
Abstract. Hepatocellular carcinoma (HCC) is the sixth
most frequently diagnosed cancer and the third leading
cause of cancer-related deaths worldwide. Advanced-stage
HCC patients have poor survival rates and this requires the
discovery of novel clear biomarkers for HCC early diagnosis
and prognosis, identifying risk factors, distinguishing HCC
from non-HCC liver diseases, and assessment of treatment
response. Liquid biopsy has emerged as a novel minimally
invasive approach to enable monitoring tumor progression,
metastasis, and recurrence. Since the liquid biopsy analysis
has relatively high specificity and low sensitivity in cancer
early detection, there is a risk of bias. Next-generation
sequencing (NGS) technologies provide accurate and
comprehensive gene expression and mutational profiling of
liquid biopsies including cell-free circulating tumor DNA
(ctDNA), circulating tumor cells (CTCs), and genomic
components of extracellular vesicles (EVs) including micro-
RNAs (miRNAs), long non-coding RNAs (lncRNAs) and
circular RNAs (circRNAs). Since HCC is a highly
heterogeneous cancer, HCC patients can display various
genomic, epigenomic, and transcriptomic patterns and
exhibit varying sensitivity to treatment options. Identification

of individual variabilities in genomic signatures in liquid
biopsy has the potential to greatly enhance precision
oncology capabilities. In this review, we highlight and
critically discuss the latest progress in characterizing the
genomic landscape of liquid biopsy, which can advance HCC
personalized medicine.

Hepatocellular carcinoma (HCC) is the most prevalent form
of liver cancer, which represents the sixth most frequently
diagnosed cancer and the third leading cause of cancer-
related death worldwide (1). HCC early detection,
surveillance status, and curative treatment are associated
with significant improvements in patients’ overall survival
(OS) (2). However, the HCC incidence rate is growing every
year and its early diagnosis and accurate staging remain
challenging (3). An additional challenge is HCC risk
assessment and the prevention of cancer recurrence along
with monitoring the patients’ postoperative status and
treatment response (4). 

From 70% to 90% of all HCC cases develop as a
consequence of liver cirrhosis that, in turn, can be caused by
inflammation associated with hepatitis B virus (HBV) or
hepatitis C virus (HCV), exposure to toxins such as alcohol
abuse and aflatoxin B1 (AFB1), congenital disorders, and
metabolic syndrome (5). Since a large proportion of patients
with HCC are accompanied by cirrhosis, it is considered as
an important factor in liver injury, which leads to liver
cancer. Therefore, the discovery of minimally invasive
biomarkers that could enable precise HCC risk prediction
and differentiating HCC from non-HCC diseases are
important to identify the early stages of HCC (6). 

Alpha-fetoprotein (AFP) is the only biomarker
recommended for clinical usage in HCC; however, it
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demonstrates relatively low sensitivity and specificity and
limited diagnostic performance (7). Combined usage of AFP
with its glycoform, AFP-L3, and with des-gamma
carboxyprothrombin (DCP) significantly improves the
performance of HCC detection. Other efficient candidate
biomarkers and biomarker panels and models for detecting
HCC at early stages are also being proposed (8, 9). With the
progress in next-generation sequencing (NGS) and the
development of multi-omics technologies, individual
variability in gene expression patterns can be assessed (10).
This is especially important in the case of HCC, cancer with
a high degree of intra- and inter-tumoral heterogeneity and
a variety of molecular subtypes (11-13). Multi-omics-based
biomarker screening has a great potential in enabling
personalized treatment or risk-stratified management of HCC
patients (14-16). 

Personalized medicine is an emerging field, which
provides novel approaches to disease's early diagnosis,
prevention, prognosis, and treatment response based on
individual variabilities in gene expression profiles,
environmental factors, lifestyle, and diet (17). If a disease
such as cancer has complex pathogenesis, patients can
display various genomic, epigenomic, and transcriptomic
patterns and can have different sensitivity to treatment
options (18, 19). The whole-genome analysis enables
identifying somatic mutations and gene amplification and
greatly enhances precision oncology capabilities. This can be
achieved through the usage of both inclusionary and
exclusionary biomarkers that can improve the quality of
patient care (20).

Recently, a new noninvasive approach, liquid biopsy, to
detect and monitor tumors has been developed as an
alternative approach to conventional tissue biopsy. A liquid
biopsy enables repeated analysis of biomolecules collected
from the blood circulation and other body fluids such as
cerebrospinal or pleural fluids, saliva, and ascites (21). Such
an approach allows analyzing cell-free circulating tumor
DNA (ctDNA), circulating tumor cells (CTCs), and
circulating non-coding RNAs (ncRNAs) (22, 23). Recent
systematic reviews and meta-analyses showed that genomic
profiling of liquid biopsy is a promising strategy in the
identification of individual mutational patterns of HCC
patients. However, the examination of liquid biopsy has
relatively low sensitivity and high specificity in the early
detection of HCC and there is a risk of bias (24-26).
Therefore, accurate phenotyping and genotyping of liquid
biopsy are of crucial importance. 

Our review highlights and critically discusses the recent
advancements in the identification of tumor-specific genomic
signatures in ctDNA, CTCs, and exosomal ncRNAs as well
as the assessment of their utility of HCC diagnosis and
prognosis, and the prediction of treatment efficacy. We focus
on the identification of individual variabilities in gene

expression and mutational profiles of HCC patients with the
use of liquid biopsy (with the exception of circulating, non-
exosomal ncRNAs) for the development of personalized
patient management and treatment strategies.

Genomic Signatures of Circulating Tumor DNA

Cell-free ctDNA is derived from small fragments of genomic
DNA, which arise in the blood circulation due to cell death.
ctDNA can be detected in more than 75% of advanced staged
human malignancies including pancreatic, ovarian,
colorectal, bladder, gastroesophageal, breast, melanoma,
hepatocellular, and head and neck cancers, but in less than
50% of the primary brain, renal, prostate, or thyroid cancers
(27). As Jiang et al. demonstrated the size distributions of
plasma DNA fragments of HCC patients, HBV carriers with
and without cirrhosis and healthy controls have a peak at 166
base pairs (bp) (28). However, a positive correlation has
been observed between the proportion of cell-free DNA
fragments of less than 150 bp and the tumor DNA
concentration in plasma, no correlation if ctDNA length is
between 150 and 180 bp, and a negative correlation if
ctDNA length is >180 bp. The average fragment size of cell-
free DNA was lower than that in tissue extracts indicating
that ctDNA originates from tumor cells upon their apoptosis.

ctDNA in HCC diagnosis and prognosis. ctDNA has been
identified with the use of deep sequencing in all stages of
HCC to allow detection of somatic mutations in key genes,
which drive hepatic carcinogenesis. Ng et al. showed that
somatic mutations in HCC-associated genes are present in
the ctDNA of 63% of patients and can be detected without
prior knowledge of the mutations present in tissue biopsy in
27% (8/30) of patients (29). However, Howell et al.
demonstrated high specificity, but low sensitivity of plasma
ctDNA for detecting mutations in HCC tissue, since 71% of
patients had mutations identified in HCC tissue DNA that
were not detected in the matched ctDNA (30). They
observed lower plasma ctDNA levels in Barcelona Clinic
Liver Cancer (BCLC) stage A as compared to BCLC stage
B/C/D (median 122.89 ng/mL vs 168.21 ng/mL) HCC
patients. 29 mutations in eight genes (21 unique mutations)
were detected in 18/51 patients (35%); the most frequently
mutated gene was ARID1A (11.7%), followed by CTNNB1
(7.8%) and TP53 (7.8%). Additionally, Liao et al. found that
ctDNA with mutations in HCC driver genes such as TERT,
CTNNB1, and TP53 can be detected in patients who suffered
from vascular invasion predicting a shorter recurrence-free
survival (RFS) (31). 

The ultra-deep sequencing of all exons in a targeted panel
of 58 genes including frequent HCC driver genes revealed
21 somatic mutations in the tumor tissue of 75% of patients
(32). 15 of 21 somatic mutations in oncogenes and tumor
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suppressors (TERT promoter, TP53, CTNNB1, JAK1, AXIN1,
and NTRK3) have been identified in plasma and serum of
HCC patients, evidencing that ctDNA allows confidential
detection of mutations characteristic for tumor tissue.
Additionally, somatic copy number alterations (SCNA)-
based machine learning and low-depth whole-genome
sequencing of ctDNA in 384 plasma samples allowed early
detection of HBV-related HCC and distinguishing cancer-
free HBV patients (33).

Mutations in human telomerase reverse transcriptase
(TERT) gene promoter are the most prominent in HCC
tumor tissue. A recent study showed that about 55% of 130
HCC patients are positive in ctDNA TERT promoter
mutations, and this correlates with large tumor size and high
DCP levels, followed by significantly shorter OS (34).
Moreover, a triple diagnostic panel consisting of ctDNA
TERT promoter mutations (C228T and C250T), miR-122,
and AFP showed the best performance in distinguishing
HBV-related HCC from non-HCC diseases such as chronic
hepatitis B (CHB) and liver cirrhosis (35). Additionally, a
positive correlation between the presence of TERT promoter
mutation in plasma and an advanced tumor-node-metastasis
(TNM) stage and vascular invasion has been observed in
42/95 HCC patients (36).

The exposure to dietary AFB1 induces DNA damage and
mutations in TP53 gene (TP53 R249S). HBV exerts a
synergistic effect with the AFB1 exposure to promote
hepatocarcinogenesis (37). A somatic mutation in TP53 that
causes the R249S substitution has been found in ctDNA of
HCC patients with or without hepatectomy (38). In operable
HCC, TP53 is the most common ctDNA mutant gene (50%),
while R249S is the most recurrent mutation (19.2%) (39).
HCC patients with a detectable mutation in postoperative
plasma had a poor disease-free survival (DFS) than those
without mutation (17.5 months vs 6.7 months), and
postoperative ctDNA status can serve as an independent risk
factor for the disease recurrence. 

ctDNA epigenetic profiling also represents a promising
approach for non-invasive cancer detection, since the
inclusion of ctDNA methylation patterns enhances ctDNA
diagnostic and prognostic value.  For example,
hypomethylation near HBV integration sites was detected in
HCC patients, but not in patients with hepatitis or cirrhosis
(40). Methylation profiles of tumor DNA and ctDNA have
been shown to highly match each other, while diagnostic
specificity and sensitivity of methylated ctDNA correlate
with tumor stage and progression as well as treatment
response. The methylated CpG island tandem amplification
and sequencing (MCTA-Seq) showed that the liver is a major
non-hematopoietic tissue contributing to plasma ctDNA level
in healthy adults (41). A meta-analysis performed using both
quantitative or qualitative analysis of ctDNA with the
involvement of ctDNA methylation profiling and 33 papers

with 4,113 patients showed that ctDNA displays promising
diagnostic potential in HCC. However, ctDNA cannot serve
as an independent tool for HCC detection being only
complementary to AFP (42).

ctDNA in predicting treatment response. Curative treatment
with the use of surgical resection, liver transplantation (LT),
trans-arterial chemoembolization (TACE) and selective
internal radiotherapy (SIRT) are applicable only at the early
stages of HCC and in less than 30% of cases (43, 44).
However, ctDNA level can serve to predict patients’ survival
and the disease recurrence in operable HCC. For example,
Long et al. observed that the ctDNA-low and ctDNA-high
HCC patients had median recurrence times of 19.5 months
and 14.0 months, respectively (45). Multivariate analysis
showed that postoperative ctDNA, tumor number and
microvascular invasion were independent risk factors for
recurrence in operable HCC.

About 70%-80% of HCC patients are diagnosed at the
advanced stages and can receive only systemic therapy with
the use of multi-kinase inhibitors (MKIs), CDK4/6 inhibitors
or immune checkpoint inhibitors (ICIs) (46-48). Selecting a
treatment strategy is very complicated and dictates the
necessity of biomarkers with clinical significance for
predicting treatment efficacy and safety and for monitoring
individual susceptibility to treatment. Targeted ultra-deep
sequencing of 25 genes and Digital Droplet PCR of the TERT
promoter in ctDNA have been exploited to identify predictors
of primary resistance of advanced-staged HCC patients to
systemic therapies. The most frequent mutations in the
ctDNA of patients with advanced HCC were TERT promoter
(51%), TP53 (32%), CTNNB1 (17%), PTEN (8%), AXIN1,
ARID2, KMT2D, and TSC2 (6% each) (49). TP53 and
CTNNB1 mutations were mutually exclusive. MKI-treated
patients with mutations in genes encoding the components of
phosphatidyl-inositol-3-kinase (PI3K)/mechanistic target of
rapamycin (mTOR) pathway had significantly shorter
progression-free survival (PFS) than those without these
mutations. Treatment with ICIs had no effects on PFS time
of advanced-staged HCC patients with mutations in the
PI3K/mTOR signaling pathway. 

Nakatsuka et al. found that significant increase in ctDNA
levels associate with clinical stage, and a poor prognosis in
HCC (50). Moreover, ctDNA levels increased significantly a
few days after treatment with molecular-targeted agents such
as lenvatinib, and there was a correlation between post-
treatment ctDNA levels and therapeutic response.
Furthermore, the rate of TERT mutations increased from
45% to 57% in post-treatment ctDNA, suggesting dynamic
changes in mutation rate and their predictive roles in HCC
treatment.

Dynamic quantitative and qualitative changes in ctDNA
after treatment can also be observed with a serial assessment
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of ctDNA concentrations and mutational landscape. Ikeda et
al. used serial NSG to identify mutational changes including
single nucleotide variants (SNVs), amplifications, fusions,
and specific insertions/deletions in genomic DNA and
ctDNA after treatment with the pyrimidine antagonist
capecitabine (51). The concordance levels between tissue
DNA and ctDNA for the three most commonly altered genes,
TP53, CTNNB1, and ARID1A, were 50.0%, 100.0%, and
90.0%, respectively. However, 4 of 5 patients with metabolic
syndrome, 10 of 17 patients with HCV, and one patient with
HBV had a TP53 mutation. Data on ctDNA mutational
profiles implicated in HCC are summarized in Table I.

Development of ctDNA tests. Frequently, ctDNA and tissue
DNA show different mutational profiles. This can be
explained by the facts that (i) tissue and blood samples are
collected at different time points; (ii) ctDNA originates from
multiple sites, while tissue DNA originates from the biopsied
site; and (iii) ctDNA clones are suppressed during therapy.
Dynamic changes in ctDNA SNVs and CNVs in long-term
follow-up HCC patients correlated with tumor burden has
been observed (52). The assessment of ctDNA mutational
profile showed superior performance in combination with
serum protein biomarkers such as AFP, AFP-L3%, and DCP,
as well as tumor imaging for personalized tumor profiling
and the assessment of OS and RFS after surgical resection
and other adjuvant therapies (such as TACE, SIRT, and
targeted treatment).

The use of combined detection of ctDNA alterations and
protein biomarkers such as AFP is a feasible approach to
identify early-stage HCC. The liquid biopsy assay,
HCCscreen, for the early detection of the surface antigen of
hepatitis B virus (HBsAg)-positive asymptomatic people
with unknown HCC status has been developed by Qu et al.
(53). The test has allowed identifying a total of 24 positive
cases, among which four had confirmed HCC developed at
a clinical follow-up for 6-8 months. The assay showed 100%
sensitivity, 94% specificity and 17% positive predictive
value in the validation cohort. Additionally, Kotoh et al.
developed a sensitive methylated SEPT9 assay as a liquid
biopsy test for HCC diagnosis with sensitivity and specificity
of 63.2% and 90.0%, respectively (54). The assay identified
the median copy number of methylated SEPT9 of 0.0, 2.0,
and 6.4 in the healthy donors, chronic liver disease, and
HCC groups, respectively, with significant differences
among the groups.

Phenotyping and Genotyping of 
Circulating Tumor Cells

CTC isolation, enumeration and profiling. CTCs originate
from primary tumor tissue or metastatic sites and can be
detected in the peripheral blood. They represent intact and

viable cells, which can be distinguished from normal cells
by their physicochemical properties, genotype profiles, and
cell surface antigens. Immunoaffinity enrichment methods
enable the identification of CTC surface antigens such as
epithelial cell adhesion molecule (EpCAM) and
asialoglycoprotein receptor (ASGPR) for CTC quantitative
and qualitative assessment (55). For example, EpCAM-based
immunomagnetic enrichment followed by multiparameter
flow cytometric and immunocytochemical analysis has been
developed for precise quantification of CTC number in
cancer patients (56). Various anti-EpCAM and anti-ASGPR
monoclonal antibody (mAb)-based platforms for phenotypic
profiling and isolation of HCC-derived CTCs in HCC
patients have been proposed (57, 58).

The CTCs have a short half-life, which varies from 1 to
2.4 h and during spreading in the bloodstream single CTCs
spontaneously aggregate and disaggregate, while undergoing
changes in their shape and size. CTCs experience dramatic
phenotypic/genotypic modifications, being predominantly
epithelial at tumor efferent vessels but further switching to
mesenchymal phenotype through Smad2- and β-catenin-
mediated signaling (59). The activation of epithelial-to-
mesenchymal transition (EMT) correlates with increased
CTC number in hepatic veins and is associated with
advanced-stage HCC and early tumor recurrence before the
appearance of clinically detectable tumor nodules.
Exploration of the relationship between the EMT process in
CTCs and HCC progression allowed classifying CTCs into
three subtypes: epithelial, mixed/hybrid, and mesenchymal
CTCs (m-CTCs), which were found in about 53%, 83% and
57% of HCC patients, respectively (60). A CTC amount ≥2
per 5 ml has been found in 70.9% of 165 HCC patients,
while m-CTCs were significantly correlated with high AFP
levels, multiple tumors, advanced TNM and BCLC stage,
and tumor earlier recurrence (61). 

Since CTCs carry many tumor characteristics and their
EMT phenotype correlates with cancer aggressiveness, early
detection of CTCs and m-CTCs in the bloodstream of HCC
patients provides an efficient tool for tumor monitoring and
management. The prognostic significance of phenotypic/
genotypic characterization of CTC subpopulations in cancer
for accurate identification of tumor stage and size and the
assessment of patients’ OS has been investigated in many
studies. A meta-analysis of 5 studies including 339 patients
revealed that the presence of CTCs in peripheral blood
significantly increases the risk of HCC recurrence, while a
meta-analysis of 18 studies including 1466 patients showed
that CTC-positive HCC patients have shorter OS than that of
CTC-negative patients (62).

The EMT activation in CTCs can be identified using the
expression levels of epithelial markers, EpCAM and E-
cadherin, and mesenchymal markers, N-cadherin and vimentin.
During EMT, mesenchymal markers are overexpressed in m-
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CTCs and facilitate cancer cell migration, these correlate with
portal vein thrombosis and metastasis (63). Additionally, high
CTC amounts and a high percentage of m-CTCs are closely
related to the expression of cytokeratin 19 (CK19), which is
associated with a poor prognosis for HCC patients (64). Mixed
CTCs can have a pivotal role in intrahepatic metastasis, while
m-CTCs can be predictors of extrahepatic metastasis (65). 

Different approaches for CTC isolation via targeting EMT
markers have been proposed (66). In addition to CK19 and
compared to EpCAM and vimentin, glypican-3 (GPC-3) has
been proposed for CTCs separation, since a correlation
between the positive count of CTCs using GPC-3 (≥5 CTC
per 7.5 ml blood) and BCLC stage has been observed (67).
Clinical significance of GPC-3-positive CTCs as a
prognostic biomarker has been confirmed in multivariate
analysis, which showed that preoperative GPC3-positive
CTCs ≥5 indicate a poor prognosis, and therefore may be a
useful biomarker for HCC patients’ outcome (68). 

Qi et al. identified in HCC patients with a high CTC count
and a high m-CTC percentage, 67 differentially expressed
genes (DEGs) involved in cancer cell adhesion and
migration, apoptosis, and angiogenesis (69). One of the
DEGs was BCAT1 that is involved in the resistance of cancer
cells to chemotherapeutic drugs (70). Genetic analysis
showed that CTCs derived from advanced-stage HCC tissues
have HER-2 amplification and TP53 deletion. Using the
Cancer Genome Atlas (TCGA)-based SCNA profiling, tumor
tissue origination was confirmed for 73% of CTCs from 75%
of cancer patients (71).

Predictive value of CTCs. A high correlation between the
characteristics of CTCs with those of HCC tissue suggests that
CTCs have a potential for the assessment of post-surgical

tumor recurrence and prognosis in HCC patients. Zhou et al.
showed that CTC count ≥5 per 5 ml has more predictive value
than AFP >400 μg/l and tumor diameter >5 cm (72). The
authors found that preoperative CTC amount in the peripheral
blood of HCC patients closely correlates with microvascular
invasion, while surgical removal of the tumor decreases the
CTC burden. CTC persistence at a high level (≥5 per 5 ml)
after surgery suggested a risk of early recurrence, while CTCs
<5 per 5 ml associated with longer OS and PFS. 

Sun et al. observed that patients with a post-operative
CTC amount ≥3 exhibit higher extrahepatic metastasis risk
and shorter OS than those with lower CTC count (31.25
months vs not reached) (73). Low CTC count correlated with
AFP levels ≤400 ng/ml, absence of vascular invasion, high
differentiation, and early tumor stage in HCC patients during
postoperative follow-up. In contrast, the postoperative early
recurrence of HCC positively correlates with a higher
number of CTCs, m-CTCs and mixed CTCs, while a
significantly shorter postoperative RFS in patients positive
for m-CTCs has been observed (74). The 1-year RFS of
CTC-negative and CTC-positive patients after LT were
91.6% and 61.5%, while and OS rate was 91.7% and 88.5%,
respectively (75). Therefore, the amount of CTCs can be
useful in the evaluation of recurrence risk following LT,
which is the most effective strategy for HCC treatment
decreasing the CTC burden. A post-operative CTC number
≥1 per 5 ml has been proposed as a potential marker for
predicting tumor recurrence after LT (76).

A recent study by Vogl et al. showed that the number of
CTCs that are negative for CD45 and positive for ASGPR,
CD146, and PD-L1 significantly decreases after intervention
with micro-wave ablation, while no significant differences
were observed in patients who received conventional trans-
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Table I. Findings on circulating tumor DNA mutational profiles in HCC patients.

Mutated genes                                                                   Disease status and patients’ clinical characteristics                                                References
                                                                                           observed in the study

ARID1A, CTNNB1 and TP53                                           Barcelona Clinic Liver Cancer (BCLC) stages B, C, and D                                         (30)
TERT promoter, CTNNB1, and TP53                               Vascular invasion and a shorter recurrence-free survival (RFS)                                  (31)
TERT promoter, TP53, CTNNB1, JAK1,                         Liver cirrhosis and hepatitis B (HBV) as the main etiologies;                                    (32)
AXIN1, and NTRK3                                                          a single nodule with a median tumor size of 4.6 cm
TERT promoter                                                                  Large tumor size and high DCP level, poor overall survival (OS)                               (34)
                                                                                           Distinguishing HBV-related HCC from non-HCC diseases                                         (35)
                                                                                           such as chronic hepatitis B (CHB) and liver cirrhosis
                                                                                           Tumor-node-metastasis (TNM) stage and vascular invasion                                        (36)
                                                                                           Resistance of advanced-staged HCC patients to systemic therapies                            (50)
TP53                                                                                   Poor postoperative disease-free survival (DFS) and disease recurrence                   (37-39)
TERT promoter, TP53, CTNNB1, PTEN,                         Shorter progression-free survival (PFS); correlation with                                           (49)
AXIN1, ARID2, KMT2D, and TSC2                                patients’ response to systemic therapies
TP53, CTNNB1, and ARID1A                                          Metabolic syndrome, HCV and HBV as the main etiologies;                                     (51)
                                                                                           correlation of tumor progression with treatment response                                               



arterial chemoembolization (C-TACE) (77). However, Chen
et al. observed no relevance of dynamic changes of CTCs
and their EMT phenotype to HCC recurrence after curative
treatment (78). None of the total CTC or EMT markers
correlated with clinical characteristics, such as age, sex,
HBsAg, Child-Pugh score, BCLC stage, AFP level, tumor
size, and vascular invasion. Nevertheless, Guo et al. showed
that in EpCAM-positive HCC patients, low CTC levels
correlate with treatment success and patients showed
decreased CTC count after treatment with tumor resection,
TACE and radiotherapy (79). On the contrary, patients with
increased CTC levels showed disease progression and
extrahepatic metastasis after curative surgical resection.

Rau et al. investigated the CTC count in HCC patients
during longitudinal follow-up before and at different time
points during systemic/targeted therapy. They showed that
changes in the CTC count correlate with the patients’ treatment
response in most cases and were particularly useful for
monitoring HCC with low AFP levels (<100 ng/ml) (80). In
patients with AFP<100 ng/ml who were originally treated with
sorafenib alone, or who were afterwards enrolled in clinical
trials with systemic therapy by ramucirumab and intravenous
chemotherapy (IV-CT) or intra-arterial chemotherapy (IA-CT),
CTC counts decreased and were consistent with the disease
status. In patients with AFP >100 ng/ml who have a trend
towards decreasing AFP levels, CTC counts remained low
during the follow-up period and consistent with the clinical
status of stable disease (SD) or partial response (PR). In
patients with stable or increased AFP levels after treatment, the
CTC amount increased as the disease progressed. 

Genomic and Transcriptomic Profiling
of Exosomal Non-coding RNAs

Extracellular vesicle biogenesis and regulation. Extracellular
vesicles (EVs) are cell-derived membranous particles that are
released from cells into the extracellular space. EVs are
found in various body fluids and serve for intercellular
communication by delivering their cargo molecules to other
cells (81). EVs can be categorized into three types depending
on the mode of biogenesis, which is an evolutionarily
conserved process (82). The first type is exosomes (of about
30 to 100 nm in size) that are first formed by budding into
the endosomes to create the multivesicular bodies (MVBs),
which either fuse with the lysosomes or with the cell
membrane (Figure 1). The second type is microvesicles
(MVs) or ectosomes of about 100 nm to 1 μm in size; they
arise by direct budding and shedding from the cell
membrane. The third type is apoptotic bodies (APBs) of
about 1-5 μm in size; these arise from cells by blebbing
during apoptosis (83).

Electron microscopy data demonstrate that exosomes are
bilipid membranous vesicles that possess a nearly spherical

shape and a concave cavity structure containing electron-
dense and coated vesicles (84). Exosomes have irregular and
diverse external morphologies, indicating the possible
existence of subpopulations with specific functions. The
exosomal content is modulated by changes in the intra- and
extracellular microenvironment; therefore, the exosomes can
serve as homeostasis sensors (85). Exosome ingredients
include mRNAs, micro-RNAs (miRNAs), long non-coding
RNAs (lncRNAs), circular RNAs (circRNAs), proteins,
lipids, and various metabolites. Exosomes can be internalized
by neighboring or distant cells to regulate multiple target
genes in the recipient cells and have been implicated in cell-
to-cell communication, cell-microenvironment interaction
and mediating cellular signaling and metabolism (86). 

The content of exosomes derived from tumor cells can
induce oncogenic reprogramming of target cells, which can
enhance cell proliferation, tumor growth and metastasis (87).
The characteristics and dynamic changes of the cargo
molecules of exosomes directly reflect those in their parental
tumor cells. This creates a basis for their usage in cancer
diagnosis and prognosis, as well as prediction of individual
responsiveness to anti-cancer therapy (88). To further facilitate
investigations on exosomal markers including oncogenes and
tumor suppressors, the manually curated and publicly
available databases ExoCarta (http://www.exocarta.org) and
Vesiclepedia (http://www.microvesicles.org) have been
developed (89, 90).

Exosomal miRNAs and their target genes. miRNAs are
small, 18- to 25-nucleotide (nt) endogenous cell-free, non-
coding RNAs with the capability of post-transcriptional gene
silencing (91). Exosomal miRNAs can be either
downregulated or upregulated in HCC depending on the
roles of their target genes in cancer growth. Therefore, some
of them can function as oncogenes, whereas others can serve
as tumor suppressors. For example, high-throughput
sequencing of miRNAs and mRNA within the exosomes
derived from Hep3B cells with EMT activation revealed 119
upregulated and 186 downregulated miRNAs along with 156
upregulated and 166 downregulated mRNAs. The most
differentially expressed miRNA was miR-374a-5p that
targets GADD45A encoding the growth arrest and DNA-
damage-inducible protein, GADD45-α (92).

The ability of exosomes to transfer miRNAs to cancer
cells has been shown under both in vitro and in vivo
conditions using normal hepatic stellate cell (HSC)-derived
exosomes, which can be loaded by miR-335-5p that is taken
up by HCC cells. These exosomes then supply miR-335-5p
to the recipient HCC cells to induce the inhibition of cancer
cell proliferation and invasion (93). Transferring HCC cell-
derived exosomes that are enriched in miR-155 into new
target cells, where miR-155 directly binds to 3’-untranslated
regions (3’-UTR) of the PTEN gene can stimulate cancer cell
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proliferation (94). Exosomal miR-21 secreted from HCC
cells can also directly target the PTEN gene leading to
activation of phosphoinositide-dependent kinase 1
(PDK1)/Akt signaling in normal HSCs. This converts HSCs
to cancer-associated fibroblasts (CAFs) that further promote
the secretion of angiogenic cytokines including vascular
endothelial growth factor (VEGF), fibroblast growth factor
(FGF), transforming growth factor-β (TGF-β) and matrix
metalloproteinases 2 and 9 (MMP2 and MMP9, respectively)
followed by cancer progression (95).

Xue et al. showed that 8 serum-derived exosomal miRNAs
including miR-122, miR-125b, miR-145, miR-192, miR-194,
miR-29a, miR-17-5p, and miR-106a demonstrate statistically
significant differences between HCC and normal serum
samples (96). The authors found a correlation between
patients’ survival and exosomal levels of miR-106a that can
function through mitogen-activated protein kinase (MAPK)
and c-Jun N-terminal kinase (JNK) pathways. The exosomal
miR-638, miR-663a, miR-3648 and miR-4258 downregulated

the expression of endothelial cell markers, E-cadherin, and
zonula occludens-1 (ZO-1) (97). 

Exosomal miR-93 is upregulated in HCC to promote
cancer cell proliferation and invasion by directly targeting
TP53INP1, TIMP2, and CDKN1A genes (98). miR-1290 is
also overexpressed in HCC patient serum-derived exosomes
and its delivery to human endothelial cells enhances their
angiogenic ability. Targeting of SMEK1 by miR-1290 in
endothelial cells diminishes the inhibition of VEGFR2
phosphorylation by SMEK1 to promote angiogenesis and
tumor growth (99). Additionally, the higher serum exosomal
miR-638 expression associates with tumor recurrence and
correlates with tumor size, vascular infiltration and TNM
stage in HCC patients (100).

Under in vivo conditions, mice treated with exosomes
derived from the highly intrahepatic metastatic cell line
HuH-7M exhibited increased tumorigenesis and liver
metastases. Yang et al. reported that miR-92a-3p is an
abundant miRNA in exosomes from highly-metastatic HCC
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Figure 1. Components of liquid biopsy and biogenesis of exosomes from liver tumor cells. Circulating tumor DNA, circulating tumor cells and
exosomes carry many phenotypic and genotypic characteristics of the tumor cells. Exosomes derived from tumor cells deliver their cargo molecules
including micro-RNAs, long non-coding RNAs and circular RNAs to recipient cells.  Biogenesis of exosomes proceeds through budding into early
endosomes to give rise to late endosomes or the multivesicular bodies (MVBs), which further fuse either with the lysosomes or with the cell
membrane.



cells and is enriched in the plasma of HCC patient-derived
xenograft mice with high metastatic potential (101). The
authors also showed that the E2F1 transcription factors and
c-Myc proto-oncogene upregulate exosomal miR-92a-3p by
directly binding to miR17HG. In turn, miR-92a-3p promotes
EMT in recipient cancer cells via targeting PTEN and
activating Akt/Snail signaling. Additionally, hypoxic
conditions induce increased exosomal production by HCC
cells to enhance EMT and cancer cell proliferation,
migration, and invasion. Under hypoxic conditions, miR-
1273f presents at higher levels and targets the LHX6 gene,
promoting Wnt/β-catenin signaling (102). The acidic
microenvironment triggers the activation of hypoxia-
inducible factors-1α and -2α (HIF-1α and HIF-2α,
respectively) and stimulates exosomal miR-21 and miR-10b
expression, significantly promoting HCC cell proliferation,
migration and invasion both in vivo and in vitro (103).

Roles of exosomal miRNAs in drug sensitivity. The exosomal
miR-32-5p from the multidrug-resistant cell line Bel/5-FU
has been shown to significantly increase in HCC to target the
PTEN gene and activate the PI3K/Akt pathway; this induces
multidrug resistance by promoting angiogenesis and
activating EMT (104). In contrast, miR-744 is downregulated
in HCC tissues, cell lines and exosomes; this promotes
HepG2 cell proliferation and inhibits the chemosensitivity of
HepG2 cells to sorafenib via targeting the PAX2 gene (105). 
However, several studies have reported on the ability of
exosomal miRNAs to sensitize cancer cells to chemotherapy
and systemic/targeted therapy. A recent study showed that
treatment of HepG2 and Hep3B cells with human cerebral
endothelial cell-derived exosomes carrying elevated miR-214
(hCEC-Exo-214) in combination with oxaliplatin or
sorafenib, significantly reduces cancer cell viability and
invasion, compared to monotherapy with either drug (106).
This is achieved via targeting P-glycoprotein (P-gp) and
splicing factor 3B subunit 3 (SF3B3) in HCC cells. 

Additionally, exosomes from adipose tissue-derived
mesenchymal stem cells (AMSCs) can effectively mediate
miR-199a delivery to HCC cells. This sensitizes HCC cells
to doxorubicin by targeting the MTOR gene and
subsequently inhibiting the mTOR pathway (107). Exosomal
miR-451a is down-regulated in HCC, while its
overexpression induces apoptosis of HCC and endothelial
cells via targeting the LPIN1 gene, which encodes lipin-1
phosphatidase phosphatase (108). The miR-451a from
human umbilical cord mesenchymal stem cells-derived
exosomes targets ADAM10 to suppress paclitaxel resistance,
cell cycle transition, proliferation, migration, and invasion,
and to promote HCC cell apoptosis (109) (Table II).

Exosomal lncRNA-miRNA-mRNA axes. lncRNAs are
involved in the regulation of cell functioning due to their

interaction with miRNAs to sponge them from their target
mRNA; therefore, they can act as competitive endogenous
RNAs (ceRNAs) (110). For example, lncRNA H19 promotes
proliferation and migration but inhibits apoptosis of HCC
cells via sponging miR-520a-3p, thereby, upregulating the
LIMK1 gene that encodes the LIM domain kinase 1 protein
(111). Additionally, exosomal lncRNA ASMTL-AS1 can
promote HCC malignancy via sponging miR-342-3p and
transactivating c-Myc to promote oncogenic MAPK family
Nemo-like kinase (NLK) expression and yes-associated
protein 1 (YAP) activation (112).

In contrast, the transfer of exosomal lncRNA SENP3-
EIF4A1 secreted by normal cells to HCC cells stimulates
apoptosis and decreases the invasive, migratory and malignant
properties of HCC cells (113). The inhibition of tumor growth
under in vivo conditions was achieved through modulating the
expression of the ZFP36 gene encoding zink-finger protein 36
homolog (ZFP36) via sponging miR-9-5p. A panel of
differentially expressed serum exosomal lncRNAs including
lnc-FAM72D-3, lnc-GPR89B-15, lnc-ZEB2-19 and lnc-EPC1-
4 has been identified in HCC (114). Among them, the
expression of lnc-GPR89B-15 and lnc-EPC1-4 correlated with
that of AFP, while lnc-FAM72D-3 and lnc-EPC1-4 functioned
as an oncogene and tumor suppressor, respectively. 

Additionally, exosome-mediated transfer of lncRNAs such
as linc-VLDLR and linc-ROR to cancer cells can be involved
in tumor cell drug resistance. Exosomal linc-ROR acts via
sponging miR-876-5p causing the release of forkhead box
protein M1 (FOXM1) and decreasing cancer cell sensitivity
to sorafenib (115). The exposure of HCC cells to diverse anti-
cancer agents including sorafenib, camptothecin, and
doxorubicin increased the expression of linc-VLDLR in HCC
cells and HCC-derived extracellular vesicles. This caused
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Table II. Exosomal micro-RNAs and their target genes implicated in
HCC.

miRNA types            Target genes and/or                               References
                                  signaling pathways

miR-374a-5p            GADD45A                                                    (92)
miR-155                    PTEN                                                            (94)
miR-21                      PTEN and PDK1/Akt signaling                  (95)
miR-106a                  MAPK/JNK                                                  (97)
miR-93                      TP53INP1, TIMP2 and CDKN1A               (98)
miR-1290                  SMEK1 and VEGFR2 pathway                  (99)
miR-92a-3p               PTEN and Akt/Snail signaling                   (101)
miR-1273f                LHX6 and Wnt/β-catenin signaling           (102)
miR-32-5p                PTEN gene and PI3K/Akt pathway          (104)
miR-744                    PAX2                                                            (105)
miR-199a                  MTOR and mTOR signaling                      (107)
miR-451a                 LPIN1                                                          (108)
miR-451a                  ADAM10                                                     (109)



increased linc-VLDLR expression in recipient cells and
reduced chemotherapy-induced cell death (116).
Exosomal circRNA-miRNA-mRNA axes. One more type of
ncRNAs is circRNAs that are well-expressed at low but
stable levels in different species and exhibit cell-type, tissue-
type and developmental-stage specificity and regulatory
potency (117). Due to these features, exosomal circRNAs
have a biomarker potential for early and minimally invasive
cancer diagnosis and prognosis (118, 119).

Indeed, three isoforms of circPTGR1 are upregulated in
serum exosomes from HCC patients and associate with the
disease clinical stage and prognosis. The higher metastatic
LM3 HCC cells have been shown to confer this potential on
those with lower (97L) or no metastatic (HepG2) potential via
exosomes containing circPTGR1 (120). This resulted in
increased migratory and invasive capabilities of cancer cells
via targeting miR449a and the hepatocyte growth factor
receptor (HGFR or c-Met)-mediated pathway. Additionally,
circRNA-100338 is highly expressed in both highly metastatic
HCC cells and their secreted exosomes, suggesting that the
metastatic ability of HCC cells could be enhanced by
transferring exosomal circRNA-100338 to recipient cells (121).

In contrast, circRNA circ-0051443 is transmitted to HCC
cells via exosomes to suppress their malignant behavior by
promoting cell apoptosis and causing cell cycle arrest.
Additionally, exosomal circ-0051443 decreases the weight
and volume of the xenograft tumors in nude mice via BAK1
upregulation by targeting miR-331-3p (122). The higher
level of circUHRF1 expression in human HCC tissues as
compared to adjacent nontumor tissues associates with
natural killer (NK) cell dysfunction and poor clinical
prognosis. In the plasma of HCC patients, exosomal
circUHRF1 inhibits NK cell-derived interferon-γ (IFN-γ)
and tumor necrosis factor-α (TNF-α) secretion (123).
Moreover, circUHRF1 targets miR-449c-5p to upregulate the
expression of TIM-3 and may drive resistance to
immunotherapy by immune checkpoint blockade with the
use of anti-programmed cell death 1 (anti-PD1) mAb in HCC
patients. Data on lncRNA-miRNA-mRNA and circRNA-

miRNA-mRNA regulatory axes implicated in HCC are
summarized in Table III.

Conclusion
In recent years, enormous progress has been achieved in
non-invasive, liquid biopsy technologies, and cancer cell
whole-genome analysis, which, if combined, can greatly
enhance cancer early detection and monitoring. Genomic,
epigenomic, and transcriptomic profiling of liquid biopsy
components, ctDNA, CTCs, and exosomal ncRNAs
(miRNAs, lncRNAs, and circRNAs) enables the
identification of individual variabilities in gene expression
and mutational patterns. This provides personalized patient
follow-up and tailored treatment strategies. 

Whereas ctDNA genomic and epigenomic profiling
demonstrates the most significant potential in HCC diagnosis
and prognosis and in predicting treatment response, there is
only limited success in CTC and exosome phenotyping and
genotyping so far. CTCs have many characteristics of the
tumor tissue from which they originate and, therefore, their
EMT phenotype allows assessment of cancer aggressiveness.
However, there are still many challenges in CTC isolation
and enumeration using intracellular and cell-surface antigens.
Moreover, there are discrepancies in CTC number cut-offs
and the unit volume of blood samples used by different
groups; this makes it difficult to compare data from different
studies to assess the CTC prognostic and predictive values.
Additionally, there are only limited data on mutational
profiles of CTCs in HCC patients. 

EVs can give information about the properties of cancer
tissue since their cargo molecules directly reflect
characteristics and dynamic changes in their parental tumor
cells. However, unlike non-exosomal circulating miRNAs,
lncRNAs, and circRNAs, gene expression and mutational
profiles of target genes of exosomal miRNAs and exosomal
lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA
regulatory axes are poorly studied. More comprehensive
investigations and more data in this field are required to
assess their utility in the management of HCC patients.
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Table III. Regulatory axes with the involvement of exosomal long non-coding RNAs/circular RNAs implicated in HCC.

LncRNA/circRNA types                                miRNA targets                               Target genes and/or signaling pathways                             References

lncRNA H19                                                    miR-520a-3p                                                            LIMK1                                                             (111)
lncRNA ASMTL-AS1                                      miR-342-3p                                              c-Myc-MAPK signaling                                               (112)
lncRNA SENP3-EIF4A1                                   miR-9-5P                                                               ZFP36                                                             (113)
lncRNA linc-ROR                                            miR-876-5p                                                            FOXM1                                                            (115)
circPTGR1                                                          miR449a                                                        MET pathway                                                       (120)
circ-0051443                                                     miR-331-3p                                                              BAK1                                                              (122)
circUHRF1                                                      miR-449c-5p                                                            TIM-3                                                             (123)
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