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Clear Cell Renal Carcinoma: MicroRNAs With
Efficacy in Preclinical In Vivo Models
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Abstract. In order to identify new targets and treatment
modalities for clear cell renal carcinoma, we surveyed the
literature with respect to microRNAs involved in this disease.
In this review, we have focused on up- and down-regulated
miRs which mediate efficacy in preclinical clear-cell renal
carcinoma-related in vivo models. We have identified 10 up-
regulated and 33 down-regulated micro-RNAs according to
this criterion. As proof-of-concept, micro-RNAs interfering
with VEGF (miR-205p) and mTOR (mir-99a) pathways,
which are modulated by approved drugs for this disease,
have been identified. miRs targeting hypoxia induced factor-
20 (HIF-2a)) (miR-145), E3 ubiquitinylases speckle-type
POZ protein (SPOP) (miR 520/372/373) and casitas
B-lineage lymphoma (CBL) (miR-200a-3p), interfere with
druggable targets. Further identified miRs interfere with
cell-cycle dependent kinases, such as CDK2 (miR-200c),
CDK4, 6 (miR-1) and CDK4, 9 (206c¢). Transmembrane
receptor Ral interacting protein of 76 kD (RLIP76), targeted
by mir-137, has emerged as another important target for
ccRCC. Additional miRs and their targets merrying further
preclinical validation are discussed.

In the US in 2020, 74,000 new cases of patients with renal
cancer have been diagnosed and 15,000 patients have died
(1). Renal cell carcinoma (RCC) develops in the lining of the
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tubules and can be classified into clear cell renal carcinoma
(ccRCC), or of papillary or chromophobe subtype (2). In this
review we focus on ccRCC, the most common subtype with
a prevalence between 80 and 90% of all RCCs (3). Localized
primary tumors can be cured by surgical resection, however,
the majority of renal cancers have already metastasized to
the lungs, liver, bones and brain via the bloodstream or the
lymphatics at the time of diagnosis (4). An early event in the
pathogenesis of ccRCC is the mutational inactivation of von
Hippel-Lindau tumor suppressor (VHL), the substrate
recognition component of an E3 ligase complex that
ubiquitinylates hypoxia inducible factors (HIF)-la. and
(HIF)-2a for proteasome-mediated degradation (5). These
transcription factors accumulate due to inactivation of VHL
and induce vascular endothelial growth factor (VEGF).
Therefore, ccRCCs are highly vascularized and respond to
anti-angiogenic therapy. In addition, loss of chromosome 3p,
driver gene mutations in the mechanistic target of rapamycin
(mTOR) pathway and genes involved in epigenetic
modification and chromatin remodeling such as AT-rich
interactive domain-containing protein 1A (ARID-1A), BRCA
associated protein 1 (BAP1), lysine-specific demethylase 5C
(KDMS5C), protein polybromo 1 (PBRMI1) and histone
methyltransferase SET domain containing 2 (SETD2) have
been observed (6). A further characteristic of ccRCC is
profound heterogeneity. An individual tumor can contain
several evolving subclones with different driver mutations
(2). Several anti-angiogenic agents such as the anti-VEGF
monoclonal antibody (mAb) bevacizumab and tyrosine
kinase inhibitors such as sorafenib, sunitinib, pazopanib,
axitinib, levatinib as well as mTOR inhibitors such as
temsirolimus and everolimus have been approved for
treatment of metastatic disease (7). Immune-checkpoint
inhibitors such as nivolumab [anti-programmed cell death
proteinl (PD1)] and a combination beween nivolumab and
ipilimumab [anti-cytotoxic T-lymphocyte associated protein
4 (CTLA4)] were approved for treatment of advanced
disease (8). However, the therapeutic benefit is hampered by
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development of resistance to the corresponding therapies.
Therefore, identification of new targets and treatment
modalities for ccRCC is an important issue. In this review
we focus on up- and down-regulated microRNAs (miRs) and
corresponding targets with in vivo efficacy in preclinical
ccRCC-related systems.

microRNA and Cancer

miRs are transcribed from approximately 1,000 genes in the
human genome by RNA polymerase II as precursors,
transported into the cytoplasm and processed (9, 10). One
strand of a 22 nucleotide (nt) duplex is maintained (guide
strand), while the other strand (passenger strand) is
degraded (9, 10). Binding of the guide strand to the 3’-
untranslated region (3’-UTR) of the corresponding mRNA
leads to degradation or translational repression of the target
mRNA (9, 10). A single miR can interfere with several
mRNAs and a single mRNA can be targeted by several
miRs (11). Therefore, miRs can potentially modulate
pathways at different levels and interfere with several
pathways simultaneously and have the potential to rewire
oncogenic pathways; however, collateral effects due to the
modulation of non-oncogenic cellular pathways is a critical
issue (12). miRs can exert tumor-suppressive and oncogenic
functions and their ability to modulate different genes can
be context-dependent. In addition, non-canonical functions
of miRs such as agonizing of toll-like receptors 7 and 8
(TLR7, 8) have been described (13). This interaction can
lead to promotion of tumor growth and metastasis by
induction of inflammatory responses (13). miRs play a role
during all stages of tumor formation, interaction of the
tumor with the tumor micro-environment (TME) and
metastasis (14). We recently summarized the role of miRs
in metastasis (15-21). Aberrant expression of miRs in cancer
can be due to methylation of the promoters of the
corresponding genes or due to dysregulation of the
processing of their precursor RNAs (22). The tumor-
suppressor function of miRs has been revealed by the
demonstration that miR-16-1 and -15a prevent B—cell
chronic lymphatic leukemia (B-CLL) in mice due to
cleavage of anti-apoptotic protein B-cell lymphoma-2
(BCL-2) (23). The oncogenic role of miRs was shown by
induction of hepatocellular carcinoma in transgenic mice by
liver-specific expression of miR-221 (24).

Up-regulated microRNAs

microRNAs targeting transmembrane receptors
Up-regulation of adhesion molecules can inhibit tumor
growth and metastasis of ccRCC cells and increased
expression of corresponding miRs can counteract these
functions.
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miR-146a (CADM?2). miR-146a (Figure 1A) is induced by
hypoxia and high expression correlates with low survival rate
in ccRCC patients (25). Over-expression of miR-146a
promotes ACHN RCC cell proliferation and tumor growth in
vivo in nude mice, whereas its decrease inhibits proliferation
and invasion of 786-O RCC cells (25). As a target, the cell
adhesion molecule M2 (CADM?2) has been identified (25).
Transfection of ACHN cells with miR-146a cells promotes
growth (25). miR-146a also induces epithelial mesenchymal
transition (EMT) of RCC cells (25). CADM2 is a member
of the synaptic cell adhesion family of transmembrane
receptors, has three Ig-like domains, promotes cell
aggregation by homo- and heterophilic interactions with
other nectin-like family members and organizes the function
of synapses through heterophilic interactions (26). CADM2
increases the level of E-cadherin and decreases the levels of
vimentin (VM) (25). CADM2 exhibits tumor supressor
functions. Aberrant methylation and loss of expression of
CADM2 has been observed during ccRCC tumor
progression (27).

miR-720 (E-Cadherin). miR-720 (Figure 1A) is highly
expressed in ccRCC and is a potential marker for diagnosis
and prediction of survival in ccRCC patients (28). Depletion
of miR-720 impairs migration, invasion, EMT and causes
apoptosis in 786-O and A498 RCC cells (28). Intratumoral
delivery of anti-miR-720 suppresses tumor growth of 786-O
and A498 ccRCC xenografts (28). aE-catenin and E-
cadherin have been identified as direct targets of miR-720
(28). Negative regulation of E-cadherin and oE-cadherin
causes EMT and metastasis (28). Reduced expression of E-
cadherin facilitates ccRCC progression by activation of
WNT/B-catenin signaling (29). Low expression of E-
cadherin correlates with poor prognosis in patients with
ccRCC (30, 31).

microRNAS targeting signalling-related proteins

miRs targeting tumor suppressors or inhibitors of signaling
pathways can increase proliferation, migration and invasion
of ccRCC cells.

miR-21 (PTEN, PTENPI). miR-21 (Figure 1A) targets the
phosphatase and tensin homolog (PTEN) and PTENPI, a
pseudogene of PTEN (32, 33). In vitro, PTENP1 suppresses
migration and invasion of ACHN and SN12PM6 RCC cells
(32). miR-21 promotes tumor growth and metastasis of
ACHN cells in vivo. In line with this, PTENP1 and PTEN
inhibit tumor growth and metastasis in nude mice (32).
PTENP1 RNA competes for regulation of PTEN expression
by miR-21 (32). PTEN also attenuates phosphoinosite 3-
kinase (PI3K)/AKT/mTOR signaling through its lipid
phosphatase activity (34). PTENP1 is deleted in melanoma
and non-small cell lung carcinoma (NSCLC) (35, 36) while
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Figure 1. Up-regulated microRNAs mediating efficacy in kidney-cancer related in vivo models. miRs, targets and corresponding effectors are shown. (A)
miRs with transmembrane receptors and signaling-related proteins as targets. (B) miRs covering transcription-related targets, enzymes and other targets.
CADM?2: Cell adhesion molecule 2; DKK2: dickkopf-related protein 2; E-Cad: E-cadherin; LZTFLI: leucine zipper transcription factor like 1; mTOR:
mechanistic target of rapamycin; PTEN: phosphatase and tensin homolog; PTENP1: pseudogene 1 of PTEN; SFRPI: secreted frizzled-related protein
1; WNT: WNT signaling; AKT: ser-thr kinase AKT; ARID-1A: AT-rich interactive domain-containing protein 1A; DICER: endoribonuclease DICER;
FOXO03: forkhead box O3; PI3K: phosphoinosite 3-kinase; ST3Gal 1V: a. 2,3 sialyltransferase 1V; SWI/SNF: SWl/sucrose non fermentable.

low PTEN is significantly associated with unfavorable
outcome in ccRCC patients (37).

miR-106-5p (WNT signaling). High expression of miR-106-
5p (Figure 1A) predicts poor survival of ccRCC patients
(38). miR-106-5p induces markers of stemness in Caki-1
RCC cells (38). This miRNA targets the leucine zipper
transcription factor like 1 (LZTFL1), secreted frizzled-
related protein 1 (SFRP1) and dickkopf-related protein 2
(DKK?2), all inhibitors of WNT signaling (38). miR-106
promotes growth of Caki-1 cells after implantation into the
renal capsule and lung metastasis after tail vein injection into
nude mice (38). In line with this, WNT signaling has been

shown to promote proliferation, migration and invasion in
ccRCC (39, 40)

microRNAs targeting transcription-related proteins

Transcription factors can exert an inhibitory as well as an
activating function on proliferation, invasion and migration of
ccRCC cells. The function of inhibitory transcription factors
can be reversed by up-regulation of the corresponding miRs.

miR-122 (FOXO03). High expression of miR-122 (Figure 1B)
correlates with reduced metastasis-free survival in ccRCC
patients (41). This miRNA targets transcription factor
forkhead box O3 (FOXO3) and promotes proliferation,
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invasion and EMT of 786-0 and SN12-PM6 RCC cells (41).
FOXO3 has been shown to inhibit proliferation, tumorigenic
potential and invasiveness of cancer cells (42, 43). In
ccRCC, FOXO3 promotes tumor metastasis and is associated
with metastasis-free survival in patients (44).

miR-144-3p (ARID-1A). miR-144-3p (Figure 1B) promotes
proliferation, invasion and clonogenicity of 786-O and
SN12-PM6 RCC cells (45). An AT-rich interaction domain-
containing protein 1A (ARID-1A) has been identified as a
direct target of miR-144-3p (45). The latter promotes tumor
formation of SN12PM6 RCC cells in vivo (45). ARID-1A is
a key member of the switch/sucrose non-fermentable
(SWI/SNF) chromatin-modeling complex which functions as
a negative regulator in cell cycle, apoptosis and
tumorigenicity (46, 47). The target protein also triggers EMT
of renal cells (48). Decreased ARID-1A expression correlates
with poor prognosis of ccRCC (49) while mutations in this
gene have been noted in up to 12% of ¢ccRCCs and protein
loss has been observed in 50% of ccRCCs (50, 51). In
ccRCC with mutated ARID-1A, dramatically lower levels of
CD8+ T-cell infiltrates have been observed, compared with
those without ARID-1A mutations.This suggests that the
ARID-1A mutation status can be a predictive biomarker for
immune-checkpoint therapy of ccRCC (52).

microRNAs targeting enzymes
A miR targeting a glycosylation-related enzyme can mediate
proliferation, migration and invasion of ccRCC cells.

miR-193a, miR-224 (ST3Gal 1V). Over-expression of miR-
193a and miR-224 (Figure 1B) increases RCC proliferation
and migration both in vitro and in vivo (53). a23
sialyltransferase IV (ST3GallV) enzymatic activity has been
identified as a direct target of these miRs (53). Down-
regulation of ST3GallV correlates with induction of
PI3K/AKT signaling (53). ST3GallV is highly expressed in
adjacent normal tissues (53). Sialyltransferases add sialic
acid to nascent oligosaccharides and each sialyltransferase is
specific for a particular sugar substrate (54, 55). Sialylation
is involved in cell fate decisions and cancer progression and
aberrant glycosylation is a new hallmark of cancer (56).
ST3GallV enzymatic activity has been found in several types
of cancer (57, 58). However, how down-regulation of
ST3GallV mediates ccRCC pathogenesis still remains to be
resolved.

microRNAs targeting other proteins

A miR targeting a component of the miR-processing pathway
has an impact on metastasis of ccRCC cells.

miR-122 (DICER). miR-122 (Figure 1B) levels are up-

regulated in ccRCC and increased levels are associated with
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ccRCC metastasis (59). DICER has been identified as a
direct target of miR-122 (35). The latter promotes migration,
invasion and EMT of OS-RC-2 RCC cells by down-
regulation of DICER (59). miR-122 promotes lung
metastasis of OS-RC2 cells after tail vein injection in nude
mice (59). Its overexpression down-regulates miR-200
family members in OS-RC-2 cells indicating a new feedback
loop in which miR-122 may function as a key miR to control
various mature metastasis-related miRs through DICER
modulation. DICER belongs to the RNAse III family of
double-stranded RN Ases which control maturation of miRs
in the cytoplasm (60). It is down-regulated in ccRCC while,
in vitro, DICER knockdown enhances invasive phenotype
formation (61). In VHL-deficient RCC cells, DICER
suppresses the invasive phenotype by inhibiting HIF-2a. (62).

Down-regulated miRs

microRNAs targeting transmembrane receptors.
Transmembrane proteins located in the plasma membrane or
in the membrane of intra-cellular organelles, can accelerate
growth and invasion of ccRCC cells through activation of
signal transduction pathways. This can be accomplished by
down-regulation of the corresponding miRs.

miR-137 (RLIP76). miR-137 (Figure 2) is significantly down-
regulated in ccRCC tissues in comparison to corresponding
non-cancerous tissues (63). Ectopic expression decreases
proliferation, invasion and induces apoptosis in RCC cells
(63). This miRNA inhibits pulmonary metastasis of ccRCC
cells after tail vein injection into nude mice (63). Ral
interacting protein of 76 kD (RLIP76) has been identified as
a direct target of miR-137 (63). RLIP76 is a multifactorial
protein with transport and signaling functions. It contains a
surface domain (171 to 186 amino acids) but its membrane
topology is not yet resolved (64). Transport of glutathione-
conjugates is a documented function of RLIP76 (64).
Blocking the transport function of RLIP76 causes regression
of RCC xenografts in nude mice (65). Similarly, depletion of
RLIP76 leads to reduced activation of survival pathways such
as PI3K, extracellular signal-regulated kinase (ERK) and
AKT. Therefore, RLIP76 emerges as an important therapeutic
target for ccRCC (66, 67).

miR-141 (EPH2). miR-141 (Figure 2) is decreased in ccRCC
tissues in comparison to corresponding normal tissues (68).
Overexpression of miR-141 attenuates proliferation and
motility of 786-O and SN12-PM6 RCC cell lines (68). In an
orthotopic RCC xenograft model, miR-141 suppressed
tumorigenesis and metastasis to the liver, lungs, lymph nodes
and peritoneum (68). Erythropoietin-producing human
hepatocellular receptor A2 (EPHA?2) was identified as a direct
target of this miRNA (68). EPHA?2 is frequently up-regulated
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Figure 2. Down-regulated miRs targeting transmembrane receptors with efficacy in preclinical kidney cancer-related in vivo systems. AKT: Ser-thr
kinase AKT; EPHA2: erythropoietin-producing human hepatocellular receptor A2; ERK: extracellular signal-regulated kinase; FAK: focal adhesion
kinase; FLOT-1: flotilin 1; FOXO3: forkhead box 3; IGFIR: insulin growth factor 1 receptor; PI3K: phosphoinositide 3-kinase; MAPK: mitogen-

activated protein kinase; RLIP76: Ral interaction protein of 76D.

in ccRCC and activates focal adhesion kinase (FAK) and
AKT signaling (68) while its expression in tumor tissues
predicts locally aggressive behaviour and poor outcome in
patients with ccRCC (69). Accumulation of EPHA2
modulates cytoskeleton dynamics, loss of cell contact,
proliferation, oncogenic signaling and metastasis (70, 71).
Multiple drugs targeting EPHA2 are under preclinical and
clinical development in several types of cancer (72).

miR-182-5p (FLOT-1). miR-182-5p (Figure 2) is down-
regulated in ccRCC and inhibits proliferation and
tumorigenicity of 786-O and Caki-1 RCC cells in vitro and
in vivo (73). Upregulation of miR-182 leads to G1 phase
arrest, inhibition of AKT signaling and induction of
transcription factor FOXO3 (11). Flotilin 1 (FLOT-1) was
identified as a target of miR-182-5p (73). FLOT-1 is a
caveolae-associated integral membrane protein which tethers
membrane receptors and acts as a signaling molecule (74,
75). Flotilin-1 oligomer-based microdomain scaffolds are
involved in molecular sorting, endocytic pathways,
phagosomal trafficking and coordinate a variety of signaling
processes (76). FLOT-1 plays a role in the progression of
several types of carcinomas (76).

miR-193b (IGFIR). Expression of miR-193b (Figure 2) is
decreased in ccRCC tissues in comparison to matched normal
tissues (77). miR-193b inhibits proliferation, invasion and
migration of Caki-1 RCC cells in vitro and tumor growth in vivo
in nude mice (77). Insulin-like growth factor receptor 1 (IGFR1)
has been identified as a target of miR-193b (77). IGFRI1
promotes malignant transformation, induces proliferation, but

inhibits apoptosis in ccRCC (78, 79). Several IGFRI1
inhibitors are undergoing clinical trials in several types of
carcinomas (80).

microRNAs targeting signaling-related proteins

Tumor growth and metastasis can be mediated by activation
of growth factors, transcription factors, ser-thr and tyrosine
kinases, GTPases and nuclear receptors. This can be achieved
by down-regulation of miRs targeting these components.

miR-28-5p (RAPIB). miR-28-5p (Figure 3A) is down-
regulated in ccRCC in comparison to corresponding normal
tissues (81). miR-28-5p suppresses proliferation of A498 and
ACHN RCC cells in vitro and tumor growth in vivo in nude
mice through targeting ras-related protein 1B (RAP1B) (81).
miR-28-5p represses mitogen activated protein kinase
(MAPK) signaling by inhibiting phosphorylation of p38
mitogen-activated kinase (p38) and ERK1/2 (81). As a
physiological function, RAPIB GTPase is involved in
platelet activation/adhesiveness after injury (82). In cancer,
RAPIB activates multiple signaling pathways associated
with tumor cell proliferation, invasion, cell adhesion and
angiogenesis (83, 84).

miR-99a (mTOR). miR-99a (Figure 3A) is down-regulated in
ccRCC and correlates with overall survival (85). In 786-O
and OS-RC-2 RCC cells, miR-99a inhibits proliferation,
induces G1 phase cell-cycle arrest and inhibits migration and
invasion (85). In vivo, miR-99a suppresses tumor growth of
786-O xenografts in nude mice (85). mTOR has been
identified as a target of miR-99a (85). mTOR knock-down
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partially phenocopies miR-99a restoration in RCC cells (85).
mTOR signaling links multiple receptors and oncogenes to
cell growth, protein translation, metabolism, cell invasion
and cell-cycle via downstream effectors such as p70
ribosomal protein S6 kinase (p70S6K) and eukaryotic
translation initiation factor 4E- binding protein 1 (4E-BP1)
(86, 87). mTOR inhibitors temsirolimus and afinitor, both
rapamycin analogues, have been approved for treatment of
ccRCC (88-90).

miR-106a-5p (PAKS5). miR-106a-5p (Figure 3A) is down-
regulated in ccRCC in comparison to correspondng normal
tissues (91). In 786-O and ACHN RCC cells, miR-106-5p
inhibits migration and invasion by targeting p21 activated
protein kinase (PAKS) (91). In an experimental metastasis
model, miR-106a-5p suppresses metastasis to the lungs in nude
mice (91). PAKS is member of a family of six isoform versions
which play a role in cytoskeletal dynamics, cell survival and
proliferation. They are overexpressed, hyperactivated or
amplified in several types of cancer and function as signal
transducers in pathways such as RAS, RAF, nuclear factor kB
(NFxB), AKT and protein 53 (p53) (92). PAKS can act as an
oncogene as well as an effector of GTPases ras-related C3
botulinum toxin substrate (RAC) and cell division control
protein 42 homolog (CDC42) and is presently under validation
as a target for cancer therapy (93, 94).

miR-143, -216b (KRAS). miR-143 and -216b target kirsten
rat sarcoma viral oncogene homolog (KRAS). miR-143
(Figure 3A) is down-regulated in ccRCC tissues, compared
to corresponding normal tissues (94). A synthetic version
miR-143 inhibits growth of Caki-1 ccRCC cells in vitro and
tumor growth in vivo after systemic polyion complex-based
delivery in nude mice (94). miR-143 perturbs cancer specific
energy metabolism and induces autophagy (94). A partial
metabolic shift from glycolysis to oxidative phosphorylation
has been observed. miR-143 down-regulates glucose
transporter 1 (GLUT1) and also suppresses PI3K/AKT and
MAPK/ERK signaling.

miR-216b (Figure 3A) is down-regulated in ccRCC
specimens, in comparison to corresponding normal tissues.
It suppresses proliferation and invasion of 786-O and ACHN
RCC cell lines and inhibits tumor growth of ACHN ccRCC-
based xenografts in vivo (95). It also interferes with AKT and
ERK pathways (95).

KRAS functions as a small GTPase and transduces signals
from cell surface receptors to the cytoplasm through specific
effector pathways such as MAPK/ERK and PI3K/AKT,
while regulating diverse cellular responses (96, 97). KRAS
is involved in ERK1/2-based phosphorylation and nuclear
translocation of pyruvate kinase muscle isoform 2 (PKM2)
promoting the Warburg effect (98). Due to its de-regulation
in many types of cancer, KRAS is an important target,
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however its druggability is a critical issue (99, 100).
Recently significant progress has been achieved in the
treatment of KRAS mutated tumors (101). In ccRCC, KRAS
mutations rarely occur, however, de-regulation of KRAS
signaling is a frequent event (102).

miR-148a (AKT2). miR-148a (Figure 3A) is down-regulated
in ccRCC cell lines and tissues and its down-regulation is
associated with lymph node metastasis (103). miR-148a
inhibits proliferation, colony formation and migration of
786-0O ccRCC cells via suppression of AKT2 (103). Tumor
growth in nude mice from 786-O cells transfected with miR-
148a is attenuated (103). AKT2 is an isoform of the AKT2
family which functions as an oncogene by enhancing
survival, migration and invasion of cancer cells. This gene
is a member of the PI3K/AKT pathway and phosphorylates
downstream targets including mTOR (104, 105).
Independently it was shown that AKT2 is de-regulated in
ccRCC (106). mTOR inhibitors everolimus and temsirolimus
are approved for treatment of ccRCC (107).

miR-205-5p (VEGF). Expression of miR-205-5p (Figure 3B)
is down-regulated in ¢cRCC and correlates with poor
prognosis of patients (108). miR-205-5p inhibits
proliferation, migration, EMT and induces apoptosis of 786-
O and ACHN ccRCC cells (108). VEGF-A was identified as
a direct target of miR-205-5p (108). This miRNA inactivates
the PI3K/AKT/mTOR signaling pathway (108). 786-O
xenografts in nude mice expressing miR-205-5p exhibit
decreased tumor growth (108). The VEGF pathway plays an
important role in ¢ccRCC (109). The VEGF inhibitors
sorafenib, sunitinib, bevacizumab, pazopanib, cabozantinib
and axitinib are approved for treatment of ccRCC (110,111).

miR-30a-3p, -30c-2-3p, -145 (HIF-2a). Reduced expression
of miR-30a-3p and miR-30c-2-3p (Figure 3B) was
significantly associated with poor prognosis in patients with
ccRCC (112). Both target hypoxia-inducible factor 2a. (HIF-
20) directly (112). In vivo, tumor growth of UMRC2
xenografts is inhibited by both miRs (112). miR-30a-3p and
miR-30c-2-3p repression enhance HIF-2a expression, a
mechanism whereby the tumor-suppressive effect of
constitutive HIF-1o. expression is attenuated in HIF1o/HIF2a
tumors. Under high oxygen conditions, HIF1a and HIF2o are
hydroxylated by prolylhydroxylase enzymes, resulting in
VHL recognition, polyubiquitinylation and subsequent
proteasomal degradation (113). Under low oxygen conditions,
HIF-2a subunits are stabilized and activate numerous genes
involved in metabolism, angiogenesis, motility/invasion and
extracellular matrix (ECM) remodeling (114). HIF-1a acts as
a TS, whereas HIF-2a promotes tumorigenesis (115,116).
Restricted expression of miR-30a-3p and miR-30c-2-3p in
ccRCC enhances HIF-2a activity.
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Figure 3. Down-regulated miRs targeting signaling-related proteins with efficacy in preclinical kidney cancer-related in vivo systems. 4E-BP1:
Eukaryotic translation initiation factor (eIF4E) binding protein 1; AKT2: ser-thr kinase AKT2; ERK: extracellular signal regulated kinase; GLUTI:
glucose transporter 1; KRAS: Kirsten rat sarcoma viral oncogene homolog; MAPK: mitogen-activated protein kinase; mTOR: mechanistic target
of rapamycin; NFkB: nuclear factor kB; p38: p38 mitogen-activated kinase; p53: protein 53; p70S6K: p70 ribosomal protein S6 kinase; PAKS:
p21 activated protein kinase 5; RAP-1B: ras-related protein 1B; AKT: ser-thr kinase AKT; CCNDI: cyclin DI1; HGF': hepatocyte growth factor;
HIF-20.: hypoxia-inducible factor 2a; MET: transmembrane tyrosine kinase receptor MET,; pl9ARF: ARF tumor suppressor pl9; PI3K:
phosphoinositide 3-kinase; SNAI-1: zinc finger protein SNAI-1; TR4: testicular nuclear receptor 4; VEGF: vascular endothelial growth factor;

ZBTB7A: zinc finger and BTB domain containing protein 7.

Androgen receptor (AR) down-regulates miR-145 (Figure
3B) via promoter interaction in ccRCC cell lines (117). miR-
145 inhibits proliferation and invasion of OS-RC2 (VHL wild-
type) and SW-839 (VHL inactivating mutant) RCC cells (117).
miR-145 targets HIF-2a and suppresses HIF20/VEGF/matrix
metalloproteinase 9 (MMP9) / cyclin D1 (CCND1) signals in
OS-RC2 and SW-839 ccRCC cell lines (117). In an orthotopic
kidney capsule model, miR-145 suppresses tumor growth and
metastasis of OS-RC2 cells (117). ccRCC patients with higher
AR expression had lower overall survival rates, linking AR to
poor prognosis (118). AR in ccRCC cells increases
proliferation and AR inhibitors enzalutamide and abiraterone
inhibit TG of Caki-1 xenografts in nude mice (119). Intracrine
androgen biosynthesis has been observed in ccRCC and AR
increases hematogenous metastasis of ccRCC (120).

miR-32-5p (TR4). miR-32-5p (Figure 3B) is down-regulated
in ccRCC tissues of patients with distant metastases
compared to those from metastasis-free patients (121). miR-
32-5p inhibits invasion of ACHN, SW839 and OS-RC2
ccRCC cells by targeting testicular nuclear receptor 4 (TR4)
(121). After implantation into the renal capsule, miR-32-5p
inhibits metastasis of OS-RC2 xenografts into the lungs,
spleen and liver (121). In this experimental system, sunitinib
suppresses metastasis via induction of miR-32-5p and
suppression of TR4 (121). miR-32-5p attenuates metastasis
through interference with TR4/fibroblast growth factor
(FGF)/MET signaling (121). TR4 is an orphan receptor of
the family of steroid receptor transcription factors (122, 123).
This receptor can alter hepatocyte growth factor (HGF)/MET
signaling by binding to the TR4-response element of the
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HGF promoter (121). Inhibition of the HGF/MET pathway
is actively pursued in patients with ccRCC (124).

miR-211-5p (SNAI-1). miR-211-5p (Figure 3B) suppresses
migration and invasion of RCC cells A498 and 786-O
through targeting SNAI-1 family transcriptional repressor 1
(SNAI-1) (125). In an orthotopic model, miR-211-5p inhibits
tumor growth and metastasis of A498 RCC cells to the lungs,
spleen and liver (125). SNAI-1 is a zinc finger transcription
factor which induces EMT by down-regulation of E-
cadherin. It also regulates cell morphology and cell-cell
interactions (126, 127). In ccRCC, SNAI-1 is a marker of
progression-free and overall survival (128).

micro-RNAs targeting cell cycle-related proteins

Multiple functions of miRs regulating the cell cycle have
been documented. In addition to targeting components of the
cell-cycle (129), they can regulate DNA damage response
(130), licensing of DNA replication (131), modulation of
activity of DNA replication inhibitor geminin, retinoic acid
signaling and pluripotency (132).

miR-1 targets CDK4, CDK6, Caprin 1 and SLUG. miR-1
(Figure 4A) down-regulation correlates with clinico-
pathological characteristics and overall survival of ccRCC
patients (133). miR-1 inhibits proliferation, migration and
invasion of 786-O ccRCC cells (133). It targets cyclin-
dependent kinases 4 and 6 (CDK4, 6), caprin 1 and
metastasis related gene SLUG (SNAI-2) (133). In vivo, miR-
1 inhibits tumor growth of ACHN-derived xenografts after
sucutaneous and orthotopic implantation in nude mice (133).
CDK4 and CDKG6 inhibitors such as palbociclib, ribociclib
and abemaciclib have been approved for hormone-sensitive,
human epidermal growth factor receptor 2 (HER2) negative
breast cancer (134). The other target, caprin-1, is a mediator
of proliferation and cell-cycle progression (135). Target
SLUG (SNAI-2) is a zinc finger-based transcriptional
repressor which is involved in EMT and mediates anti-
apoptotic activity (136, 137).

miR-200c targets CDK2. miR-200c (Figure 4A) is down-
regulated in ccRCC specimens (138). In SN12-PM6 and
786-O cells, this miRNA suppresses proliferation and
induces cell-cycle arrest (138). Cyclin-dependent kinase 2
(CDK2) has been identified as a direct target of miR-200c
(138). In orthotopic xenografts, miR-200c suppresses growth
of SN12-PM6 RCC cells (138). Deregulation of CDK2 is
associated with several types of cancer, however, it is
dispensable for normal development (139). In addition to its
involvment in cell-cycle progression, miR-200c mediates
DNA-damage repair, DNA and RNA metabolism and signal
transduction (139). Several CDK2 inhibitors are evaluated in
clinical studies, however it emerged that due to pronounced
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toxicity effects, more selective inhibitors need to be
evaluated (140). In ccRCC, CDK2 is a strong predictor of
recurrence (141).

miR-206¢ targets CDK4,9, and CCNDI. miR-206¢ (Figure
4A) inhibits proliferation of ccRCC cells through induction
of cell-cycle arrest and tumor growth in subcutaneous and
orthotopic ccRCC xenografts (142). CDK4, CDK9 and
CCND1 have been identified as direct targets of miR-206¢
(142). As already outlined, CDK4 is a validated target for
treatment of hormone receptor positive, HER2-negative
metastatic breast cancer (143). CDKO9 is a serine-threonine
kinase which is involved in DNA transcription by
phosphorylating RNA polymerase II and several
transcription factors (144). However, more selective
inhibitors of CDK9 have to be generated to explore their
therapeutic potential (144). CCNDL is involved in cell-cycle
transition to the S-phase by activating cyclin-dependent
enzymes (145, 146).

microRNAs targeting components of the extracellular matrix
Components of the ECM such as laminins and collagens
have a positive impact on angiogenesis and metastasis of
ccRCC cells. This can be achieved by down-regulation of the
corresponding miRs.

miR-200b targets LAMA4. miR-200b (Figure 4B) expression
inversely correlates with survival in patients with ccRCC
(147). miR-200c impedes cell spreading and migration, but
not growth, in ccRCC cell lines OS-RC2 and Caki-1 (147).
Laminin subunit a4 (LAMA4) has been identified as a direct
target of miR-200b (147). In vivo, miR-200b has no impact
on proliferation, but inhibits metastatic colonies in the lungs
after tail vein injection in nude mice (147). LAMA4 is an
ECM glycoprotein and is part of the laminin complex. It is
secreted into the ECM, up-regulates integrin o581 and
activates the integrin-linked kinase (ILK)/FAK/ERK pathway
(148). 04 chain laminins are widely expressed in ccRCC and
have a de-adhesive function (148). LAMA4 promotes
angiogenesis and is enriched in blood vessels of ccRCC
patients while its expression correlates with poor prognosis
(149, 150). Intra-tumoral injection of miR-200b mimetics
decreases lung metastasis in mice (147).

Let 7d targets COL3AI. Decreased let-7d (Figure 4B) is
associated with advanced tumor stages in ccRCC patients
and is inversely correlated with macrophage infiltration
(151). Over-expression of let-7d impedes growth and
migration of 786-O and 769-P RCC cell lines in vitro (151).
In vivo, in 786-O cell-derived xenografts, let-7d inhibits
tumor growth (151). In patient-derived xenografts (PDX),
intra-tumoral injection of let-7d mimetics inhibit tumor
growth and metastatic nodules in the lungs of nude mice
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Figure 4. Down-regulated miRs targeting cell-cycle, extracellular matrix and ubiquitinylation related enzymes with efficacy in preclinical kidney
cancer-related in vivo systems. (A) miRs targeting cell-cycle related proteins. (B) miRs targeting extracellular matrix and ubiquitinylation-related
proteins. CDK2,4,6,9: Cyclin-dependent kinases 2,4,6,9; CCNDI: cyclin DI1; SLUG: transcription factor SLUG (SNAI-2); EMT: epithelial
mesenchymal transition; RNA pol 1I: RNA polymerase I1; CBL: Casitas B-lineage lymphoma; CCC7: chemokine (C-C motif) ligand 7, COL3AI:
al chain of type Il collagen, DAXX6: death-associated protein 6; DUSP7: dual specificity phosphatase 7; EGFR: epidermal growth factor receptor
7; ERK: extracellular signal-regulated kinase; FAK: focal adhesion kinase; ILK: integrin-linked kinase; LAMA4: laminin subunit 4; MAPK: mitogen-
activated protein kinase; MET: transmembrane receptor tyrosine kinase MET; PDGFR: platelet-derived growth factor receptor; PTEN: phosphatase

and tensin homolog; SPOP: speckle-type POZ protein.

(151). al chain of type III collagen (COL3Al) and
chemokine (C-C motif) ligand 7 (CCL7) have been identified
as direct targets of let-7d (151). Col3A1 is involved in ECM
organization, cell adhesion, migration and invasion through
the MAPK pathway (152). Col3A1 expression is correlated
with a poor prognosis in patients with bladder cancer and
ovarian carcinoma (153,154). CCL7 promotes tumor growth
by recruiting leukocytes including monocytes, macrophages
and neutrophiles to the tumors facilitating TME formation,
invasion and metastasis (155).

microRNAs targeting E3-ubiquitin-ligases
Ubiquitinylation marks proteins for degradation by the
proteasome leading to deregulation of transcription factors

and signaling components. This results in proliferation,
migration and survival of tumor cells. Down-regulation of
miRs targeting ubiquitinylation enzymes mediates pro-
tumoral effects in ccRCC cells.

miR-200a-3p targets CBL. miR-200a-3p (Figure 4B) is
down-regulated in ccRCC tissue in comparison to normal
adjacent tissue (156). miR-200a-3p suppresses proliferation
and migration and enforces apoptosis in vitro and in vivo
(152). Casitas B-lineage lymphoma (CBL) has been
identified as a target for miR-200a-3p (156). CBL functions
as an E3 ubiquitin-ligase and consists of an N-terminal
tyrosine kinase binding domain, a ring finger domain, a
proline rich domain which interacts with adaptor proteins
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and a C-terminal domain which binds ubiquitin (157). CBL
is involved in survival, migration and proliferation (157).
However, inhibition of angiogenesis has also been reported
for CBL (158). Taken together, the role of CBL in ¢ccRCC
has to be resolved in further detail.

miR-520/372/373 target SPOP. In vitro miRs-520/372/373
(Figure 4B) suppress proliferation and migration in A498 and
ACHN ccRCC cells (159). Tumor growth of ACHN
xenografts is suppressed by each of these miRs (159).
Speckle-type POZ protein (SPOP) has been identified as a
target of these miRs (159). SPOP functions as an E3 ubiquitin
ligase which is highly expressed in ccRCC (160, 161). It is
transcriptionally activated by HIF-2a and functions as a key
hub in kidney cancer (162). It induces degradation of tumor
suppressors such as PTEN and dual-specificity phosphatase
(DUSP7), pro-apoptotic target death-associated protein 6
(DAXX6) and is part of a novel pathway in ccRCC (162).
SPOP expression correlates with a bad prognosis in ccRCC
(163). Small molecules have been identified which inhibit
SPOP-substrate protein interaction and suppress oncogenic
SPOP signaling pathways in ccRCC (164).

microRNAs targeting apoptosis-related proteins
Anti-apoptotic proteins are crucial for survival of tumor
cells. This is achieved by down-regulation of miRs which
inactivate mRNAs encoding anti-apoptotic enzymes.

miR-337-3p targets CAPN4. miR-337-3p (Figure 5A) is down-
regulated in ccRCC cell lines (165). It inhibits proliferation,
colony growth and invasion, but enhances cell adhesion (165).
Knock-down of miR-337-3p exerts the opposite effects (165).
miR-337-3p inhibits EMT and suppresses growth of ccRCC
xenografts in nude mice (165). Calpain small regulatory
subunit 4 (CAPN4) was identified as a target of miR-337-3p
(165). The calpain family of Ca-dependent non-lysosomal
cysteine proteases is involved in proteolysis of many
substrates, cytoskeletal remodeling, cell survival, apoptosis and
cellular signaling. Proteins of the NFxB, FAK pathways and c-
MYC have been identified as targets of CAPN4-regulated
enzymes (166, 167). The latter are also involved in metastasis
(168). CAPN4 has been shown to be a poor prognostic factor
in gastric carcinoma (169).

miR-708 targets c-FLIP. miR-708 (Figure 5A) inhibits
proliferation and promotes apoptosis of Caki-1 ccRCC cells
and attenuates tumor growth of xenografts in nude mice
(170). Caspase flice-like inhibitory protein (c-FLIP) was
identified as a target for miR-708 (170). c-FLIP acts as a
master anti-apoptotic regulator by binding to Fas-associated
flice-like inhibitory protein (FADD) linking it to caspase 8,
a component of the death-inducing signaling complex
(DISC) (171-173). c-FLIP also impacts activation of the
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mitochondrial mediated pathway by the pro-apoptotic protein
BH3 interacting death agonist (BID) (173) and it is an anti-
cancer target which is pursued by many drug discovery
programmes (171-173).

miR-708 targets survivin. miR-708 (Figure 5A) expression is
attenuated in ¢ccRCC (174). miR-708 induces apoptosis,
inhibits migration and invasion, reduces adhesion to ECM and
increases the fraction of spindle-shaped cells of A498 and
Caki-2 ccRCC cells (174). Intra-tumoral delivery of this
miRNA in xenografts of A498 ccRCC cells leads to regression
of established tumors in nude mice (174). Survivin was
identified as a direct target of miR-708 (174). Its knockdown
phenocopies miR-708 re-expression in ccRCC cells (174) and
is a predictor of progression and death from ccRCC (175). It
is a member of the inhibitor of apoptosis family which
modulates the cell cycle, microtubules dynamics and inhibits
caspase activation (176). Several survivin inhibitors are under
preclinical investigation (177, 178).

microRNAs targeting other proteins

In addition to proteins outlined in the previous sections,
other proteins are implicated in oncogenesis and metastasis.
They can regulate cell movement, angiogenesis, autophagy,
EMT and protein degradation via the proteasome. miRs can
modulate their activity.

miR-29b targets MMP2. miR-29c (Figure 5A) inhibits the
capacity of ccRCC cells to promote capillary tube formation
and to invade ECM gel in vitro (179). LCM6 RCC cells
transfected with dexamethasone inducible miR-29b
subcutaneously or orthotopically implanted into nude mice
give rise to smaller tumors with decreased microvessel
density and decreased occurence of intrahepatic metastases,
indicating that miR-29 suppresses both angiogenesis and
metastasis (179). Matrix metalloproteinase 2 (MMP2) has
been identified as a direct target of this miRNA (179). It
exerts its anti-angiogenic effect by inhibiting VEGFR2
signaling in endothelial cells (179). It is well documented
that degradation and remodelling of the ECM mediates
tumor growth and metastasis (180). However, inhibition of
MMPs in cancer therapy did not meet the projected clinical
endpoints as revealed by numerous clinical trials (181).

miR-204 targets LC3B

miR-204 (Figure 5A) is a VHL-regulated tumor supressor in
ccRCC (182). VHL is lost in the vast majority of ccRCC
carcinomas (182). miR-204 containing lentivirus particles
inhibit subcutaneously implanted 786-O RCC xenografts
after intra-tumoral injection (182). miR-204 expressing 786-
O cells do not infiltrate into the kidney parenchyme after
implantation into the kidney capsule in contrast to cells
expressing an inactive mutant (182). The miRNA is
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Figure 5. Down-regulated miRs targeting apoptosis-related and other proteins with efficacy in preclinical kidney cancer-related in vivo systems.
(A) Apoptosis-related targets. (B) Other exploratory targets. BID: BH3 interacting domain death agonist; CAPN4: calpain small regulatory subunit;
FAK: focal adhesion kinase; FLIP: caspase FLICE-like inhibitory protein; LC3B: autophagy protein LC3B; MMP2: matrix metallo-proteinase 2;
MYC: transcription factor MYC; NFKB; nuclear factor kB; VEGFR2; vascular endothelial growth factor receptor 2; EMT: epithelial mesenchymal
transition; ERK: extracellularly-regulated kinase; JNK: c-jun N-terminal kinase; KIF1C: kinesin family member 1; NOBI: nin one binding protein;

p38: p38 mitogen-activated protein kinase; VIM: vimentin.

cytotoxic to VHL-, but not to VHL+ RCC cells (182). The
autophagy protein LC3B is a direct target of miR-204 and is
a mediator of its cytotoxicity (182). LC3B induces
macroautophagy which is necessary for ccRCC progression
(182). LC3B is also involved in phageosome biogenesis and
substrate selection in ¢ccRCC and other types of cancers
(183,184). Autophagy plays a context-dependant role in
different types of cancers, therefore inhibition or stimulation
of this process could be helpful as therapeutic intervention
(185). Nevertheless, the role of autophagy in ccRCC remains
to be investigated in more detail.

miR-338 targets KIFCI. miR-338 (Figure 5B) inhibits
proliferation, migration and invasion of ccRCC in vitro and
in vivo by targeting kinesin family member 1 (KIFCI)

through the PI3K/AKT signaling pathway (186). KIFC1 is
up-regulated in ccRCC and correlates with aggressive
clinicopathological parameters (186). It is a member of the
kinesin protein family, which are motor proteins that deliver
cargo to different cellular destinations by ATP hydrolysis and
tubulin binding (187). KIFC1 associates with poor survival
in ccRCC, drives tumor malignancy, prevents cancer cell
death and is involved in spindle pole organization (188, 189).
Several kinesin inhibitors are under preclincial and clinical
evaluation in diverse types of cancer (190).

miR-490-3p targets vimentin. Orphan testicular receptor T4
(191) induces vimentin (VIM) and inhibits miR-490-3p
(Figure 5B) by binding to its promoter (192). VIM was
identified as a direct target of miR-490-3p (192). miR-490-
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3p inhibits tumor growth and metastasis after implantation
into the renal capsule of transfected Caki-1 cells in nude
mice (192). VIM belongs to the intermediate filament family,
is ubiquitously expressed in mesenchymal cells, represents a
marker for EMT and correlates with accelerated tumor
growth, invasion and prognosis in several types of cancer
(193, 194).

miR-646 targets NOBI. miR-646 (Figure 5B) is a predictor
of distant metastasis in patients with ccRCC (195). In vitro,
miR-646 inhibits proliferation and colony formation of 786-
O and ACHN ccRCC cell lines (195). In vivo, miR-646
attenuates tumor growth of 786-O and ACHN RCC after
subcutaneous implantation into nude mice (196). In these
cell lines, miR-646 inhibits formation of key components of
the MAPK signaling pathway such as p38, ERK1/2 and c-
jun N-terminal kinase (JNK) (196). Nin one binding protein
(NOB1) was identified as a direct target of miR-646 (196).
Down-regulation of NOBI1 inhibits activation of the
proteasome and stabilizes proteins which increase
phosphorylation of key components of the MAPK pathway
(196, 197). In addition, NOB1 acts as an RNA binding
protein. NOB1 binds to 18S ribosomal RNA and is involved
in its processing (198, 199). NOB1 expression is associated
with poor prognosis in several types of cancers (199).

Therapeutic Aspects

We have identified 10 up-regulated and 33 down-regulated
miRs with efficacy in ccRCC-related in preclinical in vivo
models. Up-regulated miRs can be inhibited by single-
stranded RNAs such as locked nucleic acids (LNA),12-25
nucleotides complementary to the corresponding mRNA
(200). An alternative type of miR inhibitors are miR sponges
which contain multiple miR binding sites that can compete
with the corresponding mRNA for binding of the
corresponding miR (201). Inhibition of miRs can also be
achieved with small molecules which interfere with their
transcription or their secondary structure, but specificity
issues of the identified compounds are a major issue (200,
201). The corresponding targets are candidates for
reconstitution with small molecules or gene therapy. The
identified up-regulated miRs are shown in Figure 1. They
cover adhesion molecules CADM?2 and E-cadherin (miRs-
146a and -720), tumor supressors such as PTEN and
PTENP1 (miR-21), WNT-signaling inhibitors (miR-106-5p),
transcription factors such as FOXO3 and enzymes such as
DICER (miR-122) and ST3GallV (miR-193a, -224).
Noteworthy, our survey revealed only one hit addressing an
epigenetic modifier (miR-144-3p, ARID-1A). This is
surprising since several epigenetic modifiers such as BAP-
1, PBRM1, SET2 and KDMS5C play an important role in the
pathogenesis of ccRCC (6).
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Down-regulated miRs (Figures 2, 3 and 4) are candidates
for miR reconstitution therapy. Their targets are moieties for
inhibition by small molecules or mAb-derived entities.
Double stranded RNAs functioning as miR-mimetics can be
used for restoration of the function of miRs (202). Another
option for functional reconstitution of miRs is to express
them with appropriate vectors in recipient cells (202).

Among the down-regulated miRs identified, miR-99a
(mTOR) and miR-205-5p (VEGF) are directed against
targets with drugs approved for treatment of ccRCC as
outlined in the previous sections. Several approved drugs for
ccRCC target VEGF or vascular endothelial growth factor
receptors 1-3 (VEGFR1-3), often jointly (7). Two approved
drugs for ccRCC target mTOR (107). Three of the identified
down-regulated miRs (miR-30a-3p, -30c-2-3p and -145)
target HIF-2a, which after dimerization with HIF-1a,
induces transcription of genes involved in the pathogenesis
of ccRCC such as VEGF, platelet-derived growth factor B
(PDGFR-B), transforming growth factor a (TGFa),
erythropoietin (EPO), SPOP and ECM proteins (115, 116).
VHL, an E3 ubiquitin ligase, is inactivated in 95% of
sporadic ccRCC with the consequence that its substrates,
HIF-20 and HIF-1a., are not degraded (115, 116). PTP 2977
(MK-6482), an orally active and selective HIF-2a. inhibitor
showed promising efficacy and tolerability and is presently
in Phase III clinical studies in patients with inactivating VHL
mutations (203-205).

Our search has identified SPOP (targeted by miR-
520,372/373) as a tractable target and miR-based agent for
treatment of ccRCC. SPOP is induced under hypoxic
conditions and functions as an E3 ubiquitin ligase which
mediates degradation of PTEN and other tumor suppressors
and promotes tumorigenesis by acting as a key regulatory
hub in ccRCC (160, 161). Another E3 ubiquitin-ligase, CBP
(targeted by miR-200a-3p) as a potential therapeutic target,
has been revealed by our search. However, more target
validation experiments are necessary to substantiate its role
as a therapeutic target in ccRCC.

Our survey has identified CDKs and corresponding miRs
as targets and therapeutic tools for treatment of ccRCC such
as miR-1 (CDK4, CDK6), miR-200c (CDK?2) and miR-206¢
(CDK4, CDK9). CDK4 and CDK®6 inhibitors have been
approved for treatment of hormone-dependent, HER2-
negative breast cancer (134). PD-0332991, a potent and
selective inhibitor of CDK4 and 6 inhibits proliferation of
RCC cells at nanomolar concentrations (206). It remains to
be explored whether a therapeutic window exists for CDK
inhibitors in patients with ccRCC. Furthermore, RLIP76
(targeted by miR-137) was identified as a druggable
transmembrane receptor which induces apoptosis in ccRCC
cells both in vitro and in vivo.

In addition to these high priority targets as outlined above,
other druggable targets and corresponding miRs have been
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noticed such as CAPN4 (miR-337-3p), c-FLIP/SURVIVIN
(miR-708), VHL regulated LC3B (miR-204), kinesin KIF1C
(mR-338), AKT2 (miR-148a), PAKS (miR-106-5p), EphA2
(miR-141) and IGFR1 (miR-193b). However, more target
validation experiments are necessary for these targets and
their associated miRs to explore their potential for treatment
of ccRCC.

Other targets with pending druggability and preliminary
target validation have been identified such as: Let-7d
(COL3A), miR-28-5p (RAS-1B), miR-32-5p (TR4), miRs-
143 and -216 (KRAS), miR-200b (LAMA4), miR-490-3p
(VIM) and miR-646 (NOB1).

Of note, miR-122 targets DICER (38) and FOXO3 (17)
(Figure 1). This may be due to selection of different in vitro
and in vivo systems for target identification. The same may
be true for miR-780 which targets c-FLIP and Survivin
(Figure 3A) (170, 174).

miR-based therapy has experienced serious drawbacks in
clinical trials due to lack of efficacy or serious adverse
reactions (207). Clinical studies evaluating a miR-17
inhibitor in patients with polycystic kidney disease and
treatment of patients with hepatitis C virus infection were
put on hold due to toxicity issues (207). A Phase I study of
MRX34, a synthetic mimic of miR-34, in patients with
multiple types of tumors was shut down due to immune-
related side effects (207). Next generation of miR-related
therapeutics with an expected profile of better tolerability
and efficacy have been generated (207). Also progress in
delivery issues has been achieved (207). COBOMARSEN
(MRG-106), an antagonist of miR-155, which is presently
evaluated in clinical trials in haematological malignancies is
well tolerated and looks promising with respect to efficacy
(207). The next couple of years will give us a more realistic
estimation of the potential of miRs for the therapy of cancer.
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