
Abstract. In addition to chemotherapy, targeted therapies
have been approved for treatment of locally advanced and
metastatic gastric cancer. The therapeutic benefit is
significant but more durable responses and improvement of
survival should be achieved. Therefore, the identification of
new targets and new approaches for clinical treatment are
of paramount importance. In this review, we searched the
literature for down-regulated microRNAs which interfere
with druggable targets and exhibit efficacy in preclinical in
vivo efficacy models. As druggable targets, we selected
transmembrane receptors, secreted factors and enzymes. We
identified 38 microRNAs corresponding to the criteria as
outlined. A total of 13 miRs target transmembrane receptors,
nine inhibit secreted proteins and 16 attenuate enzymes.
These microRNAs are targets for reconstitution therapy of
gastric cancer. Further target validation experiments are
mandatory for all of the identified microRNAs. 

Gastric cancer (GC) is the third-leading cause of cancer
worldwide and is the fourth most common cancer with an
annual death toll of 700 000 worldwide (1). From a
molecular point of view the following subtypes have been
characterized: Epstein–Barr virus, microsatellite instability,

genomically stable and chromosomal instability subtypes, all
correlate with differential prognosis (2). Of all GCs, 90% are
adenocarcinomas which arise from the glandular epithelium
(2). The only curative treatment is surgery. Neo-adjuvant and
adjuvant treatment are integrated with chemotherapy and
radiation, nevertheless the 5-year survival rate for patients
with locally advanced disease is less than 30% and in the
metastatic setting, the median survival is in the range of 1
year (3-5). Preferential organs of metastasis are the liver
(48%), peritoneum (32%), lung (15%) and bone (12%) (6).
New treatment modalities have been introduced, such as
trastuzumab in the subclass of patients with human
epidermal growth factor receptor 2 (HER2)-positive tumors,
and ramucirumab as second-line treatment or in combination
with paclitaxel (3-5). More recently, immune-checkpoint
inhibitory monoclonal antibodies (mAbs) against
programmed cell death protein 1 (PD1), such as nivolumab
and pembrolizumab, have been approved for patients with
heavily pre-treated GC (3-6). Promising clinical studies are
ongoing in claudin 18.2-positive GCs and in those with
fibroblast growth factor receptor 2 (FGFR2) amplification
(3-6). Nevertheless, there is an urgent need to identify new
targets and treatment modalities which lead to durable
responses and improved survival. Many of the recently
identified targets, e.g., those involved in epigenetic
modification or tumor suppressors, are undruggable or
difficult to interfere with (7-9). In this review, we focus on
microRNAs (miRs) which are down-regulated in GC and
interfere with controllable targets (transmembrane receptors,
secreted factors and enzymes) with demonstrated efficacy in
GC-related preclinical in vivo models. The identified targets
need to be validated for treatment of GC and concomitantly
the identified miRs can be evaluated as tools for
reconstitution therapy.
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miRs in Cancer

miRs are synthesized in the nucleus as pri-miRs containing
a hairpin loop, processed to pre-miR hairpin structures, and
are finally exported to the cytoplasm (10, 11). Subsequently,
pre-miRs are cleaved by endoribonuclease DICER to
produce a 22-nucleotide miR duplex with 5’phosphate and a
two-nucleotide overhang at each end (10, 11). One strand of
the 22-nucleotide duplex is maintained (guide strand), the
other strand (passenger strand) is degraded (12, 13). Binding
of the guide strand to the 3’-untranslated region of the
corresponding mRNA leads to degradation or translational
repression of the target mRNA (12, 13). In contrast to small
interfering RNAs which target a single mRNA species, a
single miR species may repress up to 100 mRNAs and vice
versa each mRNA can be inhibited by up to 100 different
miRs. This indicates the potential of miRs to modulate
several pathways and cellular networks (14). In oncology,
miRs can affect the whole cascade of oncogenic events from
tumor initiation, tumor progression and metastasis, as well
as angiogenesis, to interactions with the immune system and
the tumor microenvironment (15-17). Several miRs may act
as oncogenes or tumor suppressors in a context-dependent
way, depending on the cell-type in which they are expressed
(18). In a proof-of-concept (POC) experiment, genetic
deletion of the miR-15/16 cluster in mice recapitulated the
features of chronic lymphocytic leukemia, supporting their
role as tumor suppressors (19). An oncogenic role was
identified for miR-221 which induced hepatocellular
carcinoma in transgenic mice after liver-specific expression
and subsequently many other examples have followed (20).
We recently summarized the role of miRs in metastasis of
breast, ovarian, prostate, non-small-cell lung carcinoma and
pancreatic cancer (21-25). In this review, we focus on miRs
down-regulated in GC which have controllable targets and
which mediate efficacy in preclinical GC-related in vivo
models after reconstitution therapy. 

Transmembrane Receptor Tyrosine Kinases

miR-7 and miR-133. miR-7 (Figure 1A) was shown to be
down-regulated in GC cell lines and its expression was
inversely correlated with metastasis (26, 27). miR-7
suppressed migration of 9811-P GC cells in Matrigel-based
transwell assays and tail vein injection of GC9811-P cells
stably expressing miR-7 gave rise to reduced numbers of
metastatic nodules in the liver of nude mice (26). miR-133a
(Figure 1) was shown to inhibit proliferation of GC cell lines,
their colony formation, migration, invasion, epithelial–
mesenchymal transition (EMT), inducing apoptosis and
repressing tumorigenicity of GC cell lines SGC-7901 and
MGC-803 in nude mice (27). Both miRs target insulin-like
growth-factor receptor 1 (IGF-1R), a transmembrane tyrosine

kinase receptor which is overexpressed in many tumor types
and acts as an oncogene by conferring anti-apoptotic, pro-
survival and transforming properties (28). Expression of IGF-
1R was shown to be positively correlated with poor prognosis
in patients with GC (29). Clinical studies targeting IGF-1R
with mAbs or small molecules are currently underway in
several types of cancer (30-32). Data from The Cancer
Genome Atlas (TCGA) indicated that the steady-state RNA
level of miR-133 was down-regulated in GC tissues, however,
miR-7 was up-regulated in tumor tissues (Figure 2). 

miR-27-3p. miR-27-3p (Figure 1A) was shown to suppress cell
proliferation and induce cell-cycle arrest in BGC-823 cells by
targeting receptor tyrosine kinase-like orphan receptor 1
(ROR1) (33). AGS GC cells co-transfected with a miR-27-3p
inhibitor gave rise to larger tumors after subcutaneous
implantation into nude mice (33). Tumorigenicity of BGC-823
cells was suppressed after transfection with a miR-27-3p
mimic and subcutaneous implantation into nude mice (33). It
was shown that ROR1 induces the SRC/signal transducer and
activator of transcription 3 (STAT3) signaling pathway, which
activates c-MYC, cyclin D1 (CCND1) and subsequently
proliferation of GC cells (33). ROR1 promoted the G0/G1 to
G1/S transition in GC cells and was up-regulated in GC tissues
compared to paired adjacent tissues (33). ROR1 is an
oncofetal antigen for tumor therapy and acts as a survival
factor for cancer cells (34). Hematological cancers have been
the focus as a target indication of ROR1 inhibitors (35). ROR1
is highly expressed in GC (36). More comprehensive ROR1-
related target assessment would provide a clearer picture of
the validity of this target for the treatment of GC. Data from
TGCA indicate that miR-27a was up-regulated in GC tissues
in comparison to corresponding normal tissues (Figure 2).

miR-302b. miR-302b (Figure 1A) inhibited cell-cycle
progression and Matrigel-based invasion of AGS and SGC-
7901 GC cells by targeting transmembrane tyrosine kinase
erythropoietin-producing hepatocellular carcinoma receptor
A2 (EPHA2) (37). Down-regulation of EPHA2 by miR-302b
suppressed EMT (37). miR-302b negatively regulated
EPHA2/WNT/β catenin signaling (37). Smaller tumors were
observed for SGC-7901 cells transfected with miR-320b after
subcutaneous implantation into nude mice and after tail
injection, and inhibition of lung metastasis was observed
(37). Activation of EMT by EPHA2 in GC has been
described independently (38). EPHA2 was shown to be
associated with poor survival in patients with GC (39).

Other Transmembrane Receptors 

miR-7-5p. miR-7-5p (Figure 1A) was shown to be down-
regulated in GC stem cells positive for cluster of
differentiation 44 (40). Overexpression of miR-7-5p in GC
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stem cells led to inhibition of colony formation and reduced
invasion and tumor growth inhibition in a xenograft model
in nude mice (40). Smoothened and transcription factor
HES1 were identified as targets of miR-7-5p (40, 41).
Smoothened has been identified as a G-protein-related
transmembrane receptor which plays a role in neoplastic
transformation, GC development and cancer–stroma
interaction (42, 43).

miR-22. miR-22 (Figure 1A) was shown to be down-regulated
in GC and associated with advanced clinical progression and
lymph node metastasis (44). Metadherin (MTDH) was
identified as a direct target of miR-22 (44). Expression of
MTDH was inversely correlated with miR-22 levels in GC
(44). miR-22 inhibited GC cell proliferation and invasion by

targeting MTDH in SGC-7901 cells (44). SGC-7911 cells
expressing miR-22 gave rise to less lung metastatic nodules
after tail vein injection in nude mice (44). MTDH was shown
to be overexpressed in several types of cancer and to modulate
pathways such as phosphatidylinositol-4,5-bisphosphate 3-
kinase (PI3K)/AKT, nuclear factor ĸB (NFĸB), mitogen-
activated protein kinase (MAPK) and WNT/β catenin
signaling (45, 46). In GC, MTDH promoted the malignant
phenotype and induced EMT (47). Data derived from TCGA
did not confirm that miR-22 was down-regulated at the RNA
level in GC tissues (Figure 2). 

miR-29c. Expression of integrin β1 (ITGβ1) was found to be
reduced in GC in comparison to corresponding normal
tissues (48). Ectopic expression of miR-29c (Figure 1A) in
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Figure 1. Down-regulated miRs targeting transmembrane receptors with activity in gastric cancer-related in vivo models. Targets and downstream
effectors are shown. A: miR-7, miR-133, miR-27-3p, miR-302b, miR-7-5p, miR-22 and miR-29c; B: miR-148a, miR-218, miR-338, miR-381, miR-
573, miR-874 and miR-993. AKT: Serine-threonine AKT; Angio: angiogenesis; AQP3: aquaporin 3; BCL2: BCL2 apoptosis regulator; CCK-BR:
cholecystokinin receptor B; COX2: cyclo-oxygenase 2; EPHA2: erythropoietin-producing hepatocellular carcinoma receptor A2; ERK1/2:
extracellular signal-regulated kinase; FGF18: fibroblast growth factor 18; GLI: zinc finger protein GLI; IGFR-1R: insulin growth factor receptor
1; ITGβ1: integrin β1; JAK2: Janus kinase 2; MAPK: mitogen-activated protein kinase; MEK: MAPK kinase; MMP2,9: matrix metalloproteinase
2,9; MT1-MMP: membrane-type matrix metalloproteinase-1; MTDH: metadherin; NFĸB: nuclear factor ĸB; PI3K: phosphatidylinositol-4,5-
bisphosphate 3-kinase; PLCγ: phospholipase Cγ; RAF: rapidly accelerated fibrosarcoma; RAS: rat sarcoma; ROBO1: roundabout1; ROR1: tyrosine
kinase-like orphan receptor 1; SLC34A2: solute carrier family 34, member 2; SMD: smoothened; STAT3: signal transducer and activator of
transcription 3; TGFβ: transforming growth factor β; TMEM16A: transmembrane channel 16A; TSPAN1: tetraspanin 1; WNT: WNT signaling. 



GC cell lines inhibited proliferation, adhesion, invasion,
migration and suppressed xenograft tumor growth in nude
mice (48). miR-29c expression stepwise decreased during
hyperplasia–dysplasia transition in transgenic mice models
of GC (48). Loss of ITGβ1 expression is an early step in GC
carcinogenesis (48). ITGβ1 was shown to play an important
role in angiogenesis, sustained proliferative signaling,
resistance to cell death, evasion of immune destruction and
metastasis of several types of cancer (49-51). Data derived
from TGCA have confirmed that miR-29c was down-
regulated in GC tissues at the RNA level in comparison to
corresponding normal tissues (Figure 2).

miR-148a. miR-148a (Figure 1B) was shown to be down-
regulated in GC tissues and cell lines in comparison to
corresponding controls (52). miR-148a inhibits proliferation
and migration in NCI-N87, SGC-7901 and MKN-45 GC cell
lines (52). Ectopic expression of miR-148a attenuated
tumorigenicity of GC cell lines after their subcutaneous
implantation in nude mice (52). Receptor for cholecystokinin
B (CCK-BR) was identified as a target for miR-148a (52).
Its ligand, cholecystokinin B is a peptide hormone secreted
by enteroendocrine cells which, together with gastrin, binds
to CCK-AR and CCK-BR in the gastrointestinal-tract and the
brain (53, 54). CCK-BR is overexpressed by many GCs and
when activated by gastrin stimulates tumor growth by an

autocrine mechanism (53, 54). Gastrin acting on CCK-BR
induces cyclo-oxygenase 2 (COX2) and janus kinase 2
(JAK2)/STAT3/PI3K/AKT signaling (55). Data derived from
TCGA did not reveal a difference in RNA steady-state levels
of miR-148a in GC tissues in comparison to corresponding
normal tissues (Figure 2). 

miR-218. miR-218 (Figure 1B) was found to be decreased in
GC, and was associated with advanced clinical stage, lymph
node metastasis and poor patient prognosis (56). In MKN28
GC cells transfected with miR-218, no effect on proliferation
or the cell cycle was noticed, however, cell migration and
invasion were inhibited (56). After tail vein injection,
complete inhibition of liver and lung metastases was observed
in nude mice (56). Roundabout 1 (ROBO1) was identified as
a direct target of miR-218 (56). ROBO1 is part of a gene
family containing four members with five cytoplasmic
immunoglobulin domains each, three fibronectin type III
repeats, a transmembrane domain and four conserved motifs
in the cytoplasmic domain. The ROBO- family interacts with
three types of SLIT ligands (57). The SLIT/ROBO pathway
is involved in axonal repulsion, axon guidance, neuronal
migration in the nervous system and formation of the vascular
system (57). ROBO1 was found to be overexpressed in cancer
cells and to promote tumor angiogenesis and metastasis via
interaction with SLIT ligands (58). In GC, contradictory
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Figure 2. Expression of selected miRs in gastric adenocarcinoma compared to normal tissues. Data are shown for miR-133, miR-148a, miR-218,
miR-22, miR-27a, miR-29c, miR-338, miR-381, miR-573, miR-7 and miR-874. Data from 436 tumor samples and 41 normal stomach samples derived
from The Cancer Genome Atlas are shown. miR expression was quantified by RNA sequencing and is shown as log2 of normalized read counts.
The red lines indicate lower versus higher expression around 100 counts. Expression data are shown as box plots. The line represents the median
value, the rectangles show the upper and lower 25% quartiles, and 50% of all data points are included in the greater rectangle. All of the data
points, except for the outliers are located within the upper and lower whiskers. 



functions for SLIT/ROBO signaling have been reported by
different groups (59, 60). The role of the SLIT/ROBO
pathway as a target for development of anticancer drugs is
under active investigation (61). Data derived from TGCA
revealed that miR-218 is down-regulated in GC tissues in
comparison to corresponding normal tissues (Figure 2).

miR-338. miR-338 (Figure 1B) was shown to be down-
regulated in GC tissues and cell lines (62). miR-338 directly
targeted neuropilin1 (NRP1), inhibited proliferation,
migration, invasion and promoted apoptosis in AGS and
MKN-45 GC cells (62). miR-338 inhibited EMT and
phosphorylation of extracellular regulated kinase 1/2
(ERK1/2), p38 MAPK and AKT via NRP1 (62). miR-338
ectopically expressed in AGS and MKN-45 GC cells reduced
tumor growth which was restored by expression of NRP1
(62). NRP1 is a multifactor non-tyrosine kinase receptor
which is involved in development of the nervous system and
which acts as a receptor for VEGFA in both endothelial and
tumor cells and affects tumor growth as a co-receptor for
VEGF receptor and transforming growth factor β receptor I
(TGFβRI) and TGFβRII, platelet-derived growth factor,
receptor tyrosine kinase c-MET and semaphorin 3A. NRP1
promotes proliferation, migration, invasion and survival of
tumors cells, as well as angiogenesis (63, 64). A mAb
directed against NRP1 is presently in clinical studies in
patients with solid tumors (65). Data derived from TCGA
revealed that miR-338 was slightly down-regulated at the
RNA level in GC tissues in comparison to corresponding
normal tissues (Figure 2).

miR-381. miR-381 (Figure 1B) was found to decreased in
GC tissues and was associated with adverse
clinicopathological features and poor prognosis (66). miR-
381 inhibited proliferation, invasion and migration of AGS
and BGC-823 GC cells, down-regulates the EMT phenotype
and suppresses transforming growth factor β (TGFβ)
signaling (66). Transmembrane channel 16A (TMEM 16A)
has been identified as a target of miR-381 (66). In vivo, miR-
381 inhibited tumor growth of AGS and BGC-823 GC cells
after subcutaneous implantation into nude mice and lung
metastasis after tail vein injection (66). TMEM 16A is a
voltage-gated calcium-activated anion channel which acts as
a chloride channel (67). TMEM 16A mediates cell invasion
by induction of TGFβ secretion, EMT and MAPK signaling
in GC and several types of cancer (68-70). TMEM 16A is
also involved in cell proliferation, transepithelial iron
transport, neuronal excitability and many other physiological
functions. The structure of TMEM 16A has not yet been
resolved (71). Data derived from TCGA revealed that miR-
381 was slightly down-regulated at the RNA level in GC
tissues in comparison to corresponding normal tissues
(Figure 2). 

miR-573. Knock-down of tetraspanin 1 (TSPAN1) led to
inhibition of proliferation and invasion of BGC-23 and
HGC-27 GC cells (72). BGC-823 and HGC-27 cells
expressing miR-573 (Figure 1B) suppressed tumorigenicity
after subcutaneous implantation into nude mice (72).
TSPAN1 is up-regulated in GC and TSPANs plays a central
role in this type of tumor (73, 74). TSPAN1 promoted EMT
and metastasis of cholangiocarcinoma via PI3K/AKT
signaling (75). TSPANs are associated with proliferative
status and metastasis of cancer cells (76, 77). Targeting of
TSPANs is subject of several drug discovery efforts (78).
Data derived from TCGA indicated very low expression of
miR-573 and equal RNA steady-state levels in GC tissues
and corresponding normal tissues (Figure 2).

miR-874. miR-874 (Figure 1B) was shown to target
aquaporin 3 (AQP3) and its ectopic expression in GC cell
lines suppressed growth, migration, invasion and promotes
apoptosis in vitro (79). In vivo, miR-874 suppressed
tumorigenicity of GC cells after subcutaneous implantation
into nude mice (79). Concomitantly, miR-874 down-
regulated BCL2 apoptosis regulator (BCL2), membrane-type
matrix metalloproteinase 1 (MT1-MMP) and matrix
metalloproteinases 2 and 9 (MMP2 and -9) (79). AQPs
consist of monomers possessing six transmembrane domains
and form homotetramers mediating water transport,
membrane permeability and energy homeostasis (79). AQP3
is found at the basolateral plasma membrane of human
gastric mucosal tissues, mediates cancer cell proliferation,
migration, angiogenesis, metastasis and promotes stem-like
properties of human GC cells by activating WNT/β catenin
signaling (80-82). AQP3 expression was associated with
poor prognosis of GC (83). The downstream effects of AQP3
need to be resolved in more detail to identify markers for
drug discovery projects. Data derived from TCGA indicate
that mR-874 was slightly more highly expressed in GC
tissues in comparison to corresponding normal tissues
(Figure 2). 

miR-993. miR-993 (Figure 1B) was found to be down-
regulated in GC and low expression was correlated with poor
clinical outcome (84). miR-993 suppressed proliferation,
invasion and migration of SGC-7901, MNK-45 and AGS GC
cell lines in vitro (84). In an orthotopic xenograft model,
miR-993 inhibited growth of miR-993-transfected SGC-7901
cells, attenuated phosphorylation of ERK1/2 and the rapidly
accelerated fibrosarcoma (RAF)/MAPK kinase (MEK)/ERK
pathway (84). Solute carrier family 34 member 2 (SLC34A2)
was identified as a direct target of miR-993 (84). SLC34A2
is a transmembrane receptor and transports inorganic
phosphate into epithelial cells via sodium ion cotransport
(85). The oncogenic role of SLC34A2 remains to be resolved
in more detail.
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Secreted Factors

miR-24. miR-24 (Figure 3A) was shown to be down-
regulated in GC tissues compared to non-matched tumor
tissues (86). miR-24 expression in SGC-7901 cells inhibited
proliferation, and led to cell-cycle arrest in G0/G1 phase and
apoptosis (86). Regenerating island-derived protein (REG4)
was identified as a direct target of miR-24 (86). miR-24
overexpression inhibited tumorigenicity of SGC-7901 cells
after subcutaneous implantation into nude mice (86). REG4
is a small secretory protein expressed in gastrointestinal
organs and up-regulated in gastrointestinal tumors (87, 88).
REGs belong to the calcium-dependent lectin (C-type)
superfamily and REG4 contains a single carbohydrate
recognition domain (86). REG4 induces proliferation,
regeneration, carcinogenesis, survival, activates epidermal
growth factor receptor (EGFR)/AKT and is associated with
poor prognosis in GC (87, 88). Identification of receptors
and components of downstream signaling should be resolved
for REG4 target validation in GC.

miR-26a/b. miR-26a/b (Figure 3A) was shown to be down-
regulated in serum and tissues of patients with GC (89). miR-
26a/b inhibited proliferation and migration of MGC-803 and
SGC-7901 GC cells (89). Hepatocyte growth factor (HGF)
was identified as a target of miR-26a/b (88). Overexpression
of HGF in GC cells stimulated increase in VEGF expression
(89). miR-26a/b ectopically expressed in MGC-803 GC cells
inhibited tumorigenicity and vessel growth in nude mice after
subcutaneous implantation, whereas HGF strongly boosted
vessel and tumor growth (89). HGF–c-MET interaction plays
a pivotal role in the growth, survival and invasiveness of GC
and aberrant activation of this pathway is correlated with poor
clinical outcome (90). Several mAbs directed against HGF and
c-MET, as well as selective c-MET tyrosine kinase small-
molecule inhibitors, are presently under clinical investigation
in patients with GC (90-93). 

miR-107. Transfection of SGC-7901 cells with miR-107
(Figure 3A) reduced cell proliferation, wound healing and
migration in transwell assays, and inhibited tumor growth of
these cells in nude mice after subcutaneous implantation (94).
Brain-derived neurotrophic factor was identified as a target
of miR-107 (94), interacts with tropomyosin receptor tyrosine
kinase B and mediates cancer cell growth, proliferation,
survival and EMT by stimulating PI3K, RAS/RAF/MAPK
and phospholipase C signaling, and transactivation of EGFR
(95). Several compounds targeting TRKB are under clinical
investigation in several types of cancer (95). 

miR-126. miR-126 (Figure 3A) inhibited proliferation of
SGC-7901 GC cells and ectopic expression of miR-126 in
SGC-7901 GC cells attenuated tumorigenesis in vivo (96).

miR-126 was inversely correlated with VEGF-A protein and
microvessel density in GC tissue (96). VEGF-A was
identified as a direct target of miR-126 (96). In SGC-7901,
MKN-28 and MKN-45 GC cells, miR-126 also was shown
to inhibit VEGF-A downstream targets such as AKT,
mechanistic target of rapamycin (mTOR) and ERK1/2 (96).
VEGF-A affects division, proliferation and migration of
endothelial cells (97, 98). Ramucirumab, which inhibits
binding of VEGF-A, -C and -D to VEGF receptor 2, is
approved for treatment of advanced and metastatic GC (99).
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Figure 3. Down-regulated miRs targeting secreted factors with activity
in gastric-cancer related in vivo models. Targets and downstream
effectors are shown. A: miR-24, mIR-26a/b, miR-107 and miR-126; B:
miR-148a, miR-195, miR-590-5p, miR-338 and miR-1288. AKT: v-AKT
murine thyoma viral oncogene homolog ; BDNF: brain-derived
neurotrophic factor; bFGF: basic fibroblast growth factor; EGFR:
epidermal growth factor receptor; ERK 1/2: extracellular signal-
regulated kinase; MAPK: mitogen-activated protein kinase; MIF:
macrophage inhibitory factor; mTOR: mechanistic target of rapamycin;
NFĸB: nuclear factor ĸB; NRP1: neuropilin; p38 MAPK: p38 mitogen-
activated protein kinase; PI3K: phospho-inosite-3-kinase; PLCγ:
phospholipase Cγ; RAS: rat sarcoma; REG4: regenerating islet-derived
protein 4; SMAD2,3: small mothers against decapentaplegic homolog
2/3 ; SRC: tyrosine kinase SRC; STAT: signal transducer and activator
of transcription; TGFβ: transforming growth factor β; VEGF-A:
vascular endothelial growth factor A.



miR-148a. miR-148a (Figure 3B) reduced proliferation,
invasion and migration of AGS, YCL3 and SCA GC cells
(100). TGFβ2 and small mothers against decapapentaplegic
homolog 2 (SMAD2) were identified as direct targets of
miR-148a (99). N-Methyl-N-9-nitro-N-nitrosoguanidine
induced GC in rats and increased expression of TGFβ2 and
SMAD2 in rat gastric tissues (100). Tumor growth of BGC-
823 GC cells ectopically expressing miR-148a was reduced
after subcutaneous implantation into nude mice (100).
SMAD2 is a downstream effector of TGFβ2, therefore miR-
148 increased inhibition of TGFβ2 signaling (101, 102).
TGFβ1 and -2 play dual roles in gastrointestinal tumor
development and progression and can act both as a tumor
promoter and TS depending on the stage of carcinogenesis
(103). Elevated levels of TGFβ1/2 were correlated with
lymph node metastasis, poor prognosis and worse survival
in patients with GC (104).

miR-195 and miR-590-5p. miR-195 (Figure 3B) inhibited
migration and invasion by SNU-1 and KATO3 GC cell lines
by targeting basic fibroblast growth factor (bFGF), also
known as fibroblast growth factor 2 (105). Ectopically
expressed miR-195 inhibited tumorigenesis in a xenograft
mouse model, which was restored by re-expression of bFGF
(105). An inverse correlation of expression has been noted
between miR-195-5p and bFGF in human GC tissues (105).
bFGF binds to FGF receptors 1, -2 and -4, acts as a mitogen
for tumor and stromal cells, stimulates angiogenesis and
activates rat sarcoma (RAS)/MAPK, PI3K/AKT,
phospholipase Cγ and STATs (106, 107). bFGF has been
identified as a prognostic factor for patients with GC and
several antagonists (mAbs and small molecules) are
presently under clinical investigation in several types of
cancer (106-108). 

miR-590-5p inhibited proliferation of AGS and MKN28 GC
cell lines (109). Xenograft formation was inhibited in miR-590-
5p transfectants of these cell lines (109). FGF18 was identified
as the target of miR-590-5p (109). Autocrine secretion of
FGF18 promoted tumor growth of GC cell lines (109). FGF18
is a glycosylated protein which interacts with FGFR3 and
FGFR4 and is abundant in GC (109). FGF18 is up-regulated
in GC and is correlated with poor prognosis (109). FGF18
activates angiogenesis, NFĸB, MEK-ERK signaling and
SMAD2/3, key effectors of TGFβ signaling, resulting in cancer
cell proliferation and migration (109-111). Several therapeutic
approaches for inhibition of FGF signaling including receptor
tyrosine kinase inhibitors, receptor neutralizing mAbs and
FGF-ligand traps have been pre-clinically validated and are
under clinical investigation (112-114). 

miR-1288. miR-1288 (Figure 3B) was found to be increased
in G0/G1 phase cells in GC cells and to reduce VEGF

secretion (115). Conditioned media from miR-1288-
overexpressing GC cells reduce the capacity and to promote
endothelial cell migration and tube formation in comparison
to the media of control cells (115). Macrophage inhibitory
factor (MIF) was identified as a target of miR-1288 (115). In
nude mice, coexpression of MIF with miR-1288 increased
tumor growth and microvascular density (115). MIF interacts
with cluster of differentiation 74 (CD74) as a receptor, forms
a signaling complex with CD44 and SRC and activates
ERK1/2, MAPK and WNT signaling, inhibits apoptosis and
reduces expression of E-cadherin (116). Furthermore, MIF
induces an antitumor immune response by increasing
secretion of inflammatory cytokines such as tumor necrosis
factor α, interferon-γ, interleukin-1β and -12 (116). MIF has
at least two distinct catalytic activities as a keto-enol
tautomerase and as a thiol-protein oxidoreductase, which are
both druggable. The contribution of these activities to
functions as described above needs still to be resolved (116).
MIF is a poor prognosis factor in GC and several MIF-
inhibitory agents are under preclinical evaluation as
anticancer agents, but for GC, more target validation
experiments are required (117). 

miRs Targeting Enzymes

Ser-Thr Kinases
miR-137. miR-137 (Figure 4A) was shown to be down-
regulated in GC cells and clinical samples (118). miR-137
inhibited proliferation, migration and induces apoptosis of
GC cell lines HGC-27 and SGC-7901 (118). miR-137
attenuated tumor growth of HGC-27 and SGC-7901 cells
ectopically expressing miR-137 after subcutaneous
implantation into nude mice and lung metastases after tail
vein injection (118). v-AKT murine thymoma viral oncogene
homolog 2 (AKT2) was identified as a direct target of miR-
137 (118). miR-137 also down-regulated AKT2 effectors
glycogen-synthase 3β and BCL2-antagonist-of-cell-death
(BAD) (118). AKT2 is activated by PI3K or phosphoinosite-
dependent kinases, as well as growth factors, inflammation
and DNA damage, and is a mediator of survival,
proliferation, migration and angiogenesis of tumor cells
(119). Several small-molecule AKT inhibitors are undergoing
clinical studies in cancer-related indications (119, 120). 

miR-199b/a-3p. Expression of miR-199b/a-3p (Figure 4A)
was shown to be reduced in GC compared to corresponding
normal tissues and inhibited proliferation of MGC-803 and
SGC-7901 GC cells (121). p21 activated kinase 4 (PAK4)
was identified as a target of miR-199b/a-3p (121). miR-
199b/a-3p mimics transfected into MGC-803 cells inhibited
tumor growth and reduced the PAK4 level after
subcutaneous transplantation into nude mice (121). miR-
199b/a-3p suppressed PAK4/MEK/ERK signaling in MGC-
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803 and SGC-7901 cells (121). PAK4 silencing inhibited
proliferation of MGC-803 and SGC-7901 cells (121).
Furthermore, it has been shown that PAK4 binds to
translation elongation factor eEF1A1 to promote GC cell
migration and invasion (122). PAK4 has been shown to
mediate cancer cell proliferation, invasion, metastasis, EMT,
drug resistance, WNT/β-catenin signaling, to activate cAMP
response element-binding protein and to play a role in
actin/cytoskeletal organization (123). In patients with GC,
high PAK4 expression is associated with poorer disease-
specific survival (124, 125).

miR-203. Expression of miR-203 (Figure 4A) was shown to
be decreased in GC (126). Ectopic expression of miR-203 in
SGC-7901 cells inhibited invasion and motility, and reduced

expression of phospho-ERK1/2 and SLUG (126). In nude
mice, miR-203 inhibited peritoneal metastasis of SGC-7901
cells (126). ERK1/2 contributes to MEK-ERK-MAPK
signaling, which plays a role in proliferation and progression
of many types of tumors, and several inhibitors of this
pathway have reached clinical trials (127, 128). 

Non-receptor Tyrosine Kinases
miR-140-5p. miR-140-5p (Figure 4A) was shown to be down-
regulated in GC tissues and down-regulation was correlated
with poor patient survival (129). miR-140-5p suppressed
proliferation, invasion and migration of AGS and BGC-823 GC
cells in vitro (129). Proto-oncogene tyrosine kinase 1 (YES1)
was identified as a target of miR-140-5p (129). Reconstitution
of YES1 rescued miR-140-5p-mediates inhibition of GC cells
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Figure 4. Down-regulated miRs targeting enzymes with activity in gastric cancer-related in vivo models. Targets and downstream effectors are
shown. A: miR-137, miR-199b/a-3p, miR-203, miR-140-5p, miR-375, miR-1224; B: miR-146, miR-338-3p, miR-1182, miR-1207-5p, miR-1266, miR-
124, miR-330-3p, miR-137, miR-516-3p and miR-5590-3p. AKT2: v-AKT murine thyoma viral oncogene homolog 2 (AKT2); BAD: BCL2 antagonist
of cell death; c-MYC: transcription factor c-MYC; COX2: cyclo-oxygenase 2; DDX5: dead box protein 5; ERK1/2: extracellular signal regulated
kinase 1,2; FAK1: focal adhesion kinase 1; FOXOM1: forkhead box protein M1; GSK3β: glycogen synthase 3β; JAK2: janus kinase 2; MAPK:
mitogen-activated protein kinase; MEK: mitogen-activated protein kinase kinase; mTOR: mechanistic target of rapamycin; NFĸB: nuclear factor
ĸB; p21: cyclin-dependent kinase inhibitor; PAK4: p21-activated protein kinase 4; pAKT: phospho-serine-threonine kinase AKT; pERK1/2: phospho-
extracellular signal regulated kinase 1,2; PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase; protein p27: cell-cycle regulatory protein; PTP-
1B: protein tyrosine phosphatase 1B; SPHK1: sphingosine kinase 1; STAT3,5: signal transducer and activator of transcription 3,5; TERT: telomere
reverse transcriptase; WNT: WNT signaling; YES1: protein tyrosine kinase 1. 



(129). miR-140-5p suppressed growth of BGC-823 xenografts
in nude mice (129). YES1 is member of the SRC-family of
non-receptor kinases which is recruited to receptor tyrosine
kinases and phosphorylates its substrates to activate signaling
pathways. YES1 acts as a proto-oncogene and stimulates PI3K
and WNT/β-catenin signaling (130). YES1 is also involved in
regulation of the cell-cycle and cytokinesis (131). Gene
amplification of YES1 has been observed in cancer tissues
(132). In GC, more detailed investigations uncovering the role
of YES1 should be performed.

miR-375. miR-375 (Figure 4A) was shown to be frequently
down-regulated in GC and to inhibit proliferation of AGS and
MGC-803 GC cells (133). Ectopic expression of miR-375 in
MGC-803 cells suppressed growth as xenografts in nude mice
(133). JAK2 was identified as a target of miR-375 (133). miR-
375 down-regulation was associated with increase in JAK2
protein in GC (133). V617F mutation of JAK2 is involved in
the pathogenesis and therapy of myeloproliferative disorders
such as polycythemia vera, essential thrombocythemia and
primary myelofibrosis (134, 135). JAK2 is a mediator of
signaling of the type II cytokine receptor family, such as
granulocyte-macrophage colony stimulating factor receptor,
interleukin 6 receptor and erythropoietin receptor and small-
molecule inhibitors of JAK2 have been generated for
treatment of myeloproliferative neoplasms (136). In GC, it
has been shown that matrix vitamin K-dependent
carboxylation/gamma-carboxyglutamic domain protein leads
to tumor progression by JAK2/STAT5 signaling (137). 

miR-1224. miR-1224 (Figure 4A) was shown to be down-
regulated in GC and this was correlated with lymph-node
metastasis and poor prognosis (138). In MKN-7 and MKN-
28 GC cells, miR-1224 inhibited cell migration and EMT
(138). MKN-7 cells transfected with a miR-1224 agomir
exhibited reduced lung metastasis after tail vein injection
into nude mice (138). Focal adhesion kinase 1 (FAK1) was
identified as a target of miR-1224 (138). miR-1224-FAK1
interaction suppressed migration and EMT of GC cells by
inhibition of STAT3 and NFĸB pathways (138). FAK1 is a
non-receptor tyrosine kinase that mediates integrin signaling,
proliferation and survival (139). The options for therapeutic
intervention are small-molecule kinase inhibitors or
inhibitors interfering with kinase-independent scaffolding
functions. Several inhibitors are in clinical development for
treatment of cancer (139-142). FAK1 has been shown to be
involved in invasion and metastasis of GC (143) and
inhibition of FAK1 was shown to induce apoptosis of GC
cells (144). 

miR-146b and miR-338-3p. An inverse correlation between
miR-146b (Figure 4B) and its target protein tyrosine
phosphatase 1B (PTP-1B) has been uncovered in GC tissues

(145). miR-146b inhibited growth of GC cells and induced
apoptosis which can be reversed by PTP-1B (145). In
xenografts of miR-146-expressing GC cells, tumor growth
was inhibited and expression of PTP-1B reduced (145).

miR-338-3p (Figure 4B) has been shown to target PTP-
1B, as well as attenuating migration and inducing apoptosis
of GC cell lines MKN-45 and MGC-803 (146). In an
orthotopic xenograft model in nude mice, tumor growth of
MKN-45 cells transfected with miR-338-3p was inhibited.
Metastasis of these cells was blocked in a dissemination
model in nude mice after injection into the peritoneal cavity
(146). In GC cells, PTP-1B overexpression elevated the
levels of pAKT and pERK1/2 (146). PTP-1B is a non-
membrane tyrosine phosphatase with tumor-suppressing and
-promoting effects depending on the substrates involved and
the cellular context (147). PTP-1B is a negative regulator of
the insulin signaling pathway and is a potential target for
treatment of type 2 diabetes (148). For GC, the role of PTP-
1B remains to be worked out in more detail.

miR-1182, miR-1207-5p and miR-1266. miR-1182 (Figure
4B) targeted telomerase reverse transcriptase (TERT) by
binding to its open reading frame, whereas miR-1207-5p
and miR-1266 bind to its 3’-untranslated region (149, 150).
These miRs inhibited proliferation, induced cell-cycle
arrest in SGC-7901 and U2OS GC cells; these effects were
rescued by their antagomirs (149, 150). miR-1182
attenuated the proliferative and metastatic potential of
SGC-7901 GC cells in nude mice (149). miR-1207-5p and
-1266 inhibited growth of transplanted SGC-7901 cells in
nude mice (149). An inverse correlation between miR-1182
and TERT expression has been noted in patients with GC
(150). The telomerase complex consists of TERT and the
RNA component. The loss of telomerase maintenance
results in cell death and its inhibition led to improved
outcomes in cancer-related xenograft models (151). The
clinical development of small-molecule TERT inhibitors is
hampered by efficacy issues (152, 153). Immunotherapeutic
approaches such as vaccination against TERT are also
being pursued (154). TERT expression in GC was found to
have prognostic value because it is correlated with
pathological variables and lymph node metastasis (155).
Inhibition of TERT through reconstitution of miR-1182,
miR-1207-5p or miR-1266 (Figure 4B) is an innovative
approach for treatment of GC but more POC experiments
should be performed. 

Other Enzymes
miR-124 and miR330-3p. Sphingosin kinase 1 (SPHK1), the
target of miR-124 was found to be up-regulated in GC tissues
and to be associated with shorter survival of patients (156,
157). miR-124 (Figure 4B) was inversely correlated with
SPHK1 expression in GC samples (156). miR-124 inhibited
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proliferation of GC cells in vitro and in vivo in nude mice
(156). miR-124 induced downstream cell-cycle inhibitory
proteins p21 and p27, suppressed AKT and enhanced the
transcriptional activity of forkhead box O1 (156).

miR-330-3p (Figure 4B) was shown to target SPHK1 and
sphingosin1-phosphate receptor 1 (S1PR1) (157). Ectopic
expression of miR-330-3p inhibited proliferation, migration,
in vitro invasion, and tumor growth of MKN1 GC cells after
subcutaneous implantation into nude mice (157). In MKN1
and KATO3 cells, inhibition of SPHK1 by short-hairpin
RNA suppressed c-MYC and increased expression of p21
and p27 (157). miR-330-3p inhibited the ERK/AKT pathway
in GC cells (156). SPHK1 and S1PR1 were shown to be
activated in GC (158). In cancer cells, ceramide and
sphingosine inhibited cell proliferation and induce apoptosis,
while S1P has the opposite effect (159, 160). However, the
issue is complicated since S1P can bind to five G-protein-
coupled receptors with different outcomes regarding cell
invasion. The physiological function of S1P may therefore
be dependent on the S1PR receptor profile of the
corresponding tumor cell (159, 160). Therefore, for GC more
target validation experiments are necessary concerning the
role of SPHK1 as a therapeutic target. 

miR-137. miR-137 (Figure 4B) was found to be
underexpressed in patients with GC and cell lines in
comparison to corresponding controls (161). miR-137
reduced cell proliferation, and impaired migration and
invasion in MGC-803 and HGC-27 GC cell lines (161). miR-
137 suppressed growth of MGC-803 xenografts (161).
Cyclo-oxygenase 2 (COX2) has been identified as a direct
target of miR-137 (161). Ectopic expression of miR-137 in
GC cells suppressed expression of p-AKT (161). The
COX2–prostaglandin pathway is activated in several types
of cancer and is correlated with aggressiveness and
metastasis (162). In GC, the COX2–prostaglandin pathway
induces inflammatory cytokines such as IL11, chemokine (C-
X-C) motif ligands 1, 2, 5 (CXCL1, 2, 5) which have tumor-
promoting functions by different mechanisms (163). COX2
and miR-137 deserve further target validation in GC.

miR-516-3p. A highly metastatic variant of scirrhous GC,
cell line 44As3, was used to identify sulfatase-1 (SULF1) as
a direct target of miR-516-3p (Figure 4B), which shows
reduced expression in GC tissues (164). Scirrhous GC
exhibits a high frequency of metastasis to the peritoneum
(165). Stable overexpression of miR-516-3p in 44As3 cells
reduced proliferation, migration and invasion in vitro (164).
Longer overall survival and less ascites fluid were noticed in
orthotopic 44A3 tumors intratumorally injected with an
expression vector for miR-516-3p (164). SULF1 is an
extracellular sulfatase which removes internal glucosamine-
6-sulfate from heparan sulfate proteoglycans, thereby

modulating interactions with various signaling molecules
(165, 166). SULF1 promotes WNT signaling by liberating
WNT ligands which bind to frizzled receptors by an
autocrine mechanism (167-169). Further target validation
experiments for miR-516-3p and SULF1 in GC should be
performed.

miR-5590-3p. miR-5590-3p (Figure 4B) was found to be
down-regulated in GC tissues and to target portable ATP-
dependent helicase DEAD box protein 5 (DDX5) (170). It
suppressed GC cell proliferation in vitro and in vivo through
the DDX5/AKT/mTOR pathway and inhibition of
downstream CCND1 and cyclin-dependent kinase 2
expression (169). DDX5 is a member of the family of
DEAD-box helicases (170, 171). DDX5 is involved in
tumorigenesis, proliferation, metastasis and regulates several
cancer-related pathways (172). DDX5 resolves G-
quadruplexes and mediates c-MYC gene transcriptonal
activation (173). The role of miR-5590-3p and DDX5 in GC
remains to be further elucidated and validated.

Conclusion and Perspectives

In this review, we did not discuss down-regulated miRs
targeting MMPs with efficacy in preclinical in vivo models
of GC because studies of MMP inhibitors in cancer-related
indications have devalidated these targets. Identification of
a down-regulated miR defines targets for therapeutic
intervention which can be inhibited with small molecules,
mAb-related moieties or immunological intervention. We
identified 38 miRs covering tractable targets such as
transmembrane receptors (n=13), secreted factors (n=9) and
enzymes (n=16). All of the identified targets need more
target-validation experiments to support their role as targets
for treatment of GC. A critical issue is that several targets
have tumor-promoting as well as tumor-suppressive
functions in a context-dependent manner as described in the
preceding sections. An important issue is the reconstitution
of functions such as proliferation, invasion and survival in
GC cell lines ectopically expressing the corresponding miRs
through reconstitution of expression of the corresponding
targets. Investigation of target-related pathways for
identification of pharmaco-kinetic and pharmaco-dynamic
markers is another crucial issue. The prevalence of
expression of the identified targets should also be
investigated in more detail.

Another option is therapeutic intervention by
reconstitution therapy resulting in expression of the
corresponding miR or synthetic double-stranded miR mimics
in GC tumors. miRs can be administered intra-tumorally,
systemically in appropriate formulations, or as plasmids or
viral vectors (13, 174-176). Adeno-associated virus-based
vectors have emerged as preferred vehicles for replacement
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therapy (177, 178). POC experiments in mouse lung cancer
models have shown that reconstitution of Let-7 (179), miR-
29b (180) and miR-708-5p (181) inhibits tumor growth.
Clinical approaches for reconstitution therapy have relied on
miR-34a and miR-16. miR-34 inhibits crucial oncogenic
pathways such as EMT, NOTCH, WNT and TGFβ/SMAD
and its reconstitution leads to inhibition of tumor growth in
several xenograft models (182). However, a clinical phase I
trial in patients with different tumors involving
administration of lipid nanoparticles filled with miR-34
mimetics had to be closed due to immune-related side-effects
(182, 183). In another clinical study, EGFR-coated bacterial
minicells expressing miR-16 mimics were injected into
patients with metastatic pleural mesothelioma (184). miR-16
mediates a tumor-suppressive effect by down-regulation of
BCL2 and CCND1 (185). In a phase I study with 27 patients
with malignant pleural mesothelioma, one objective response
and stabilization of disease in 15 patients was observed
(185). Taken together, clinical POC for miR reconstitution
therapy has not yet been achieved in patients with cancer.

From a preclinical point of view, many critical issues have
to be resolved. These issues have to be tackled case-by-case
and are not discussed in detail in this review. Among the
critical issues are: The development of efficient delivery
systems, pharmaco-kinetic and pharmaco-dynamic issues,
cytokine-release syndrome, hematological and hepatic
toxicity, removal of complexed nucleic acids by the reticulo-
endothelial system, entry into the target cell and endosomal
escape (12, 186-192).

The next couple of years will tell us whether POC of miR-
based reconstitution therapy in patients with cancer can be
achieved in a clinical setting. 
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