in the
presence or absence of NAC, cells were stained with ROS deep-red dye. The signal was expressed in terms of the median fluorescence intensity
(MFI) and shown as histogram data. (B) The bar diagram shows the quantification of the mitochondrial ROS production. The data (mean±SD) are
representative of three technical replicates. Comparisons were made between the control group and experimental group using a one-way ANOVA
followed by Sidak’s multiple comparison test. ***p<0.001.
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Figure 3. The impact of paclitaxel on DNA fragmentation. (A) PC9-MET cells were stained with fluorescein isothiocyanate-dUTP dye after incubation
with paclitaxel at different concentrations for 72 h. (B) The bar diagram shows the quantification of DNA fragmentation. Results are the mean±SD
of three independent experiments. Comparisons were made between the control group and experimental group using a one-way ANOVA followed
by Sidak’s multiple comparison test. **p<0.01 and ***p<0.001.
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Figure 4. Generation of γH2AX after treatment with paclitaxel. The generation of γH2AX after 72 h treatment with paclitaxel was analyzed by
Western blotting. β-actin was used as a standard for the equal loading of protein for SDS-PAGE. The data (mean±SD) are representative of three
independent experiments. A one-way ANOVA followed by Dunnett’s multiple comparison test determined the significance. NS, Not significant.

Figure 5. Paclitaxel induced apoptosis in PC9-MET cells. (A) Flow
cytometry of apoptosis in PC9-MET cells by Annexin V/PI dual staining.
Quadrant 1 shows necrotic cells; Quadrant 2 shows late-apoptotic cells;
Quadrant 3 shows early-apoptotic cells; Quadrant 4 shows viable cells.
(B) A bar diagram illustrates the percentage of apoptotic cells. The
values were calculated as the mean±SD from three independent
experiments. Significance was determined by a one-way ANOVA
followed by Dunnett’s multiple comparison test: **p<0.01 and
***p<0.001 compared with the DMSO-treated group.
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Figure 6. The effects of paclitaxel on the expression of caspase cascade proteins. PC9-MET cells were incubated for 72 h with paclitaxel, and the
expression of cleaved caspase-3 (Asp 175), cleaved caspase-9 (Asp 330) and cleaved PARP (Asp 214) was assessed via immunoblotting. β-actin
was used as a loading control. Results are the mean±SD of three independent experiments. A one-way ANOVA with Dunnett’s multiple comparison
test determined the significance: *p<0.05, **p<0.01 and ***p<0.001 compared with the DMSO-treated group. NS, not significant.



Annexin V-FITC and PI fluorescence staining. As presented
in Figure 5A, after 72 h of exposure to paclitaxel, the
proportion of necrotic cells was significantly increased, while
that of viable cells was significantly decreased compared to
the DMSO-treated control group. The flow cytometry results
showed that paclitaxel treatment increased the percentage of
necrotic cells in a dose-dependent manner (Figure 5B).

Previous studies have reported that caspases can serve as
the primary mediators of apoptosis (25, 41). To further
validate our annexin data, we checked the expression of
cleaved caspase-3 (Asp 175), cleaved caspase-9 (Asp 330)
and cleaved PARP (Asp 214). Western blot analysis showed
an increase in the expression of cleaved caspase-3 (Asp 175),
cleaved caspase-9 (Asp 330), and cleaved PARP (Asp 214)
in a dose-dependent manner (Figure 6), suggesting that these
proteins are involved in paclitaxel-induced apoptosis. 

Paclitaxel eliminated cellular senescence of PC9-MET cells.
Cancer cells can undergo cellular senescence in response to
clinically used chemotherapeutic agents (42, 43). Recent
studies have provided evidence that some drugs can
selectively eradicate senescent cells (44, 45). Therefore, it is
essential to characterize senescent cells and recognize them
correctly, especially when it comes to cancer. To this end, we

investigated the senescence status of PC9-MET cells. To
determine whether paclitaxel eliminated or induced cellular
senescence in PC9-MET cells, we analyzed the effect of
paclitaxel on the SA-β-Gal activity. The number of SA-β-
Gal-positive cells was significantly decreased after paclitaxel
treatment, compared to the control group (Figure 7A and B),
suggesting that paclitaxel has an effect of eliminating cellular
senescence in PC9-MET cells.

Previous studies have suggested that the suppression of
the p53/p21 and p16/pRb signaling pathways can inhibit
cellular senescence (46-48). Herein, western blot analysis
showed a decrease in the expression of p53, p21, hypo-
phosphorylated pRb and p16 (Figure 7C), suggesting that
these proteins may be involved in the elimination of cellular
senescence of PC9-MET cells.

Discussion

This current study showed that paclitaxel inhibits PC9-MET
cell proliferation, enhances ROS production, and triggers
DNA damage. We found that caspase cascade activation by
paclitaxel plays a vital role in apoptotic cell death. Paclitaxel
eliminated cellular senescence, which was linked with the
suppression of p53/p21 and p16/pRb signaling. To our
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Figure 7. Continued



Mohiuddin and Kasahara: Paclitaxel Impedes PC9-MET Cells Proliferation

669

Figure 7. Elimination of cellular senescence in PC9-MET cells. (A) Representative bright-field microscopy images of SA-β-Gal staining in PC9-
MET cells treated with DMSO or paclitaxel (50 nM and 100 nM) for 72 h. Cells show SA-β-Gal activity stained in blue. (B) The bar graph shows
the percentage of senescent cells. The data (mean±SD) are representative of three independent experiments. Significance was determined by a one-
way ANOVA followed by Dunnett’s multiple comparison test: ***p<0.001 compared with the DMSO-treated group. (C) The effects of paclitaxel on
the expression of cellular senescence regulatory proteins. The expression of p53, p21, pRb and p16 was assessed via Western blotting. β-actin was
used as a loading control. Results are the mean±SD of three independent experiments. A one-way ANOVA with Dunnett’s multiple comparison test
determined the significance: *p<0.05, **p<0.01 and ***p<0.001 compared with the DMSO-treated group. NS, not significant.



knowledge, the anticancer effect of paclitaxel on PC9-MET
cells has not been well documented, and this is the first study
to investigate this point.

ROS are generated as natural by-products of normal
cellular activity, playing a vital role in cell signaling (49).
The elevated ROS production leads to apoptosis pathways
mediated by death receptors, mitochondria, and endoplasmic
reticulum (ER) (50). Furthermore, excessive ROS generation
can damage lipids, cellular proteins and DNA (51). The
present study demonstrated the paclitaxel-induced ROS-
mediated DNA damage in PC9-MET cells (Figures 2 and 3).
ATM and ATR kinases are activated in response to DNA
damage, where ATM is principally triggered by DSBs, but
ATR acts in response to a wide range of DNA damage (52).
A previous study reported that γH2AX is an early indicator
of DNA damage caused by replication stress (53), with other
studies supporting this finding. One such study indicated that
γH2AX is a sensitive indicator of DNA replication stress and
DNA damage (54). Our present study demonstrated elevated
levels of γH2AX during paclitaxel treatment in PC9-MET
cells (Figure 4). 

DNA fragmentation is a sign of apoptosis triggered by
multiple apoptotic stimuli (55). After DNA damage, the
release of cytochrome c from the mitochondria and the
subsequent activation of procaspase-9 is crucial for activating
subsequent apoptotic effectors (25). Thus, activated caspase-

9 can cleave and directly activate other effector caspases,
such as caspase-3 (25). Finally, activated caspase-3 enhances
the proteolytic cleavage of PARP, which is a hallmark of
apoptosis (56, 57). The present study showed that paclitaxel-
activated caspase-9 propagates apoptotic signaling by
activating the downstream effector caspase-3 resulting in
PARP cleavage (a hallmark of apoptosis) (Figures 5 and 6). 

Cellular senescence is a phenomenon in which cells stop
dividing and undergo many distinctive phenotypic
alterations, including chromatin rearrangement, metabolic
reprogramming, and activation of tumor suppressors (58).
Many studies have reported that p53/p21 pathway activation
is responsible for inducing cellular senescence (58-60).
Furthermore, the activation of p16/pRb signaling is a vital
indicator of senescence (58, 61). This study demonstrated
that paclitaxel suppressed the expression of p53, p21, hypo-
phosphorylated pRb and p16, which might be linked to the
elimination of cellular senescence of PC9-MET cells (Figure
7). We have proposed a model of the major mechanisms of
induction of apoptosis through ROS-mediated DNA damage
and the elimination of cellular senescence through the
inactivation of the p53/p21 and p16/pRb signaling by
paclitaxel in PC9 -MET cells (Figure 8).

Lung cancer patients are at an increased risk of
contracting COVID-19 and related diseases as well as dying
(62). The COVID-19 pandemic has increased the difficulty
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Figure 8. Schematic illustration of the proposed mechanisms for paclitaxel-induced apoptosis and the elimination of cellular senescence in PC9-
MET cells.



of treating lung cancer (63). The most important risk factors
for patient death with COVID-19 were pre-existing lung
cancer, an elderly age, and resistance to chemotherapy (64-
66). Several studies have claimed that cellular senescence is
a potential mediator of COVID-19 severity in the elderly
(67-69). Therefore, there is an urgent need to develop new
therapies targeting cellular senescence and chemotherapy
resistance during the COVID-19 pandemic. The current
study showed that paclitaxel suppressed cellular senescence
and induced apoptosis in gefitinib-resistant NSCLC cells,
which may aid in the development of a new therapeutic
approach, reducing the severity of COVID-19 in NSCLC
cancer patients resistant to gefitinib treatment. These
findings may also improve the protection of lung cancer
patients, although more preclinical and clinical studies will
be needed to confirm our results.

Conclusion

Our results revealed novel mechanisms of action of
paclitaxel, indicating a potential anticancer effect in PC9-
MET cells. Moreover, our findings highlight a promising
direction for the development of a novel therapeutic strategy
for gefitinib-resistant NSCLC during the COVID-19
pandemic. Further studies are needed to explore how
COVID-19 interacts with lung cancer and characterize the
possibility of adverse events in COVID-19 patients
undergoing chemotherapy treatment. 
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