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Paclitaxel Impedes EGFR-mutated PC9 Cell Growth via
Reactive Oxygen Species-mediated DNA Damage and
EGFR/PI3K/AKT/mTOR Signaling Pathway Suppression
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Abstract. Background/Aim: Paclitaxel is used as a first-line
and subsequent therapy for the treatment of various cancers.
However, the function and mechanisms of action of paclitaxel
in non-small-cell lung cancer (NSCLC) remain unknown. In
this study, the molecular mechanism underlying the
anticancer activity of paclitaxel was investigated in vitro in
a human NSCLC cell line carrying the EGFR exon 19
deletion (PC9). Materials and Methods: PC9 cells were
treated with paclitaxel and then evaluated with a cell viability
assay, DAPI staining, Giemsa staining, apoptosis assay,
reactive  oxygen  species (ROS) assay, terminal
deoxynucleotidyl transferase dUTP nick-end labeling assay
and Western blotting. Results: Paclitaxel markedly decreased
the viability of PC9 cells and induced morphological signs of
apoptosis. The apoptotic effects of paclitaxel were observed
through caspase cascade activation, along with ROS
generation and loss of mitochondrial membrane potential
(MMP). Furthermore, paclitaxel induced ROS-mediated DNA
damage that triggered the activation of the extrinsic pathway
of apoptosis via the up-regulation of death receptor (DRS)
and caspase-8 activation. In addition, we found that
paclitaxel effectively suppressed the EGFR/PI3K/AKT/mTOR
signaling pathway to impede PC9 cell growth. Paclitaxel
induced cell cycle arrest at the GI phase in response to DNA
damage, in association with the suppression of CDC25A,
Cdk2 and Cyclin EIl protein expression. Conclusion:
Paclitaxel showed anticancer effects against NSCLC by
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activating extrinsic and intrinsic apoptotic pathways through
enhancing ROS generation, inducing cell cycle arrest, and
suppressing EGFR/PI3K/AKT/mTOR signaling pathway.

In the United States, nearly a quarter of all cancer deaths are
due to lung cancer (1). Non-small-cell lung cancer (NSCLC)
is the most common type and accounts for approximately
85% of all lung cancer cases in the United States (2).
Paclitaxel is an antimicrotubule agent that effectively treats
various cancers as first-line chemotherapy (3, 4). However,
its molecular mechanism of action in NSCLC is still not
fully understood.

In cell death regulation, reactive oxygen species (ROS)
play a fundamental role (5). It has been reported that
elevated ROS production can expedite cancer treatment
response (6). As mediators, ROS are well known to cause
oxidative DNA damage (7). ATM serine/threonine kinase
(ATM)/ATR serine/threonine kinase (ATR) protein kinases
and a network of sensory proteins play an essential role in
the DNA damage response (8). Activated ATR and ATM
phosphorylate the checkpoint kinases Chkl and Chk2,
respectively, and regulate the proteins involved in the DNA
damage response (DDR), DNA repair, and cell cycle arrest
progression (9). Typically, stable cell cycle arrest occurs in
response to DNA damage, called cellular senescence, thereby
limiting cell proliferation (10). In addition, increased ROS
production is associated with the loss of mitochondrial
membrane potential (MMP) (11). In response to DNA
damage, Bax/Bak can be activated to induce mitochondrial
membrane permeabilization through the inhibition of anti-
apoptotic molecules, such as Bcl-2 and Bcel-xL (12).

In numerous cancer cells, tumor necrosis factor (TNF)-
related apoptosis-inducing ligand (TRAIL) enhances
apoptosis (13). In the extrinsic apoptosis pathway, TRAIL
binds to the death receptors DR4 and DRS5 to induce
apoptosis by recruiting the death-inducing signaling complex
(DISC) (14-16). Through the death domain (DD) and death
effector domain (DRD), Fas-associated protein death domain
(FADD) corporates with death receptors (DRs) and
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procaspase-8 (17). The formation of DISC triggers the
activation of caspase-8, leading to the activation of
downstream effector caspases (e.g. caspase-3, caspase-7) and
thereby inducing TRAIL-mediated apoptosis (17, 18). In
addition, the activation of caspase-8 cleaves Bid into tBid,
which triggers the mitochondrial apoptotic pathway, thus
releasing cytochrome c (19). Once cytochrome c is released
from the mitochondria into the cytoplasm, it can initiate the
caspase cascade’s activation by interacting with apoptotic
protease-activating factors (Apafs) (20).

Epidermal growth factor receptor (EGFR) is a transmembrane
protein and receptor for members of the epidermal growth factor
(EGF) family of extracellular protein ligands (21). Binding of
the ligand to the extracellular domain results in EGFR activation.
Activated EGFR then homodimerizes, leading to intracellular
tyrosine kinase phosphorylation and triggering the
PI3K/Akt/mTOR intracellular signaling pathway (22). EGFR
plays a crucial role in repairing DNA damage (23). However, the
anticancer effects and mechanisms of action of paclitaxel in
human EGFR-mutated PC9 cells remain unclear. Therefore, the
major purpose of the present study was to evaluate the impact
of paclitaxel on growth inhibition in EGFR-mutated PC9 cells
and clarify the underlying mechanisms.

Materials and Methods

Cell line and cell culture. Professor K. Hayata (Tokyo Medical
College, Tokyo, Japan) provided the PC9 (EGFR exon 19 deletion)
human NSCLC cell line derived from a previously untreated
adenocarcinoma patient (24). PC9 cells were cultured in RPMI 1640
medium (Invitrogen, Grand Island, NY, USA) containing 10% fetal
bovine serum (FBS; Invitrogen) and maintained at 37°C in a
humidified atmosphere containing 5% CO,.

Drug preparation. Paclitaxel [C4;H5;NO4] was obtained from
FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). This
drug was dissolved in DMSO for in vitro experiments.

Cell proliferation assay. The water-soluble tetrazolium salt (WST-
1) assay (Cell Proliferation Reagent WST-1; Roche, Tokyo, Japan)
was used to evaluate the cytotoxicity of different paclitaxel
concentrations (50 and 100 nM). A 100-ul volume of a growing cell
suspension was seeded into each well (4x103 cells/well) of a 96-
well microtiter plate, and 100 pl of a solution of paclitaxel at
different concentrations was added to each well. After incubation
for 72 h at 37°C in a 5% carbon dioxide atmosphere, 10 ul of WST-
1 solution was added to each well, and the plates were incubated at
37°C for a further 4 h. Sample absorbance was measured at 450 nm
using a microplate enzyme-linked immunosorbent assay reader
(Multiskan FC; Thermo Scientific, Tokyo, Japan).

Giemsa and DAPI staining. For 72 h, PC9 cells were treated in 12-
well plates with 2 concentrations of paclitaxel (50 and 100 nM) or
with 0.1% DMSO as a control. DAPI (Invitrogen) was used to stain
cells fixed in 4% paraformaldehyde in phosphate-buffered solution
(FUJIFILM Wako Pure Chemical Corporation) and permeabilized
with 0.1% Triton X-100 (Sigma-Aldrich, Tokyo, Japan). The
morphology of cell nuclei was observed using a BZ-X710 All-in-
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One Fluorescence Microscope (Keyence, Osaka, Japan). Giemsa
staining (Merck KGaA, Darmstadt, Germany) was performed with
methanol-fixed cells, and morphological changes were evaluated
under a light microscope.

ROS assay. To measure the ROS in cells by flow cytometry, we
used an ab186029 (Abcam, Tokyo, Japan) Cellular Reactive Oxygen
Species Detection Assay Kit (Deep Red Fluorescence), as described
previously (25). In brief, after 72 h of drug treatment, cells were
collected to stain with ROS deep red dye working solution.
Subsequently, cells were incubated at 37°C for 60 min before being
subjected to a flow cytometry analysis. The signal was calculated
in terms of the median fluorescence intensity (MFI).

Terminal deoxynucleotidyl transferase dUTP nick-end labeling
(TUNEL) assay. For 72 h, PC9 cells were treated with different
concentrations of paclitaxel (50 and 100 nM) or with 0.1% DMSO
as a control. We used the in situ Direct DNA Fragmentation
(TUNEL) Assay Kit (ab66108; Abcam) to measure DNA
fragmentation in apoptotic cells. In brief, cells were fixed with 1%
paraformaldehyde in phosphate-buffered saline (PBS) and placed on
ice for 15 min. Subsequently, the samples were treated with a
staining solution and incubated at 37°C for 60 min. After rinse
buffer addition, cells were resuspended in propidium iodide/RNase
A solution and incubated at room temperature for 30 min for a flow
cytometry analysis.

MMP evaluation. The MMP was evaluated using the JC-10
Mitochondrial Membrane Potential Assay Kit-Flow Cytometry
(ab112133; Abcam). Cells were seeded in 75-cm? flasks (Falcon,
Tewksbury, MA, USA), treated with paclitaxel (50 and 100 nM) or
with 0.1% DMSO as a control for 72 h, trypsinized, washed with
PBS and incubated with 1X JC-10 dye-loading solution at room
temperature for 30 min. Cell fluorescence was measured using a BD
FACSCantoTM 1I (BD Biosciences, San Jose, CA, USA).

Annexin V-FITC/PI apoptosis assay. Using an Annexin V-FITC/PI
apoptosis detection kit (BioLegend, San Diego, CA, USA), cell
apoptosis was detected. In brief, after treatment with paclitaxel
(50 and 100 nM) or with 0.1% DMSO as a control for 72 h, cells
were stained with Annexin V-FITC and PI. They were then
analyzed by flow cytometry (FACSCanto™ II), and their
fluorescence intensity was detected. Data were analyzed using the
FlowJo software program, version 10.2 (FLOWIJO, LLC, Ashland,
OR, USA).

Cell cycle analysis. The cells were treated with different
concentrations of paclitaxel (50 and 100 nM) or with 0.1% DMSO
as a control for 72 h. A cell cycle analysis was performed following
the Propidium lodide Cell Cycle Staining Protocol (BioLegend).
DNA content was determined with a FACSCanto™ II. Data were
analyzed using the FCS Express 7 Flow software program (De
Novo Software, Pasadena, CA, USA).

Western blotting. For 72 h, PC9 cells were treated with different
concentrations of paclitaxel (50 and 100 nM) or with 0.1% DMSO
as a control. Whole protein lysates were isolated using the M-PER
mammalian protein extraction reagent (Thermo Scientific), which
included a phosphatase inhibitor cocktail and a protease inhibitor
cocktail (Sigma-Aldrich). Protein concentrations were assessed
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using the BCA protein assay reagent (Thermo Scientific). Total
cellular protein (50 pg) was separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to
polyvinylidene fluoride membranes (Bio-Rad Laboratories,
Hercules, CA, USA). Milk-blocked blots were incubated at 4°C
overnight with primary antibodies against the following proteins:
Bak, Bcl-2, cleaved caspase-3 (Asp 175), cleaved caspase-9 (Asp
315), PARP, DRS), FADD, Bid, cleaved caspase-8 (Asp 391), Cdk2,
Cyclin E1, CDC25A, EGFR, p-EGFR (Thy 1068), PI3K p110a,
Akt, p-Akt (Ser 473), mTOR, p-mTOR (Ser 2448), ATR, p-ATR
(Ser 428), Chk1, p-Chk1 (Ser 345), -actin and y-H2AX (ser 139),
followed by appropriate horseradish peroxidase-conjugated
secondary antibodies. All primary and secondary antibodies were
purchased from Cell Signaling Technology, Beverly, MA, USA,
except for anti-y-H2AX that was obtained from Abcam. Proteins of
interest were detected using SuperSignal West Pico PLUS
Chemiluminescent Substrate (Thermo Fisher Scientific, Rockford,
IL, USA) and viewed using the Invitrogen iBright FL1000 Imaging
System (Thermo Fisher Scientific).

Statistical analysis. All data are expressed as the means+standard
deviation (SD) of three independent experiments and analyzed by a
one-way analysis of variance with Dunnett’s multiple comparison
test or with Sidak’s multiple comparison test. All p-values <0.05
were considered statistically significant. Graphs were created using
the GraphPad PRISM 7.0 software program (GraphPad Software
Inc., San Diego, CA, USA).

Results

Cytotoxic effects of paclitaxel in PC9 cells. PC9 cells were
treated with 2 concentrations of paclitaxel (50 and 100 nM)
for 72 h, and the WST-1 assay was used to examine the cell
viability. The viability of PC9 cells was significantly reduced
after paclitaxel exposure compared to the DMSO group
(Figure 1A). Paclitaxel-treated cells were stained with
Giemsa and DAPI to investigate the morphological changes.
As indicated in Figure 1B and C, treating PC9 cells with
paclitaxel produced apoptotic features, such as nuclear
fragmentation.

Effects of paclitaxel on ROS generation. Many chemotherapy
drugs cause an increase in intracellular ROS production,
leading to growth inhibition (26-28). Therefore, we
hypothesized that paclitaxel would enhance ROS generation.
Compared to the DMSO group, paclitaxel increased the ROS
level in a concentration-dependent manner (Figure 2A and
B). To determine whether or not ROS production plays a role
in the anticancer effects of paclitaxel against PC9 cells, ROS
inhibitor N-acetyl-L-cysteine (NAC) was added alone or in
combination with paclitaxel (50 nM and 100 nM). NAC
suppressed ROS production levels, however, not statistically
significant, and significantly increased cell proliferation
(Figure 2C-E). Taken together, these results suggest that
paclitaxel enhances ROS generation, leading to reduced cell
proliferation.

Effects of paclitaxel on DNA fragmentation and the DNA
damage signaling pathway. Previous studies reported that
increased amounts of intracellular ROS could enhance DNA
damage (9, 29). Therefore, we hypothesized that paclitaxel
administration would result in increased DNA fragmentation.
To prove that DNA fragmentation was caused by paclitaxel
treatment, we conducted a TUNEL assay. As shown (Figure
3A), after 72 h of paclitaxel treatment, the proportion of
fragmented cells increased from 0.27% to 81.8%, in a dose-
dependent manner (Figure 3B).

Oxidative DNA damage causes ATR phosphorylation at
Ser 428 (30, 31). Activation of this protein promotes
phosphorylation of different downstream proteins (including
H2AX and Chkl) and ultimately promotes growth inhibition
(32, 33). To clarify the precise pathway of the DNA damage
response after paclitaxel treatment, we examined the
expression of y-H2AX, p-Chkl1 (Ser 345) and p-ATR (Ser
428), as these proteins are responsible for activating the
DNA damage pathway. As shown (Figure 3C), the
expression of y-H2AX, p-Chkl1 (Ser 345) and p-ATR (Ser
428) was markedly increased after paclitaxel treatment
compared with the DMSO group. These results suggest that
paclitaxel induced DNA damage in PC9 cells via ATR-Chkl1
signaling axis activation.

Effects of paclitaxel on MMP. Previous studies have reported
that ROS production can alter the MMP and structure (34,
35). To determine whether or not paclitaxel affected the
MMP, we performed an MMP assay. As shown in Figure 4,
the loss of MMP increased from 1.67% to 36.1% (lower
right quadrant 3) in PC9 cells after paclitaxel treatment,
indicating that the anticancer effect of paclitaxel is, at least
in part, due to paclitaxel-induced MMP loss.

Effects of paclitaxel on apoptosis and the apoptosis signaling
pathways in PC9 cells. Chemotherapy drugs can inhibit cell
proliferation and induce apoptosis in human cancer cells (36-
38). To confirm that the cell death caused by paclitaxel was
indeed apoptosis, we performed Annexin V and PI staining
for a flow cytometry analysis. As shown (Figure 5A), after
72 h of exposure to paclitaxel, a significant increase in early
apoptotic and necrotic cells as well as an increase in the
proportion of late apoptotic cells from 3.72% to 60.6%. Flow
cytometry results showed that the paclitaxel-induced
apoptosis was concentration-dependent (Figure 5B).
Chemotherapeutic agents induce apoptosis through
extrinsic/intrinsic apoptotic pathway activation (39, 40). To
examine whether or not the extrinsic apoptotic pathway
regulates the apoptotic impact of paclitaxel, we evaluated
several extrinsic apoptotic proteins. As shown in Figure 5C,
the expression of tBid, DRS and cleaved caspase-8 (Asp
391) was increased by paclitaxel treatment in PC9 cells. In
contrast, paclitaxel induced intrinsic mitochondria-dependent
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Figure 1. Effects of paclitaxel on the viability and morphology of PC9 cells. (A) The WST-1 cell proliferation assay was used to evaluate the viability
of PC9 cells treated with different concentrations of paclitaxel for 72 h. A one-way ANOVA with Dunnett’s multiple comparison test determined the
significance: ***p<0.001 compared with the DMSO-treated group. (B) DAPI and (C) Giemsa staining of PC9 cells were treated with different
paclitaxel concentrations for 72 h. The yellow arrows in paclitaxel-treated cells indicated nuclear fragmentation.
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Figure 2. Effects of paclitaxel on ROS generation. (A) PC9 cells incubated with paclitaxel at different concentrations (or 0.1% DMSO as a control)
for 72 h were stained with ROS deep red dye. The histogram shows that the ROS levels increased in a concentration-dependent manner. (B) The
bar diagram shows that the ROS production increased in a dose-dependent manner. A one-way ANOVA with Dunnett’s multiple comparison test
determined the significance: **p<0.01 compared with the DMSO-treated group. (C) After treatment with paclitaxel for 72 h in the absence or
presence of NAC, cells were stained with ROS deep red dye. (D) The bar diagram shows the quantification of mitochondrial ROS production.
Comparisons were made between the control group and experimental group using a one-way ANOVA followed by Sidak’s multiple comparison test.
NS, not significant. (E) After 72 h of treatment with paclitaxel in the absence or presence of NAC, the cell viability was analyzed by the WST-1 cell
proliferation assay. Comparisons were made between the control group and experimental group using a one-way ANOVA followed by Sidak’s multiple
comparison test. Data are presented as mean+SD from three technical replicates.*p<0.05.
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Figure 3. Effects of paclitaxel on DNA fragmentation and the DNA damage signaling pathway. (A) PC9 cells were stained with fluorescein
isothiocyanate-dUTP dye after incubation with paclitaxel at different concentrations for 72 h. Flow cytometry measured the fluorescence signal.

Histograms show that DNA fragmentation increased in a concentration-dependent manner. (B) The percentage of cells expressing TUNEL increased
in a dose-dependent manner, as represented in the bar graph. Results are the mean+SD of three independent experiments. Significance was
determined by a one-way ANOVA followed by Dunnett’s multiple comparison test. **p<0.01. (C) Total cell lysates from control and paclitaxel-
treated PC9 cells for 72 h were subjected to Western blotting with the antibodies against ATR, p-ATR (Ser 428), Chkl, p-ChK1 (Ser 345) and -
H2AX. B-actin served as a loading control. All images shown here are representative of three independent experiments with similar results.
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Figure 4. Effects of paclitaxel on the mitochondrial membrane potential (MMP). (A) For 72 h, PC9 cells were treated with different concentrations
of paclitaxel. Before the flow cytometry analysis, cells were stained with JC-10 dye. Representative results from three independent experiments. (B)
Quantitative data are used from the green monomer fluorescence (depolarized MMP) of JC-10. Results are presented as the mean + SD of three
independent measurements. A one-way ANOVA with Dunnett’s multiple comparison test determined the significance: **p<0.01 and ***p<0.001
compared with the DMSO-treated group.
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Figure 5. Effects of paclitaxel on the induction of apoptosis in PC9 cells. (A) PC9 cells were treated with 2 concentrations of paclitaxel (50 and
100 nM) for 72 h, and flow cytometry was used to evaluate apoptosis. Quadrant 1 shows necrotic cells; Quadrant 2 shows late-apoptotic cells;
Quadrant 3 shows early apoptotic cells; Quadrant 4 shows viable cells. (B) A bar diagram illustrates the percentage of apoptotic cells. The values
were calculated as the mean+SD from three independent experiments. Significance was determined by a one-way ANOVA followed by Dunnett’s
multiple comparison test: *p<0.05, **p<0.01 and ***p<0.001 compared with the DMSO-treated group. (C) To assess the expression of Bak, Bcl-
2, cleaved caspase-3 (Asp 175), cleaved caspase-9 (Asp 315), PARP, DR5, FADD, Bid and cleaved caspase-8 (Asp 391) proteins, Western blotting
was performed. 3-actin served as a loading control. All images shown here are representative of three independent experiments with similar results.
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apoptosis, evidenced by Bak up-regulation and Bcl-2 down-
regulation (Figure 5C). Taken together, these results suggest
that paclitaxel activates extrinsic and intrinsic apoptotic
pathways to impede PC9 cell proliferation.

In the intrinsic and extrinsic pathways of apoptosis,
signaling determines the activation of caspases that act on
the proteolytic cleavage of PARP, which is a hallmark of
apoptosis (41, 42). To clarify the apoptotic mechanism
induced by paclitaxel treatment in PC9 cells, the expression
of cleaved caspase-9 (Asp 315), cleaved caspase-3 (Asp 175)
and cleaved PARP was evaluated. As shown in Figure 5C,
PCO cells treated with paclitaxel showed a higher expression
of cleaved caspase-9 (Asp 315), cleaved caspase-3 (Asp 175)
and cleaved PARP than the control. These results suggest
that paclitaxel activates a caspase cascade to induce
apoptosis in PCO cells.

Effects of paclitaxel on cell cycle arrest. Previous studies
reported that DNA damage could induce cell cycle arrest (43,
44). As indicated in Figure 6A, treatment with paclitaxel resulted
in G, phase block in 96.37% of the population, suggesting that
paclitaxel caused cell cycle arrest in the G| phase.

The G,/S checkpoint confirms that all DNA damage has
been repaired, and the cell is ready to start replication (43,
45). DNA damage activates the ATM/ATR pathway, leading
to inhibition of the CDC25A phosphatase and thereby
preventing Cdk2 activity and disrupting DNA replication
(46-48). In addition, CDC25A phosphatase plays a vital role
in activating the Cyclin E/Cdk2 complex, which is crucial
for initiating G; to S phase transition (49). To further
evaluate our cell cycle analysis data, we examined the
expression of CDC25A, Cyclin E1 and Cdk2. Western
blotting showed a decreased expression of CDC25A, Cyclin
El and Cdk2 (Figure 6C), suggesting that these proteins may
be involved in the cell cycle arrest of PCO cells.

Effects of paclitaxel on the EGFR/PI3K/Akt/mTOR signaling
pathway. Activated homodimerized EGFR leads to the
activation of intracellular cascades, such as PI3K/Akt/mTOR
(50). Consequently, the activated PI3K/AKT/mTOR
signaling pathway triggers protein synthesis (51). The
EGFR/PI3K/Akt/mTOR signaling cascade plays a crucial
role in numerous cellular processes, including metabolism
and cell proliferation (52). To evaluate whether or not
paclitaxel impedes EGFR/PI3K/AKT/mTOR signaling
pathway, we checked the expression of EGFR, p-EGFR (Thy
1068), PI3K p110a, Akt, p-Akt (Ser 473), mTOR and p-
mTOR (Ser 2448). Western blotting showed a decrease in the
expression of EGFR, p-EGFR (Thy 1068), PI3K p110a, Akt,
p-Akt (Ser 473), mTOR and p-mTOR (Ser 2448) (Figure 7).
These results suggest that inhibition of the EGFR/PI3K/
Akt/mTOR signaling pathway is involved in the anticancer
effects of paclitaxel in EGFR-mutated PC9 cells.

Discussion

Paclitaxel is a well-known anticancer drug, but the
mechanism underlying its effects on PC9 cells remains
unknown. We therefore evaluated the extent of PC9 cell
death mediated by paclitaxel and clarified the mechanisms
of actions. Based on the findings of this study, we proposed
a model of the major mechanism of activation of intrinsic
and extrinsic pathways of apoptosis, G1 phase arrest, and
inhibition of the EGFR/PI3K/AKT/mTOR signaling pathway
by paclitaxel in EGFR-mutated PC9 cells (Figure 8).

Pro-apoptotic proteins (such as Bak, Bax) and anti-apoptotic
proteins (such as Bcl-2, Bcl-xL) are important upstream
molecules that respond to intrinsic apoptosis (53, 54). A
reduced Bak/Bcl-2 ratio is closely associated with the
destruction of the MMP (55). An increase in the intracellular
ROS level leads to the loss of MMP, resulting in the release of
cytochrome ¢ from the mitochondria into the cytosol (34).
Cytochrome ¢ binds with Apaf-1 to form an apoptosome and
activates apoptosis, initiating procaspase-9 (56). Thus, activated
caspase-9 can cleave and directly activate other effector
caspases, such as caspase-3 (57). The initiation of a caspase
cascade plays a vital role in apoptosis (42). Activated caspase-
3 is the final step in the cascade that triggers apoptosis through
the proteolytic cleavage of PARP (58). This current study
demonstrated that paclitaxel enhanced MMP loss and caspase
cascade activation to induce apoptosis (Figures 4 and 5).

The oxidative pressure created by ROS can damage parts
of the cell, including DNA and proteins (59). Failure to
repair cellular DNA damage by an adequate repair
mechanism can cause cell death due to double-stranded DNA
breakdown (60). ROS can induce cell death by initiating
various DNA damage response pathways, such as ATM/Chk2
and ATR/Chk1 (9). Several studies reported that y-H2AX
formation is a sensitive indicator of DNA replication stress
or DNA damage (61, 62). Some studies have reported that
during apoptosis, the ATR/Chk1 pathway is activated by
caspase-dependent cleavage (63, 64). The present study
showed that paclitaxel increased ROS production, resulting
in the activation of the ATR/Chk1 pathway as well as that of
mitochondria-dependent caspase (Figures 2 and 3).

The TNF receptor, DR4 [TRAILR1] and DRS5 [TRAILR2]
receptors, Fas receptor and FADD adaptor constitute the DISC
(65, 66). Several studies have reported that DNA damage
leads to the activation of the extrinsic pathway by activating
the DR4 and DRS5 receptors (67-69). The pro-apoptotic
cytoplasmic protein Bid connects the intrinsic and extrinsic
pathway, which is cleaved by the activated caspase-8
generated by the DISC (42, 70). Activated caspase-8 can also
directly cleave caspase-3 to enhance downstream apoptotic
signals (57, 71). Once the generation of truncated Bid (tBid)
is induced by activated caspase-8, the tBid advances until the
mitochondrial membrane interacts with the Bax, Bak and Bad
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proteins and induces mitochondrial permeabilization, resulting
in the release of cytochrome c (72-74). The present study
showed that ROS-mediated DNA damage triggered the
activation of the apoptotic death receptor pathway via the up-
regulation of DRS5, resulting in the activation of caspase-8 to
induce mitochondrial permeabilization.

DNA damage leads to the activation of the ATM/Chk?2 and
ATR/Chk1 pathway, resulting in the inhibition of CDC25A
(75, 76). CDC25A is a phosphatase that can activate the
cyclin E/Cdk2 complex, resulting in G1 to S phase transition
(49). The present study showed that paclitaxel induced G1
phase arrest in response to DNA damage (Figure 6).

EGFR activation in response to ligands triggers several
intracellular cascades, such as PI3K/AKT/mTOR and
RAS/MAPK(ERK) (77, 78). The EGFR/PI3K/Akt/mTOR
signaling cascade is crucial for protein synthesis and cell
proliferation (77, 79). The present study revealed that
paclitaxel effectively inhibited the EGFR/PI3K/AKT/mTOR
signaling pathway and impeded cell proliferation (Figure 7).

Paclitaxel can bind to microtubules and prevent the normal
dynamic reorganization of the microtubule network, which
plays a crucial role in inhibiting cell proliferation (80).
Various studies indicated that the binding site for paclitaxel
is the beta-tubulin subunit (81, 82). Paclitaxel has been
reported to arrest the cell cycle in the G; and G,/M phases
and induce cell death in cancer by stabilizing the microtubule
polymer and preventing depolymerization (83, 84). This
mechanism of action may also be involved in the effect of
paclitaxel on cell cycle, in our study. However, further studies
are needed to clarify the entire mechanism of microtubule
stabilization by paclitaxel in EGFR-mutated PC9 cells.

Taken together, our results provide a basis for selecting
paclitaxel chemotherapy for patients with EGFR-mutated
NSCLC. We suggest that our current findings have broad
implications for a clear understanding of ROS-mediated
growth inhibition not only in EGFR mutant tumors but also
in other oncogene-driven tumors.

Conclusion

Paclitaxel impeded the proliferation of PC9 cells in three
explicit systems. First, paclitaxel increased ROS-mediated
DNA damage, which triggered the activation of the extrinsic
and intrinsic apoptotic signaling pathways. Second, paclitaxel-
induced G| phase arrest was associated with the activation of
ATR/Chk1 signaling. Third, paclitaxel inhibited the
EGFR/PI3K/AKT/mTOR signaling pathway to prevent cell
proliferation. Therefore, paclitaxel exerted a significant
anticancer effect on PC9 NSCLC cells.
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