
Abstract. In this review, the fundamental basis of machine
learning (ML) and data mining (DM) are summarized together

with the techniques for distilling knowledge from state-of-the-
art omics experiments. This includes an introduction to the
basic mathematical principles of unsupervised/supervised
learning methods, dimensionality reduction techniques, deep
neural networks architectures and the applications of these in
bioinformatics. Several case studies under evaluation mainly
involve next generation sequencing (NGS) experiments, like
deciphering gene expression from total and single cell (scRNA-
seq) analysis; for the latter, a description of all recent artificial
intelligence (AI) methods for the investigation of cell sub-types,
biomarkers and imputation techniques are described. Other
areas of interest where various ML schemes have been
investigated are for providing information regarding
transcription factors (TF) binding sites, chromatin organization
patterns and RNA binding proteins (RBPs), while analyses on
RNA sequence and structure as well as 3D dimensional protein
structure predictions with the use of ML are described.
Furthermore, we summarize the recent methods of using ML
in clinical oncology, when taking into consideration the current
omics data with pharmacogenomics to determine personalized
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treatments. With this review we wish to provide the scientific
community with a thorough investigation of main novel ML
applications which take into consideration the latest
achievements in genomics, thus, unraveling the fundamental
mechanisms of biology towards the understanding and cure of
diseases.

The majority of the large-scale data in bioinformatics and
systems biology include genome wide studies from next
generation sequencing (NGS) experiments, such as, studies
for deciphering gene expression from total and single cell
(scRNA-seq), as well as data that provide information
regarding the binding sites of transcription factors (TFs) and
RNA binding proteins (RBPs) while incorporating
information of the RNA substrate such as, sequence and RNA
structure. NGS technology enables the decoding the genome
of many organisms, learning the transcriptome and proteome
per cell or deciphering differences from genome-wide
association studies (GWAS) (1) between different organisms
and clarifying the functions and properties of many biological
systems. These topics of bioinformatics include a large
repertoire of datasets. To analyze and interpret the big
biomedical data, efficient algorithms are constantly being
developed for processing, building, and matching the
genomes (2) or determining the gene expression differences
under normal or disease conditions (3). The constant
evolution of ML will aid biologists to find patterns and
associations in various studies while also enabling them to
predict the outcome of biomodels under investigation,
uncovering the fundamental mechanisms in biology.

A General Overview of Machine 
Learning (the Basic Principles)

The general scope of machine learning ML is to devise
algorithms that can run in an automated fashion to predict
new behavior or classify patterns arising in complex data
sets, based on sets of training data. ML consists of a large
variety of methods designed to address a wide class of
different problems, so in this section we refrain to a selection
of methods and problems.

Classification is one of the main tasks in ML with many
important applications in a variety of disciplines including
medicine. The problem of classification can be abstracted as
follows: Given points in a high dimensional space,
corresponding to different entities (of different quality) can
you separate these points into distinct groups each being
homogeneous and comprising of points of the same quality?
We will illustrate this analysis with a real example for
defining and classifying the distribution of gene expression
from RNA-seq experiments and their response upon
treatment in different time points such as the distribution
shown in Figure 1. 

Each distribution can be modeled as an array of n real
numbers, say x=(x1,…,xn), each considered as a point in the
Euclidean space Rn of suitable dimension n. Then, our data
can be conceived as collections of points in Rn. The rationale
of such a “visualization” is to manage those points related to
qualitatively different gene expressions located in distant
parts of the underlying Euclidean space where the points are
embedded, therefore obtaining different clusters.

One possible separation scheme between the qualitatively
different clusters can be in terms of a separating hyperplane,
i.e., a subset of Rn defined as the set of points x=(x1,...,xn)
such that H={x∈Rn|w•x+w0=0} for a suitable vector
w=(w1,...,wn) and scalar w0 with w • x denoting the
Euclidean inner product defined by w•x=∑i=1

n wixi. This set is
called hyperplane since in 2- or 3- dimensions H corresponds
to a straight line or a two-dimensional (2D) plane
(respectively) separating R2 or R3 in two distinct sub-spaces. 

The same principle is applied in any dimension n. The
subspace H corresponds to an n-1 dimensional hyperplane
which separates Rn into two distinct parts H+={x∈Rn|w•x+
w0>0} and H–={x∈Rn| w•x+ w0<0}. Our goal is to find if a
separating hyperplane H exists such that all points of class
1, satisfy the condition xi∈H+ while all points of class 2, i.e.,
points xi with i∈N2, satisfy the condition xi∈H–. If we
manage to identify such a hyperplane, then we have a
separating rule, that is a function f: Rl→R, defined by f(x)=
f(x1,...,xl):=w•x+wo such that for all points xi=(xi1,...,xil), with
i∈N1 it holds that f(xi)>0, whereas for all points
xi=(xi1,...,xil), with i∈N2 it holds that f(xi)<0. The
construction of such a function is in the very essence of ML
where we will demonstrate the basic supervised and
unsupervised learning techniques for solving such task.

Supervised Machine Learning Principles

A supervised machine learning approach infers to a function
derived from labeled training data or training set and a
desired output value. The algorithm after learning will
proceed in trying to correctly determine the class labels for
unseen instances with the minimum error.

Support vector machines (SVM). In our previous examples
for classifying gene expression data (Figure 1), a possible
criterion for assessing the “fitness” of a separating
hyperplane in classifying the data (equiv. points) is the
distance that such a criterion yields for the most difficult data
to be separated, i.e., those data (equiv. points) on the
boundaries of the geometric loci of the points in xi∈N1 and
the points in xi∈N2. Clearly, under this interpretation the
optimal hyperplane H would be the one for which the
distance between classified points on the boundaries is
maximum. In such cases, an optimal hyperplane H, would be
the one for which the misspecification error is minimum.
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The distance of a point xi from the hyperplane H can be
calculated in terms of the vector w and the scalar wo as
shown in Equation 1 (Eq. 1).

[1]

where ||w|| denotes the Euclidean norm of the vector w,
defined by ||w||:=w•w. Let δ=δ(H)=δ(w,w0) be the minimum
distance between the points in class 1 and 2 (Eq. 2). 

Let us consider the problem of choosing the hyperplane H
which maximizes the distance δ, maxδ  {w,w0} (w,w0),
subject to the separation conditions as determined via Eq. 2
and 3.

[2]

[3]

For a fixed ε>0, we can get the best separation result if we
choose the separation hyperplane H such that:
w•xi+wo>ε||w||, i∈N1, w•xj+wo<-ε||w||, j∈N2 where the term
on the left-hand sides correspond to the distance of the points
from H. Defining the new variables yi so that yi=1 if i∈N1
and yi=-1 if i∈N2, and considering the problem of
maximizing the distance (or equivalently maximizing ε/||w||
and setting without loss of generality ε=1) corresponds to the
more standard convex optimization problem (Εq. 4):

[4]

such that

[5]

The classification function may be readressed as
f(x)=sign(w•x+wo), with the classification assignment for any
data point xi given in terms of the response yi=f(xi). A
geometric viewpoint of the above optimization problem is as
trying to fit an empty slab of the maximum possible width
between the two data classes. Convex optimization problems
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Figure 1. Read count distribution from RNA seq experiments, where each dot represents a gene classified according to its response in a specific
treatment.



enjoy a long tradition and a powerful arsenal of analytic and
numerical techniques that can be used for their treatment (4).
One of these is their Lagrangian formulation, intimately
related to the powerful and deep dual formulation of such
problems. According to this viewpoint, a solution of the above
problem can be understood as a saddle point (min-max) of the
augmented Lagrangian function defined by Eq. (6):

[6]

where λi≥0, are the generalized Lagrange multipliers. The
saddle point conditions for L are the celebrated KKT conditions
(5) according to which w and λ satisfy the conditions.

[7]

The first condition in Eq. (7) can help us identify a linear
combination of the support vectors, depending on the Lagrange
multipliers, hence the terminology SVM. An interesting
alternative formulation of the problem, introduces the concept
of the loss function which is fundamental in ML and is the
following: Upon defining M as the set of misclassified data
points, one possible indicator of misclassification error may be
the loss function: L(H)=L(w,w0)=-∑{i∈M}yi (w•xi+wo). The
gradient of the loss function is defined as the direction of
n=(∂L/(∂w1),...,∂L/(∂wl),∂L/(∂wo)), which can be normalized
by dividing with ||n|| (if needed) and a typical gradient scheme
would be to start at an initial point wo to wk=(w1k,...,wlk,w0k)
and then create a sequence w(k+1)=wk-ρn, k=0,1..n for a scalar
ρ>0, often called the learning rate. If this scheme converges
[which does under conditions, as described in (4)] then it
converges to a point where the gradient of the loss function
vanishes, which is a candidate for a local minimum (and in fact
a global minimum if the loss function is convex). Figure 2 best
describes the boundary conditions as obtained via this
condition for having the minimum optimal solution. Figure 3
represents the maximal margin hyperplane in the 2D space. 

Often linear separation is not feasible on account of the
geometry of the data. In this case, a kernel classifier techniques
may prove useful. In such techniques the original feature space
X is mapped through a nonlinear mapping Φ, into a higher
dimensional space Z, where the data may display linear
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Figure 2. Description of the boundary conditions for optimal classification. Red and blue dots represent experimental measurements classified in 2
classes. The boundary conditions can be seen as the circled measurements close to a border where in between the 2 classes a hyperplane can be
fitted to describe the border based on the equation ti(w*xi+wo)><=1. The classification of the 2 classes happens via adding weights to each point
with the maximum goal of making the classes as separable as possible.



structure and hence linear separation techniques may be used.
Convenient feature maps are those related with the so-called
kernel functions K:X×X→R, in terms of the relation
K(x,x')=<Φ(x),Φ(x')>Z, where by <.,.>Z we denote the inner
product in the feature space Z. Kernel functions are symmetric
functions which quantify similarity between any two data points
in the input space x,x', in terms of the value K(x,x'). Various
choices for kernel function are possible, for example polynomial
kernels of degree d are defined as: K(x,x')=(x•x'+b)d, where x
and x' are observations vectors, b is a non-negative constant
which is used to balance among higher and lower degree
polynomial coefficients, and d is the non-negative degree of the
polynomial. A d-degree polynomial kernel is used to create
decision boundaries of that degree. Other widely adopted
kernels are the Gaussian RBF kernels and the radial kernels (6).
The nature of SVM classifier which uses multiple features to
learn and drive a classification has led to a wide range of
applications in biology. This can include image analysis
approaches for predicting stages of tumor such as in (7) to more
combinatorial methods of combining genomic data sets from
gene expression, DNA methylation, GWAs studies and MRI
images to drive clinical outcomes and treatments in oncology.

Regression. Regression aims to determine the relationship
between a set of input features xi∈Rn and a continuous or
otherwise quantitative outcome variable yi∈Rm, in terms of

a model of the form yi=f(xi)+∈i, where f:Rn→Rm, is a
suitable function to be determined and ∈i are (random) errors
modeling fluctuations around the deterministic law yi=f(xi).
In ML, regression techniques are used to first fit and
construct an appropriate function f, that models a set of
training input data and corresponding responses, say
(xi,yi),i=1,...,Ntrain, along with a distribution of the errors. 

Linear regression (8) is a widely adopted supervised learning
technique. Linear regression uses a linear function f, (in the case
m=1) of the form f(x)=b0+b•x for a suitable scalar b0 and vector
b=(b1,...,bn)∈Rn. By appropriately specifying the parameters of
the model from test data, the model can be used to provide
predictions for new data. The estimation of these parameter is
obtained by minimizing an appropriate loss function. A large
variety of models is built around linear regression depending on
how the model parameters are determined. A common choice
comprising four important models is to choose b so that the
following loss function is minimized (Eq. 8):

[8]
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Figure 3. An illustration of the maximal margin hyperplane in the 2D space. As demonstrated in Figure 1 and illustrated here, the maximum goal
of any classification regime is to find the optimal solution which will increase the margin between 2 classes.



where the first term corresponds to the mean square error of
the model which focuses on the closeness of the model to
the observations, and the rest correspond to regularization
terms. The above model when a=0 corresponds to the
standard linear regression model, which may give rise to
issues related to over-fitting, multicolinearity or high
dimensional data that might lead to models which are
difficult to interpret. The case where r=0, α≠0 leads to Ridge
Regression, also known as Tikhonov regularization (9), a
variation of linear regression which attempts to solve the
multi-collinearity problems of the latter approach. The case
where r=1, α≠0 corresponds to least absolute shrinkage and
selection operator (Lasso) regression (10) that uses the most
important features of the dataset, while the rest are set to
zero and consequently are ignored, thus leading to more
economical and easier to interpret models. The last variation
discussed here is the elastic nets (11) corresponding to
r∈(0,1), α≠0 and can be considered as a combination of the
previous two.

Logistic regression (12) estimates the probability that an
input belongs to the target class (labeled as ‘1’, called the
positive class) or to the other one (labeled as ‘-1’, the
negative class –often labeled as 0). The basis for this
approach is the logistic function, which connects the
probability of assignment to each class with the features
vector x connected to each data point, as in Eq. 9: 

[9]

If for a feature vector x, p(x)<1/2 then this is classified as
y=–1 and y=1 otherwise (often y=–1 is labeled as y=0). A
common alternative form of this model is in terms of the log
of the odds O=p⁄(1-p), which turns out to be a linear
function, log(O)=b0+b.x, better known as the logit model.
Model fitting is done by using the maximum likelihood
estimation (MLE) (13), which intuitively can be seen as a
way of determining coefficients so that by inserting them to
the logit function which will produce outputs as close to 1
as possible for all data items that are indeed classified as
such. Likewise, it should produce a number as close to zero
as possible for all items that are classified using the other
label. As soon as training is complete and the coefficients
determined, predictions are made simply by inserting
unknown inputs to the logit function. This model, which is
extendible to more than two classes, is related to SVM
providing thus a probabilistic based version of them.

Regression techniques have a broad range of applications
in bioinformatics. These methods have been widely adopted
in normalization procedures of RNA-seq data, such as in
(14) where a loess regression has been applied on RPKM
values by using a spike-in RNA as control to fit the loess

regression model. More recently in (15) the authors make
use of Pearson residuals from “regularized negative binomial
regression,” to estimate for cellular sequence depth in order
to be used as a covariate in a generalized linear model,
which can efficiently normalize the data but also maintain
the biological heterogeneity of scRNA-seq. 

Naïve Bayes. Naïve Bayes (16) is a popular probabilistic
approach for supervised learning which estimates the
conditional probability for a random data point being in class
j. Suppose we have data points described by n features,
x=(x1,x2...,xn), and a target feature y. This method assigns
probabilities that a data point characterized by features x is
classified in terms of y using the conditional probability
P(y|x) called the posterior probability. This is the desired
outcome of the model, which is obtained in terms of
information available from the training (i.e., already
classified) data, i.e. the quantities P(x|y) (the likelihood), and
the joint probability P(x) and P(y) of the input and target
features respectively. This connection is obtained through
Bayes’ theorem as P(y/x)=P(y)P(x/y)/P(x). We then classify
a data point x, to this class y for which P(x|y) is
maximized, leading to an estimation for the classifier in
terms of ŷ=argmax{y} P(y|x), with P(y/x) given in terms of
the training data as above. To simplify the optimization
problem required for the classification, the likelihood term
can be reduced by assuming that the conditional probabilities
of each feature given the target feature y are independent (or
in some cases conditional independent), so that
approximately P(x|y=∏i=1n P(xi|y), where upon ignoring the
unimportant factor 1⁄P (x), which does not depend on y, we
obtain the estimator y ̂ =argmaxy (P(y) ∏i=1n P(xi|y)), which
is simpler to calculate. The maximum a posteriori (MAP)
rule (17) can be used to find an estimate, that maximizes the
product of the likelihood and the prior probabilities.
Bayesian classification procedures have been applied to a
variety of biological problems. These include determining
gene expression differences from bulk RNA-seq analysis to
the analysis of more complex systems such as in scRNA-seq
analysis where probabilistic models are able to learn cell-
specific parameters in order to drive normalization (18).

Random forests (RFs). A popular methodology based on
decision trees (19) is random forests (RFs). An RF consists
of a multitude of decision trees and is essentially an ensemble
learning method the outcome of which is determined as either
in terms of the majority or as some sort of average of the
outcomes of the trees comprising the forest. To construct an
RF, a procedure known as bagging is applied where the
outcomes from multiple, randomly constructed decision trees
are combined to determine the final decision. Bootstrap
aggregation (20), which is also referred to as bootstrap
aggregating or bagging, is a technique which enables the
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reduction of variance of ML methods, considerably
improving their accuracy. This technique may prove useful to
avoid overfitting. The predictions from each data instance on
the corresponding testing data instances are combined
through a process known as majority voting to produce the
final prediction as the one prediction with the highest
frequency across the data instances. In RFs, bagging is
applied albeit with a key difference: each decision tree selects
a random subset of the features at each split (Figure 4). 

The sampling of features enables the random forest to
eventually filter out the “weaker” predictors and use those
that are strongly related to the outcome. Thus, bagging
alongside with random features subsets selection, increases
the diversification to produce better outcomes. Having as
input the original training data, sampling must be done
uniformly to yield the predetermined number of subsets
which are to be used to train the same number of instances
of the decision trees. The same item may be included to
more than one subset, thus bagging sampling is done with
replacement. If the training subsets have no overlaps the
technique is called pasting. The quality of an overall random
forest architecture depends, to a great extent, on the quality
of each individual predictor (i.e., each individual decision
tree). The correlation between two or more features in the
random forest should be minimal. An ensemble of trees
using bagging is expected to produce lower quality outcomes
in comparison to an equivalent Random Forest. 

Decision trees and random forest help drive prediction of
complex problems in biology. This includes the prediction and
applicability of specific drug treatments in oncology (21) or in
combining metabolic labelling of RNA to extract RNA kinetic
rates and to use a Random Forest approach to classify the
function and use of coding and nc-RNAs in eukaryotes (22). 

Artificial neural networks (ANNs). Artificial neural networks
(ANNs) are computational systems whose layout and
operation were inspired by the way a biological brain works.
An ANN consists of a set of interconnected artificial
neurons, where each artificial neuron is described as a
mathematical function which receives a set of input features
that are aggregated in a proper way to produce an output that
is inserted into a non-linear activation function that produces
outcomes which can be transmitted to other neurons to repeat
the same process until the final output layer is reached. Thus,
a neuron is inspired by the operation of the nerve cells of a
biological brain which operates in a similar manner. ANNs
are organized in layers. In its simplest form an ANN consists
of three main parts, namely: (i) the input layer, which
provides the original inputs to the network, (ii) a single
hidden layer which consists of a number of artificial neurons
tasked with transforming inputs in order to produce
activations, and (iii) an output layer, which produces the
results of the network using the activations. Multiple hidden

layers can exist between the input and output layers. A fully
connected neural network with more than one hidden layer
is called a multilayer ANN. 

ANNs can modify their internal structure (by using their
inputs which consist of actual measurements, weights, and
biases) in relation to a set of desirable outcomes. This is the
underlying concept of the learning process followed in all
implementations. ANNs are used in fields, such as, pattern
recognition, classification tasks and natural language
processing (NLP). A variety of actual implementations has
shown that they are particularly suitable for determining
acceptable, almost optimal, solutions to complex non-linear
problems. In a feed-forward ANN, the information flow has
a single direction. To clarify the operation of an ANN let us
start with the simple case of a single layer and k neurons.
The key components there are the set of input vectors
x=(x1,...,xn), associated biases b=(b1,...,bk), and weights
W=(wij,i=1,...k,j=1,...n) considered as a k×n matrix. Each
neuron i takes the input vector x, nonlinearly transforms it
in terms of an activation function h and returns an output zi
which depends on the weights and the activation function as
zi=hi (∑j=1nwij xj +bi), where hi is the activation function
and its argument is often called the activation of the neuron.
The vector z=(z1,...,zk) is considered as the output of the
neurons. Based on training data the parameters of the ANN,
which are essentially the weight matrices and the biases at
each layer are computed and are minimizers of an
appropriate loss function which connects the actual input
with the observed final output for the training data. Then,
once trained, the ANN can be used to classify or predict new
data. The optimization procedure involved in the training of
an ANN is complicated and often time consuming but
technically simple as it often relies on gradient descent
methods or its variants.

In classification scenarios, the output function is usually
tasked with mapping numeric parameters to labels (or
classes). The number of neurons in the output layer is
typically the same as the number of classes. To calibrate a
Neural Network, the loss function is required in order to
measure the model’s error. The primary task of the training
process is the minimization of the loss function. This is
achieved by re-adjusting weights and biases through a
repetitive process which concludes after a set number of
iterations is completed and/or in case the loss function
produces acceptable (i.e., sufficiently minimized) results. The
two most widely adopted loss functions are the mean squared
error (MSE) and the cross-entropy loss (CEL). Non-linear
activation functions are required to solve complex problems.
Among them some of the most prominent are the sigmoid,
rectified linear unit (ReLU) (23) and softmax (24). The latter
proves particularly suitable for the output layer. There is no
intuitive way of determining the number of hidden layers. In
many cases this is chosen through a trial-and-error process.
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It is generally acceptable that relatively “shallow” ANNs,
consisting of up to three layers, produce good quality
outcomes. On the other hand, a great number of layers
(Figure 5) may lead to overfitting. 

These basic principles provide the background for
introducing deep learning approaches for machine learning
which as we will investigate have been applied to a plethora
of applications in biology.

The rise of deep learning. The increasing technological
achievements has enabled us to implement network
architectures, embedding thousands of neurons. These
topologies use “deep” depth neural networks with or without
prior knowledge for training and their fundamental principles
use the general notion of Hopfield or Perceptron network
architectures (25). 

To extract the ultimate features that can increase a
classification performance, filtering steps can be applied with
the use of convolution layers. Convolution layers walk
through the matrix of values and filter the important features
in one or three dimensions. This can be done via adopting a
specific kernel function for partitioning or grouping the data.
Moreover, sub-sampling techniques can be used for extracting
important features via the use of maximum pooling layers.
The maximum pooling can be evaluated either via grouping
every n data and extracting either the maximum, median, L2-
norm, or average values. The data from all input sources after
passing the previous steps can be concatenated and merged
into a fully connected neural network. The output will be a set
of weights after training where these will be evaluated on a
test dataset. Such architectural schemes are defined as
convolutional neural networks (CNNs). An example of such a
network can be visualized bellow (Figure 6). The filter
scanning or windowing can be set accordingly to either 2×2
or 3×3 depending on the data set being used. Other popular
deep neural network architectures under investigation are
encoders-decoders or autoencoders (Figure 7). 

This type of architecture consists of three layers, an input
layer, a hidden (encoding) layer, and a decoding layer.
Regarding the decoding layer the input is partially
reconstructed, based on the important features. The hidden
layer serves to learn good representations of the inputs. In an
encoder-decoder architecture the input is suppressed and only
the features that differ are presented. The convolutional filters
are reduced at the different layers. The decoders try to
reproduce the input, while the convolution layers are increased
oppositely than the encoders. This allows to distinguish the
ultimate features that can define a classification regime in
every turn of training. Recurrent neural networks (RNN), such
as the long short-term memory, or LSTM can learn recursively
(Figure 8). 

These types of networks make use of an internal state of
memory to process sequences of inputs. RNNs are popular

for speech or handwriting recognition. Furthermore, this form
of architecture makes all the inputs relate to each other.
Deep–learning applications have gained a lot of use in
bioinformatics and system biology as they can be used either
in supervised or unsupervised ML schemes and predict an
outcome using a number of features. The increasing amount
of biological input makes them suitable in various learning
approaches from motif finding of TFs and RBPs to single cell
clustering as it will be extensively analyzed in Section 3.

Unsupervised Learning

Unsupervised Learning is an ML technique where the
training is done without supervision, instead the model tries
to discover patterns through mimicry and tries to build a
compact representation of the input data. Known
unsupervised learning techniques include the dimensionality
reduction techniques PCA, UMAP and k-means while neural
networks can be used as well.

k-means. The k-means algorithm (26) is perhaps the most
popular and simplest data clustering algorithm. Assume we
are given an input vector with N-data points (samples),
xi∈Rn (considered as embedded in some Euclidean space
Rn, hence described as elements of Rn and visualized as
points in this space) say X={x1,x2,...,xN}. Their embedding
in Rn implies that data points which are similar (in some
qualitative sense) will display this feature as having their
Euclidean distance minimized in Rn. Under this perception,
one way of obtaining clusters of similar data points is to
arrange these data points in sets Cr, r=1,...,k, each located
around a common “center” mr with the points in each such
set (cluster) being similar in terms of their distances
between themselves and the corresponding cluster center.
This procedure could be easily visualized if l=2,3 however
a more sophisticated abstract formulation is needed in the
case of high dimensional data, which is the case of
practical interest in most applications. The above
variational problem can be solved in terms of the k-means
algorithm which is an iterative process which starts by
randomly selecting k data points from x that serve as the
initial candidate for the clustering centroids. Then, it
assigns the remaining data points (i.e., the data points of
xj∈X, where xj≠mr,r=1,...,k) into the k clusters by: (i)
calculating the Euclidean distance between each data point
from each clustering centroid, and (ii) assigning a data
point xj to the cluster Ci if the Euclidean distance of xj from
the r-th clustering centroid is smaller than the distance from
the rest of the clustering centroids.

This is the main essence of the k-means algorithm, which
is an NP hard problem in terms of computational complexity.
Furthermore k-means has been used extensively in
bioinformatics, one example is in cases of scRNA-seq data
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when creating the different sub-classes of cell types. Such an
implementation can be seen in mbkmeans (28) formulation,
where the authors make use of sub-sampling approaches with
the use of mini-batches, while evaluating k-means for each
batch, thus minimizing the memory requirements. Other
methods can also include least absolute shrinkage (Lasso)
techniques that can cope with the sparse high-dimensional
nature of scRNA-seq together with k-means thus to apply
feature selection and clustering of the cell sub-types (29).

Dimensionality reduction. The primary objective of all
dimensionality reduction techniques is to seek for the
optimal data representation model, in terms of data
compression, which describes the initial dataset without
significant information loss which is feasible since most
datasets contain redundancies. To put it differently, some sets
of features can be regarded as an indicator of another,
initially unobserved, latent feature. This also implies that
these sets of original features are correlated. On the other
hand, if no redundancies exist within a dataset compression,
regardless of the method, is unable to produce significant
results. Thus, a dimensionality reduction method reduces an
original -dimensional feature space to a -dimensional feature
space (where, n>k), which can then be used to train a
machine learning algorithm in a smaller feature space.

Principal component analysis (linear). Principal component
analysis (PCA) is one of the most widely adopted
dimensionality reduction methods. PCA aims to create a feature
space of reduced dimensions while preserving as much variance
as possible in the original dataset. To illustrate the idea, consider
a data set consisting of N data points xi∈Rn, i=1,...,N, where n
is the original dimension of the feature space (equivalently a
sample of the vector valued random variable x=(x1,...,xn) and
which may conveniently be considered as a data matrix
X=[x1,...,xN]∈R(n×N). Alternatively, each row j, j=1,...,n. of the
matrix can be considered as N observations (xji,i=1,...,N), of the
feature j of the multidimensional data set. Then, 

is an estimate for the mean value of feature xj, whereas

is an estimate of the covariance between the features xi and xj,
with the matrix S=(skj) called the covariance matrix of the
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Figure 4. An illustration of bagging where the outcomes from multiple, decision trees are combined to determine the final decision.



features. Without loss of generality, we consider that
E[xj]=0,j=1,...,n, otherwise we may center the data matrix by
subtracting the mean of each feature (row). Note that these
important statistical quantities can be expressed directly in
terms of the data matrix X. PCA attempts to find linear
transformations of the x, in terms of n vectors a1,...,an∈Rn

such that the new features zm=am•x, m=1,...,n can well
describe the sample and moreover that the transformation is
such that only k<n of the transformed features capture as
much as possible of the variance of the original dataset. Using
the sample for the vector valued random variable x, we have
samples for each of the scalar random variables zm. Recall that
if z=a•x then var(z)=a•Sa. An alternative way of looking at
this is to consider the new features as a new coordinate system
with which we view the original data set, as taking projections
of the original data set along directions that minimize the
projection error and thus the information loss. These directions
define the new coordinate system and will satisfy appropriate
orthogonality conditions i.e., cov(zm,zl)=0, m≠l. The resulting
directions (equivalently linear combination of features) will be
called principal components and will carry most of the
information of the original data set in their first k<n
components. The choice of directions will be made as follows:
Choose a1 respectively z1 such that var(z1) is maximum. At
the r level, r≤k, choose ar, respectively and zr such that var(zr)

is maximum, subject to the constraints cov(zr,zm)=0  m=1,...,r-1
and ar•ar=1. These problems can be handled using the technique
of Lagrange multipliers, and the solution of these problems
reveals that the desired directions ar are solutions of the
eigenvalue problems (S-λI)a=0, where S∈R(n×n) is the
covariance matrix of the random variable x, which for centered
data is related to X•X'∈R(n×n). The eigenvalue problem has n
solutions for (λr,ar),r=1,...,n. All the eigenvalues are positive,
and the eigenvector α1 corresponding to the largest eigen value
λ1 will indicate the first (dominant in terms of capturing the
variance) PC, the eigenvector α2 corresponding to the second
largest eigen value λ2 will correspond to the next (best
performing after the dominant in terms of capturing the variance)
PC etc. The number k of PCs retained is related to the spectral
properties of the matrix X•X'∈R(n×n), and can be found by
ordering the eigenvalues of the covariance matrix in descending
order and keeping the first k dominant ones. The procedure is
closely related to the singular value decomposition SVD. The
above procedure could be performed using SVD of the data
matrix X, according to which X admits a representation of the
form X=UΣV', where U∈R(n×n), Σ∈R(n×N), V∈R(N×N) with U,
V being orthogonal matrices containing the eigenvectors of
X•X' and X'•X respectively, and Σ is a matrix which contains
nonzero elements only on the diagonal consisting of the
singular values of X. The choice of k can be made by ordering
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Figure 5. An illustration of an artificial neural network with multiple hidden layers. 



the singular values of the data matrix, while the transformation
to principal components can be made using U.

tSNE and UMAP: Two well-known dimensionality reduction
techniques. t-SNE is one of the most commonly used
dimensionality reduction techniques. It represents high-
dimensional data by assigning each datapoint, being in a
higher dimension, to a two- or three-dimensional map. This
is done by using a Gaussian probability Eq.10 for observing
the distance between any two points in the high-dimensional
map where an optimal σ (Eq. 11) is defined or so-called
perplexity. The goal is to minimize a loss function when
projecting from a high dimensional distribution to a lower
one via a gradient optimization technique. 

[10]

the symmetrization being used is so to ensure that the any points
will be glued efficiently together and is set as pij=(pi|j +pj|i)/2N  

[11] 

The student t-test distribution can be used in the lower
dimension to declare the distances (Eq. 12); thus, the t-SNE
after describing the distance of any two points aims to learn
the similarities of a d-dimensional map yi...yn.
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Figure 6. A convolutional neural network (CNN) architecture schema. In (a) the convolution, concatenation, and dropout layers and in (b) a fully
connected neural network is shown.

Figure 7. A 3D Encode-Decode architecture, taking as input information a 3D molecule and extracting the most important information in trying to
represent it, while determining the compressed information of it as output; in other words, visualising the most important features that have
determined such classification or learning.



[12]

The locations of the point in the map of d-dimension will be
learned by estimating the Kullback-Leibler divergence loss
function of the distribution P from the distribution Q (Eq. 13)

[13] 

UMAP stands for uniform manifold approximation and
projection: the algorithm tries to approximate a manifold on
which the data lie and constructs a simpler representation of
it. UMAP assumes that there exists a Riemannian manifold
where the data are uniformly distributed. A simpler version
of a manifold is assumed and derived via constructing a
weighted k-neighbor graph. A fuzzy topological connectivity
is applied on the edges of the graph having as a constraint
the minimization of the cross entropy to deal with any
inherent asymmetry. The algorithm will proceed by
iteratively applying attractive and repulsive forces at each
edge or vertex. This will converge to a local minimum by
dynamically decreasing the attractive and repulsive forces.
Like t-SNE given an input data set as X={x1,...,xn}, and an
input hyper-parameter k, for each xi we compute the distance

of each set of {xi1,...,xik} points from the k- nearest
neighbors. If, for each xi, we denote by pi its distance from
its first nearest neighbor xj then:

[14]

with the symmetrization here to be pij=pi|j+pj|i-pi|jpj|i and like
t-SNE the optimal σi will be

[15]    

Since ρ demonstrated the distance from each i-th data point
to its first nearest neighbor this demonstrates a local
connectivity of a manifold. The process of UMAP is
approximating the number of nearest neighbors k, where for
these k neighbors the UMAP function tries to glue together
points with locally varying metrics. UMAP, unlike t-SNE,
doesn’t use a t-distribution but instead it uses a family of
curves which demonstrate the connectivity or strength
between any of two points in a manifold as these can be
defined as attractive or repelling forces, where a, b are hyper
parameters: 1/((1+a•y2b)). A distance probability q(i,j) is set
as qij=(1+a(yi-yj)2b)–1. The goal is to find the minimum
distance between points i,j in a 2D space described by
X={x1...xi}, Y={y1...yi}, where overall this will lead to
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Figure 8. Basic RNN architecture where the feedback loops define an internal state of memory.



compact clusters with the lowest cost estimate. Regarding
the cost estimate, UMAP sets this as a binary cross entropy
CE approximation, as in Eq. 16:

[16]

To estimate the cost function, we need to apply the gradient
of the cross-entropy via applying the gradient descent.
Setting the distance di,j=yi-yj and Q(di,j)=1/(1+abij2b) we
obtain (Eq. 17):

[17]

In general, a Laplacian graph is used by UMAP to initial low
dimension coordinates. In this context a graph is first

constructed using the kNN algorithm (30), where it is
formalized via constructing the Laplacian matrix. The eigen-
value-decomposition problem is then used to factor the matrix.
Figure 9 demonstrates an example of UMAP clustering when
classifying gene expression cancer data from TCGA (31).

Machine Learning Applications in 
Biology and Bioinformatics

In the last decade, the technological breakthroughs of
biochemistry and next generation sequencing (NGS) have led
to the generation of a huge amount of information. The need
for novel ML approaches to decipher fundamental
mechanisms of biology has gained great importance (32).
This section will provide and describe several ML techniques
that have been previously analyzed, while taking advantage
of state-of-the-art biochemical methods to generate NGS
data. Several techniques will be described for recognizing
the functional domains of TFs and RNA binding proteins
while taking advantage of neural networks to acquire this
information. Then an analysis of the latest methods will be
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Figure 9. UMAP example for classifying cancer types based on TCGA gene expression data.



given on using expression data and genome wide association
studies (GWAS) from TCGA and other consortia to learn the
pathways that may drive diseases. Also, the latest
achievements in scRNA-seq will be examined together with
the ML techniques and dimensionality reduction algorithms
that may enable us to learn and predict the cell states under
normal conditions or in disease.

The art of binding “from transcription factors to RBPs”
Learn the determinants of transcription. A large majority of
encoded proteins have functional and regulatory roles. These
elements such as TFs can recognize and bind specific
regulatory sites of the DNA. These sites are composed of
specific nucleotide motifs and recognize a characteristic
geometry with high accessibility of the DNA helix. The
binding of TFs in the promoter of a gene either facilitates the
pre-initiation of the transcription complex with RNA Pol II
or the TFs upon binding can recruit transcriptional cofactors
to alter the chromatin state. Furthermore, histone methylation
such as H3K4me3 contributes to active transcription while
H3K27me3 and H3K9me3 have a repressive role. Other
histone modifications include phosphorylation,
ubiquitination, sumoylation and ADP ribosylation (33).

Chip-seq (34) and ATAC-seq (35) are two established
methods that enable the identification of binding sites of
TFs. With chromatin immunoprecipitation sequencing (ChIP-
seq) we are able to identify the binding of TFs on the DNA
as a specific antibody is used to IP the complex. More
precisely, crosslinking DNA and proteins uses formaldehyde,
followed by sonication of the DNA into smaller fragments
usually around 200–600 bp fragments. This is then followed
by immunoprecipitation of the DNA-protein complexes of
interest with antibodies. The DNA is then uncross-linked,
and the DNA is adapter ligated according to the library
preparation steps before it is sequenced. The obtained
fragments are the binding sites which hold the region of
interest. Regarding ATAC-seq the nuclei of cells are isolated
and a Tn5 transposase is used while ligated to adapters to
identify open chromatin regions which are more accessible.
Overall, these techniques have enabled us to identify the
regulatory domains that drive transcription. 

To predict the binding domains and decipher the regulatory
properties of such sites, ML strategies have been employed.
Such methods include convolutional neural networks such as
in the case of DeepBind (36) which uses the sequence
fragments of TFs and the open chromatin regions from
experiments such as ATAC-seq or Chip-seq as input. More
specifically, DeepBind determines a score for the binding
positions in four stages. The convolution stage scans and
groups appropriately a set of sequences of length m. There is
a motif detector step which is 4 × m matrix, that extracts
frequencies and forms position weight matrixes (PWM),
which are then fed by a rectification stage where positions

with high scores are selected, and all negative values are set
to zero. There is a pooling layer which uses maximum and
average techniques to identify short-in-long motifs which are
then given as input into a nonlinear neural network. Similar
studies include more complex architectures such as recurrent
neural networks (RNNs) or long short-term memory (LSTM)
which can improve the binding accuracy. Other methods such
as KEGRU (37) use bidirectional recurrent networks named
as b-GRUs which makes use of a k-mer sequence
representation in combination with the states of the recurrent
method to capture more efficiently the dependencies and thus
achieve better performance. Other combinatorial methods
such as Janggu (38) use DNA sequences from DNAse tracks
as input to a convolution neural network. This method uses a
higher order one-hot encoding of the DNA sequence that
captures di- or trinucleotide-based motifs. Similar
combinatorial methods as in DeepSEA (39), make use of
various inputs such as DNase I–hypersensitive sites (DHSs),
histone marks and TF binding profiles and have as a major
goal the identification of functional effects of noncoding
variants. Inputs are genomic sequences of the positions of the
marks which are used in a deep neural network architecture.
The effects of individual SNPs on TF binding sites have been
evaluated with high performance. Similar DNA genomic
features that can be investigated with deep neural networks
include the investigation of DNA methylation sites and the
analysis of chromatin loops from genome-wide interaction
matrices from Hi-C experiments (40). The latter uses as input
genome wide interaction maps and a set of positive defined
and negative training sets to a binary classifier. A
hyperparameter search is then followed to find the best
random forest model separating the two classes, which can
be used to detect loops from genome-wide contact maps.
Another interesting approach that uses Hi-C to determine
nuclear compartmentalization is presented in (41), where Hi-
C data were employed to construct a Hi-C interaction graph
whereby graph embedding techniques 1st and 2nd order
proximities are derived, thus transforming the graph into a
lower-dimensional space where k-means clustering is applied
to cluster the nodes.
Learning the RNA binding properties. Apart from the DNA
binding elements the research community has started to use
ML applications to investigate the binding properties of
RBPs. This task has gained great attention due to the hard
nature and the many functional features of RNA such as the
various sequence motifs and RNA structure in 2D and 3D.
Unlike DNA, RNA is a molecule of high plasticity which
adopts various regulatory structures from its transcription to
decay. Furthermore, more than 100 different modifications
have been examined and more than 1,800 regulatory RBPs
have been discovered. Only recently, biochemistry has
enabled us to detect the RNA structure in 2D or even in 3D
genome-wide (42) while adopting the RNA backbone
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confirmations. These can be accomplished via evaluating
techniques that enable us to use biochemical reagents that
can cause mutations (43) or RT stops (44) upon open
accessible regions or that make use of specific cross link
techniques with compounds such as AMT (45) that can
capture the double stranded RNA regions. 

Furthermore, several enzymes such as in (46) can
distinguish and cleave either single or double stranded RNA
conformations to distinguish RNA structure. In addition, a
large plethora of experiments have been developed to
identify the binding domains of ribonucleocomplexes
(RNPs). These mainly include UV cross linking and IP with
a specific antibody and pull down of the complex.
Furthermore, in order to increase the sensitivity of the
binding position a 4sU analog of uridine can be used to
allow for a specific mutation during cDNA synthesis (T>C
conversion) upon the binding of the RBP with the RNA (47).
Similar methods such as HITS CLIP (48) include mutations
on the binding position that can be identified and increase
resolution. In iCLIP (49) and upon circular ligation after the
IP pull-down, the identification of an RT stop can be seen
during cDNA synthesis on the RBP contact point. Thus, the
exact location of the binding site irrespective of the sequence
composition can be extracted. In addition, if these methods
are combined with specific enzymatic cleavage, one can
determine the RNA structure composition of the binding
domain. Protein occupancy profiles (50) have determined
various RNA binding proteins that can crosslink RNA.
Moreover, cell fractionation experiments coupled with IPs
and specific biochemistry for in vivo identification of RNA
structure can be used to determine with more specificity the
binding properties per cell compartment. This vast amount
of information, if combined with ML, can lead to
identification of the binding specificities of RBPs, i.e., the
sequence and structural motifs that may drive such binding.
DeepBind, as examined earlier, has also investigated the
binding properties of RBPs using as input information the
sequence of exon-exon junctions and demonstrates the
leading binding motifs for RBPs known to regulate splicing
such as TIA1, NOVA, PTBP1 or hnRNPC. IDeep (51) uses
eCLIP-seq data from ENCODE (52) and also the RNA
structure to train a hybrid network with two CNNs and a
long-short temporary memory (LSTM) network. The input
from sequence and structure is driven to CNNs and the
LSTM learns the binding properties in terms of sequences
and structures to improve prediction. Other methods such as
DeepRipe (53) one-hot encode the sequence or in the case
of pysster (54) also include the sequence and RNA 2D
structure using an extended alphabet into a convolutional
max-pooling and dropout layers. After the dropout layers the
information is used by a dense neural network which can be
easily tuned. Similarly, DeepCLIP (55) applies a similar
network architecture that uses 1D convolutional layers to

find and enhance features of a set of presented sequences.
This is followed by a bidirectional long, short-term memory
(BLSTM) layer which uses the extracted features and
contextual information of the sequences to find areas of the
RNA-sequences associated with RBP binding. A different
approach is being used by a kernel-based model called
Graphprot (56). This scheme extracts the structure and
sequence information from CLIP-seq data. The structure of
the binding sites is calculated via RNAshapes (57). The
structure and sequence are encoded as a hypergraph, where
graph kernels are used to extract features to be set as input
information to support vector machine (SVM) and support
vector regression (SVR) (58) modules. A graph-kernel can
extract large number of features and when comparing bound
and unbound regions while using a k-mer similarity, the
binding features per RBP can be extracted versus the
background noise. 

Extracting information of the RNA backbone using 3D
RNA modeling has been a great challenge. Molecular
dynamics using Monte Carlo techniques (59) can be applied.
Usually in this type of modeling the RNA in its 2D form will
be placed on a grid. The RNA molecules will be perturbed
on the grid and in each position the Poisson Boltzmann
equation describing the energy state of each atom will be
deciphered having as goal to extract the position with the
minimum energy as in (60). ML techniques can be employed
to learn the 3D properties such as dihedral angles and total
energies per cluster of molecules. One such method is
RNA3DCNN (61), where the RNA molecules can be treated
as a 3D image or voxels as input to 3D CNNs. The RNA
molecule is described using a 3D grid representation of the
RNA molecules on a cartesian coordinate system directly as
input to the convolutional neural network. This network is
arranged using an input layer, of a two-stage convolutional
layer, followed by a maxpooling layer and another two-stage
convolutional layer following an output layer. The output is
a score per nucleotide, defining how a nucleotide fits in its
surrounding, taking into account all the conformations.
Deepnet-rbp (62) uses information of the tertiary structure
motifs as predicted by JAR3D (63) together with the
sequence and structure into a multimodal deep learning
module to predict RBP binding sites and motifs. JAR3D is a
computational framework that extracts probable structural
motifs in the hairpins and internal loop regions using RNA
3D Motifs Atlas (R3DMA) (64). The deep learning module
uses restricted Boltzmann machines (RBMs) (65) of multi
connected layers based on Markov random fields (66) which
define the probability distribution of the variables.
NucleicNet (67) uses features of the RNA backbone and the
physicochemical characteristics of the RBPs such as
hydrophobicity, molecular charges and accessibility surfaces
calculated from Fpocket (68) with the ultimate goal to
predict on each location of the RBP’s surface, scores for

Pezoulas et al: A Tool to Shape the Future of Medicine (Review)

619



RNA interactions. More precisely the surface contact points
of the RNPs are extracted using the physiochemistry of the
RNA and the RBP’s potential contact points. Furthermore,
these are clustered into classes that correspond to the bound
and non-bound RNA sites. A deep residual network is trained
to determine the scores according to the physicochemical
properties and the network is optimized through standard
back-propagation of the categorical cross entropy loss. 

All these methods presented examples of different ML
architectures used to decipher mechanisms of fundamental
principles of biochemistry which mainly define specific
structural and sequence motifs or the biophysical properties
that can drive RBPs or TFs to bind and thus contribute to the
post transcriptional regulation that determines the cell fate. 

Prediction of protein 3D structures using ML. Accurate
prediction of 3D protein structures remains a very demanding
task in terms of computational power as there can be more than
10300 possible different ways that a protein can be folded
before setting into a final stable 3D structure manifold (69).
The importance however of evaluating an accurate 3D protein
folding structure is of great essence in order to investigate
protein function. Incorporating ML methods for predicting the
3D protein structure has been recently adopted to improve this
task. The most well-known example is the Alphafold algorithm
(70) where a neural network was trained to make predictions
regarding the distances between pairs of residues and construct
a potential mean force, able to define the shape of the protein
with high accuracy. The predictions include backbone torsion
angles and pairwise distances between residues. A gradient
descent method was applied to optimize the predictions.

Machine learning to identify the per cell transcriptome. The
recent advances in the field have enabled scientists to distinguish
the transcriptome properties per cell using novel sc-RNA seq
techniques. This achievement allows for the first time to discover
the progression of a disease as the signaling is driven from the
cell-to-cell communication and define more precisely marker
genes in each cell stage and each cell cycle. The power of ML,
and dimensionality reduction techniques is mandatory to extract
the driver genes and RNA properties from this ever increasing
per cell information. A plethora of methods and analysis exist
taking advantage of several dimensionality reduction techniques.
These methods as explained previously can demonstrate the
various cell types, emerging from a single cell experiment but
also examine driver genes of each cellular sub-population.
Furthermore, cell deconvolution is an important aspect for such
analysis. ML methods such as linear regression can be used on
gene expression profiles (GEPs) of specifically expressed genes
per cell type to estimate cellular sub-populations. Other methods
such as Scaden (71) make use of a deep neural network for cell
deconvolution. This method uses gene expression information as
input, to a DNN where the hidden layer nodes of the DNN

would account for higher-order latent representations of cell
types. This seems to be more robust in terms of technical bias
and noise. Many methods such as k-means, gaussian mixture
models and spectral clustering have been employed for
clustering cells from sc-RNAseq experiments. 

Recently force directed layout graphs have been applied as
another dimensionality reduction technique. FLOW-MAP
(72), uses a graph layout analysis and sequential time ordering
to extract cellular trajectories in high-dimensional single-cell
data-sets. Diffusion maps (73) have also gained interest as
they can preserve the relations between the data points and
thus are more suitable for re-ordering the differentiating cells
and for reconstructing developmental traces. Also, diffusion
distance is robust to noise. Other methods to provide an
alternative dimensionality reduction approach use the power
of neural networks such as in the work of (74) and (75).
Variational autoencoders (VAE) together with Bayesian
inference have also been used to learn a probabilistic encoding
of the data. Dhaka (76) is such a method where the
assumption is that the data is coming from a multivariate
Gaussian probability distribution. The autoencoder encodes
the means (μz) and variances (σz) of the Gaussian
distributions. The sampled latent representation is then passed
through a similar decoder network to reconstruct the input. 

The major problem to tackle, in scRNA-seq analysis, is
the large dropout rates in gene expression. Spectral
clustering (SC) (77) is an emerging popular method that
combines multiple kernels to learn a distance metric using
the KNN algorithm that best fits the structure of the data. To
resolve the issue of drop-out in sc-RNAseq data, several
imputation methods have been implemented such as
scImpute (78), MAGIC (79) and SAVER (80). Deep Impute
(81) uses standard deep neural networks to predict the
missing values by using correlated genes with high gene
expression values. In brief, DeepImpute imputes gene counts
in a divide-and-conquer approach, by constructing multiple
sub-neural networks where each sub-neural network is used
to decipher the relationship of certain category of genes with
a subset targeted gene. Each sub neural network can use 512
input genes, a hidden layer of 256 neurons using a Relu
activation, a 20% dropout layer and an output dense fully
connected network. Similarly, DCA (82) uses a deep
autoencoder scheme to denoise scRNA-seq by defining a
reconstruction error as the likelihood of the distribution of
the noise model instead of reconstructing the input data
itself. Probabilistic principal components analysis (PPCA) or
factor analysis (FA) (83) can also account for these events
and provide another form of clustering. Zero inflated factor
analysis (ZIFA) (84) defines a dropout relationship which
takes into account the mean level of non-zero expressed
genes (log read counts) as μ and the dropout rate Po for each
gene. The relationship can thus be defined as Po=exp(–λμ2),
where λ is a fitted parameter, based on a double exponential
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function. If one assumes that the separable cell states lie as
points in a low dimensional space, these can be transformed
and projected into a higher dimensional space using a linear
transformation while adding a Gaussian distributes noise.
Each point or cell then has the probability of being set to
zero based on the dropout relationship.

Trajectory inference methods have enhanced single cell
analysis which enables us to determine genes that are
associated with specific lineages or are differentially
expressed between lineages via the use of branching events.
Monocole and Beam (85) fit additive models of gene
expresion as a function of pseudotime. Bifurcation analysis
can be inferred to identify whether a gene expression can be
differentially associated with any of two lineages. 

Quite recently it was shown that, by a technique named
velocity (86), the future states of individual cells can be
predicted. In RNA velocity, the time derivative of the gene
expression between spliced and unspliced genes can be
distinguished from the reads that fall within introns and
exons. This can result in an extra layer or feature in a ML
scheme to predict the cell states and cell cycle if also
coupled with Viterbi (87) or a Hidden Markov algorithm or
even if it is introduced in a neural network. In addition, when
introducing mRNA labeling techniques such as in SLAM-seq
(88) with scRNA-seq this creates an extra dimension for
modelling RNA kinetis. Dynamo (89) provides a framework
that incorporates intrinsic splicing with mRNA labeling
kinetics to determine RNA velocities and extract vector
fields that determine and predict future cell fates. To
accomplish this, a machine learning scheme is employed
which contracts a kernel method to learn a vector field in
Hilbert space via the use of weighted linear combination of
functions that describe the field.

Apart from deciphering the dynamics of the transcriptome
per cell type, single cell RNA-seq technologies have
advanced and allow us to decipher the binding properties of
TFs per cellular sub-type. This can be achieved with
scATAC-seq which has emerged as the method of choice to
map open chromatin regions, which can be used to infer TF
binding events per cell type. ScFAN (90) uses a CNN
pretrained on bulk Chip-seq or ATAc-seq data and is used to
predict TF binding properties at the single cell level. The
data input is a feature vector of 1000 base pair bins from
total ATAC-seq, Chip-seq and DNA sequence into a CNN
linked to two fully connected layers while using a sigmoid
function to make predictions of motifs for TFs. This model
is the used on scATAC-seq (91) data to predict the candidate
active TFs per cell state.

More recent methods based upon these principles
introduce a weighted-nearest neighbor approach as in (92),
which enables embedding of multiple datasets to be used for
clustering cell sub-populations. Thus, this allows us to
consider various single-cell approaches such as scATAC-seq

for determining chromatin accessibility or CITE_seq (93) to
be combined and thus infer a specific cell sub-population.

In this section, we have studied several applications of
scRNA-seq analysis while incorporating ML methods to better
project and cluster cells from a high dimensional manifold to
a reduced representation. This however, as studied extensively
in (94), can result to bias regarding the interpenetration of
results. The authors provide an example of a sphere to
determine dimensionality reduction loss by comparing the local
neighborhood of a point in the sphere with the neighborhood
of the same point in the reduced dimensional space using the
Jaccard distance as a metric. Implementing AI techniques for
such a task such as using a VAE network, can greatly
contribute to the dimensionality reduction and loss. Moreover,
considering the reduced representation, data from various
single cell biochemistries and applying specific weights while
building a new graph topology when using all available
information can also improve the observed bias. 

Training on gene expression patterns and GWAs studies to learn
drug targeted therapies. Repositories such as TCGA (31),
Cosmic (95), cBioportal (96) and CPTAC (97) have enabled
scientists to use a large repertoire of data sets targeted on
oncology from samples that are retrieved directly from patients
from a variety of cancer types. Drugs targeting specific genes
are frequently used in chemotherapy, thus learning the
expression values of certain genes, the mutation and
methylation profiles in addition to other features such as
alternative splicing events or specific regulatory features of the
RNA for these transcripts can help determine ultimate
treatments and move towards a more personalized medicine
approach per patient and per cancel type. Recent advances in
this field such as in (98) have used association rule mining
techniques (99) to distinguish how mutations in compliance
with gene expression can result in chemoresistance; this is done
by generating gene association correlations while extracting
scores and ranking them to prioritize pathways. Furthermore,
by incorporating deep neural networks (DNNs) as in (21),
which were trained and optimized on a 1,001 cell-line drug
response database, a model was generated which was tested
blindly on patient cohorts to determine the best treatment. This
approach compared several ML implementations such as
random forests (RFs) and elastic nets (Enets) (100) with DNNs
to decipher the best performance model, while tested from
patients derived from TCGA cohorts and the Multiple myeloma
consortium (101). Another approach named DrugCell (102)
combines conventional artificial neural networks (ANN) with a
visible neural network (VNN) to learn, using as input mutations
from GWAS studies per cancer patient, molecular subsystems
from 2,086 biological processes of the Gene Ontology (GO)
database (Gene Ontology Consortium 2004) and the drug
chemical structure encoding the Morgan fingerprint of a drug
(103) to learn specific drug treatments per groups of patients.
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New sequencing technologies and ML. In the last five years
nanopore technology has started to shape a new era into
introducing fast and simple sequencing technologies (104).
These methods rely on a protein nanopore from which a
DNA or RNA molecule with appropriate adapter priming is
let through the pore. The interaction of each base with the
pore creates a unique current signal whereby the base pair
is determined. Areas of high GC content or polyA repeats
can cause noise during the read-out of the current; thus, ML
is applied to learn and correct for such errors. A hidden
Markov model (HMM) based approach, has been applied to
detect 5mC DNA in CpG from events of Nanopore reads.
Similarly, DeepSignal (105) makes use of convolutional
neural networks (CNN) using as input raw electrical signals
around methylated bases. In parallel, a sequence feature
module uses a bidirectional recurrent neural network
(BRNN) that determines features from sequences of signal
information. Then, the output features from the two modules
(CNN and BRNN) are concatenated and fed into a fully
connected neural network. The advances of such technology
are many; small size of devise makes it portable but also
direct sequencing of RNA molecules to define RNA
modifications makes this technology a promising tool for
RNA biology.

Concluding Remarks 

This work provides an overview of the supervised and
unsupervised ML techniques and the dimensionality
reduction methods that are widely coupled with the
fundamental mathematics behind them. Examples of how
these applications can be used in bioinformatics for multiple
integration of genomic data was shown regarding various
tasks, from deciphering the elements that drive TFs and
RBP binding sites to sc-RNAseq applications while leading
to more holistic approaches for using such data sets to learn
treatments in oncology. Thus, the aim of this review was to
cover the importance and the vast applications of ML in
biology. As a future perspective, a very promising
contribution of AI and ML is strongly related to what we
call “precision medicine”. The main concept behind this
type of approach is to apply principles of medical science
tailored according to the needs and the personal
characteristics of each patient. The era of personalized
medicine, based on omics data, such as genomics or
proteomics, has started. T-cell specific immunotherapy (106)
via seeking for neo-antigens is the next bet of the 21st
century. In conclusion, the vast amounts of daily generated
medical data, the clinical unmet needs, the complexity of
rare and common diseases and the patient’s center strategies
applied in most biomedical institutions, point out an
emerging need for handling medical data in the most
efficient way. ML approaches are necessary tools to be

employed in every aspect of medical clinical practice where
specific research methodologies need to be applied, capable
of optimizing the current health policies and promoting the
transition towards the precision medicine era. 

Supplementary Material

We provide a handbook of extra supplemental material and
examples of code in Python for the most common ML and
Bioinformatic analysis. This can be found under the URL:
https://www.gorgoulis.gr/images/Supplementary_Material_Pe
zoulas_et_al.pdf
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