
Abstract. The annual death toll for gastric cancer is in the
range of 700,000 worldwide. Even in patients with early-
stage gastric cancer recurrence within five years has been
observed after surgical resection and following
chemotherapy with therapy-resistant features. Therefore, the
identification of new targets and treatment modalities for
gastric cancer is of paramount importance. In this review we
focus on the role of microRNAs with documented efficacy in
preclinical xenograft models with respect to growth of
human gastric cancer cells. We have identified 31 miRs (-
10b, -19a, -19b, -20a, -23a/b, -25, -27a-3p, -92a, -93, -100,
-106a, -130a, -135a, -135b-5p, -151-5p, -187, -199-3p, -215,
-221-3p, -224, -340a, -382, -421, -425, -487a, -493, -532-3p,
-575, -589, -664a-3p) covering 26 different targets which
promote growth of gastric cancer cells in vitro and in vivo
as xenografts. Five miRs (miRs -10b, 151-5p, -187, 532-3p
and -589) additionally have an impact on metastasis.
Thirteen of the identified miRs (-19b, -20a/b, -25, -92a, -
106a, -135a, -187, -221-3p, -340a, -421, -493, -575 and -
589) have clinical impact on worse prognosis in patients.

Gastric cancer (GC) is the third-leading cause of cancer
worldwide and is the forth most common cancer with an

annual death toll of 700,000 worldwide (1). Intestinal-type and
diffuse-type are the major histological subtypes (2). A total of
90% of GCs are adenocarcinomas which arise from the
glandular epithelium (1). A total of 1-3% of GCs are
hereditary cancers due to inactivating mutations in E-cadherin
(1). From a molecular point of view, the following subtypes
have been defined: Epstein-Barr-Virus (EBV)-positive with
pronounced DNA hypermethylation, genomic stable subtype
with distinctive genomic alterations, the microsatellite
instability subtype (MSI) and the chromosomal instability
(CIN) subtype characterized by aneuploidy and focal
amplification of transmembrane receptor tyrosine kinases (3).
These subtypes are correlated with different survival and
outcomes of chemotherapy (3). Several agents have been
approved for the treatment of gastric cancer: chemotherapy-
based drugs such as 5-fluorouracil (5-FU)-related agents,
docetaxel, doxorubicin and mitomycin B as well as
monoclonal antibodies (mABs) such as trastuzumab (HER2 as
a target) for HER2-positive patients, ramicurumab (VEGFR2
as a target) and checkpoint-inhibitory antibody pembrolizumab
directed against programmed cell death 1 (PD1) (5-10).
Nevertheless, in patients with early-stage GC, recurrence
within 5 years after surgical resection and subsequent
chemotherapy has been observed (4, 5). The prognosis of
patients with advanced GC is significantly worse (4, 5).

Therefore, the identification of new targets and treatment
modalities is an important issue. In this review, we describe
the role of microRNAs (miRs) in pathogenesis and
metastasis of GC. We focus on miRs which are up-regulated
in GC tissue in comparison to matching normal tissues which
exhibit efficacy in preclinical in vivo models. We have
excluded: miRs playing a functional role in Helicobacter
pylori-related gastric cancer models, miRs exerting their
function by interaction with non-coding RNAs, miRs
delivered by exosomes and those induced in tumor cells by
stromal cells. 
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microRNAs and Their Role in Oncology

miRs are double-stranded non-coding RNAs comprising 22-
25 nucleotides (nts) which are generated from precursors
transcribed in the nucleus, processed and finally 22-25 nts
miR complexes are released into the cytoplasm (12-14). The
guide strand is maintained and the other strand, the
passenger strand, is degraded (13, 14). A single miR species
may repress several miRs and each mRNA can be degraded
by several different miRs indicating their potential to
modulate serveral pathways and cellular networks (15). miRs
can be transcribed from single transcriptional units or from
multicistronic transcripts from a coding gene, introns or non-
coding genes (15).

In oncology, miRs function as oncogenes as well as tumor
suppressors (TS), depending on the cell-type in which they
are expressed (15-17). Genetic deletion of the miR-15/16
genetic locus in mice recapitulated the features of human
chronic lymphocytic leukemia, supporting their role as tumor
suppressors (18). An oncogenic role was identified for miR-
221 which induced hepatocellular carcinomas in transgenic
mice after liver-specific expression (19). miRs are also
involved in metastasis. We have recently summarized their
role in metastasis in breast-, prostate, ovarian, lung and
pancreatic cancer (20).

miRs Inhibiting Tumor Suppressors

PTEN. miRs-221-3p (25), -382 (26), -425 (27) and -575 (28)
(Figure 1) target phosphatase and tensin homolog PTEN
which dephosphorylates phosphatidylinositol-3,4,5
triphosphate and thus negatively regulates the AKT signaling
pathway (29, 30). miRs -382 and -425 are induced by
hypoxia-inducible factor 1 (HIF-1) or interleukin 1β (Il1β),
respectively (26, 27). miRs-221-3p, -382, -425 and -575
affect tumor growth of gastric cancer cell lines SNU-1,
MKN1, NCI-N87 and MGC-803 respectively after
subcutaneous implantation into nude mice (25-28). miR-382
also affects angiogenesis, by promoting sprouting, branching
and network formation of blood vessels induced by vascular
endothelial growth factor (VEGF) (26). Overexpression of
miRs-221-3p and -575 in GC patients in comparison to
matching normal tissues correlates with worse prognosis
(25,28). All the discussed miRs activate AKT signaling. Data
derived from The Cancer Genome Atlas (TGCA) show that
miR-221 is overexpressed in GC tissues in comparison to
matching normal tisses (Figure 2).

RASSF8. miR-224 (Figure 1) is induced by hypoxia and
increases cell viability and invasion in gastric cancer cell
lines SGC-7901 and MGC-803 (31). SCG-7901 cells
transfected with a miR-224 antagomir exhibit reduced
growth after subcutaneous implantation into nude mice (31).

Ras-association domain containing protein 8 (RASSF8) was
identified as a direct target of miR-224 (32). RASSF8 is a
member of a family of 10 genes which are linked to
processes such as cell proliferation, cell death and responses
to hypoxia (32). The above mentioned in vitro effects were
recapitulated by overexpression of RASSF8 in SGC-7901
and MGC-803 cells (31). RASSF8 overexpression inhibits
nuclear factor ĸB (NFĸB) signaling and it functions as a TS
(33, 34).

microRNAs Targeting Transcription Factors

miR-187 (FOXA2). Increased expression of miR-187 (Figure
1) is associated with clinico-pathological features and
prognosis in GC patients (35). miR-187 promotes
proliferation, migration and invasion of SGC-7901 GC cells
(35). SGC-7901 cells overxpressing miR-18 exhibit increased
tumor growth (TG) after subcutaneous implantation into nuce
mice and increased lung colonization after tail vein injection
(35). Forkhead box protein A2 (FOXA2) was identified as a
direct target of miR-187 (35). It was shown that FOXA2
mediates the biological functions of miR-187 (35). FOXA2 is
a transcriptional factor which suppresses gastric
carcinogenesis in vitro and in vivo (36).

miR-199-3p (ZHX1). miR-199-3p increases proliferation and
suppresses apoptosis in vitro and in vivo of GC cell lines
SGC-7901 and NCI-N87 (37) (Figure 1). Transcription factor
zinc fingers and homeoboxes (ZHX1) was identified as a
target for miR-199-3p (37). Restoring ZHX1 expression in
SGC-7901/miR-199-3p cells inhibits cell proliferation
induced by miR-199a-3p (37). It has been shown that ZHX1
inhibits GC cell growth through inducing cell-cycle arrest
and apoptosis (38). The ZHX family consists of three
members containing two Cys2His2 zinc finger domains and
five homeobox DNA-binding motifs (39).

RUNX1 and RUNX3. miRs-215 and -532-3p (Figure 1) target
runt-related transcription factors RUNX1 or RUNX3
respectively (40, 41). Ectopic expression of miR-215
promotes migration and invasion of GES-1 and HGC-27
cells (35). RUNX1 could partially reverse the function of
miR-215 (35). HGC-27 cells stably expressing miR-215
metastasize to the liver after intraperitoneal injection (40).
miR-532-5p promotes growth and migration of BGC-823
gastric cancer cells (36). In vivo miR-532-3p promotes lung
colonization after tail vein injection of BCG-823 gastric
cancer cells transfected with miR-532-3p (41). The RUNX
familiy of transcription factors are frequently inactivated in
cancer and function as TS (42). RUNX1 plays a role in early
steps of haematopoesis and acts as a TS in breast cancer
(43). RUNX3 was shown to have a tumor- and metastasis
suppressive role in GC (44-47).
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miRs Targeting Ubiquitin-related Enzymes

miR-25. miR-25 (Figure 3A) is overexpressed in primary
tumor tissues of GC patients and is significantly correlated
with a more aggressive phenotype of GC in patients (48).
miR-25 mediates proliferation, invasion and migration of GC
in vitro and promotes TG in vivo (48). F-box/WD repeat
containing protein 7 (FBXW7) was identified as a direct
target of miR-25 (48). Restauration of expression of FBXW7
led to reversion of the described in vitro effects (48). F-box
proteins constitute one of the four subunits of the ubiquitin-
protein ligase system (49, 50). FBXW7 has been shown to
function as a TS of human tumorigenesis (51). Data from
TCGA show that miR-25 is over-expressed in GC tissues in
comparison to matching normal tissues (Figure 2).

miR-100. Expression of miR-100 (Figure 3A) correlates with
GC tumorigenesis and progression (52). Inhibition of miR-
100 results in apoptosis of poorly differentiated gastric
cancer cells, but not of non-cancerous gastric cells in vitro
and in vivo (52). RNF144B, an E3-ubiquitin ligase was
identified as a direct target of miR-100. RNF144B contains
a single transmembrane domain close to the C-terminus, is
localized in the nucleoli and mitochondria and promotes

apoptosis under various cell damaging events by degradation
of p53 (53-55).

miRs Targeting Transmembrane Receptors

miR-106a. miR-106a (Figure 3B) expression is significantly
associated with tumor size, lymphatic and distant
metastasis (56). miR-106 inhibits apoptosis of GC cells
AGS, N87 and BGC823 (56, 57). FASR (CD95) and
caspase 3 were identified as direct targets of miR-106 (56,
57). MicroRNA-106a functions as an oncogene in human
gastric cancer and contributes to proliferation and
metastasis in vitro and in vivo. miR-106 inhibits GC cell
apoptosis through a FASR (CD95)-mediated, extrinsic cell
death pathway (56-59). Data derived from TCGA show that
miR-106a is over-expressed in GC tissues in comparison to
matching normal tissues.

miR-421. miR-421 (Figure 3B) is increased in GC and is
associated with poor prognosis (60). An antagomir of 421
reduces TG of subcutaneously implanted SGC-790/1 cells in
nude mice (60). E-Cadherin and caspase 3, key regulators in
the process of epithelial mesenchymal transition (EMT) have
been identified as targets of miR-421 (60-62). Data derived
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Figure 1. Up-regulated miRs mediating efficacy in gastric cancer-related in vivo models. miRs and the corresponding targets are shown. (A): miRs
targeting tumor suppressor genes. PTEN: Phosphatase and tensin homolog; RASSF8: ras association domain-containing protein 8. (B): miRs
targeting transcription factors. FOXA2: Forkhead-box-protein A2; RUNX1: runt-related transcription factors 1 and 3; ZHX1: zinc fingers and
homeoboxes protein 1.



from TCGA show that miR-421 is over-expressed in GC
tissues in comparison to matching normal tissues.

miR-589. miR-589 (Figure 3B) is up-regulated in GC
tissues and associated with poor prognosis in patients with
GC (63). miR-589 induces migration and invasion of GC
cell lines MGC803 and BCG823 in vitro (63). Endogenous
overexpression of miR-589 promotes lung metastasis of
MGC-803 cells after tail vein injection (63). Leukemia
inhibitory factor receptor (LIFR) was identified as a direct
target of miR-589 (63). LIFR suppresses the in vitro effects
of miR-589 as described above (63). It was shown that
LIFR is essential for miR-589-mediated promotion of
PI3K/AKT signaling activation (63). LIFR (CD118) is a
low-affinity subunit of the LIFR and together with a high-
affinity converter subunit binds leukemia inhibitory factor
(LIF) with high affinity. LIF is an interleukin 6 (IL6) class
cytokine (64). LIFR has been identified as a metastasis
suppressor in hepatocellular carcinoma (65). Data derived
from TCGA atlas confirm that miR-589 is over-expressed
in GC tissues in comparison to corresponding normal
tissues (Figure 2).

miRs Involved in Signaling Pathways

miR-19a. mi-19a (Figure 4) promotes proliferation and
tumorigenicity of MGC-803 and SGC-7901 GC cells (66).
In vivo, increased TG was noted with SGC-7901 cells
overexpressing miR-19a after subcutaneous implantation

(66). Suppressor of cytokine signaling-1 (SOCS-1) was
identified as a direct target of miR-19a (66). miR-19a
expression levels are inversely correlated with SOCS-1
levels in GC tissues (66). SOCS-1 is member of a family of
eight proteins each of which contains a src hmology 2 (SH2)
domain and a COOH-terminal SOCS-box (67). SOCS-1
functions as an inhibitor of the janus tyrosine kinase (JAK)
and signal transducer and activator of transcription 3
(STAT3) pathways (68, 69).

miR-19b, -20a, 92a. miRs-19b, -20a and 92a (Figure 4) are
members of the mir-17-92 cluster and are overexpressed in
human GC stem cells and are negatively correlated with the
survival of GC patients (70). SGC7901 cells transduced with
miRs-19b, -20a or -92a show improved TG after
subcutaneous implantation into nude mice (70). Transcription
factor E2F1 and homeodomain-interacting protein kinase
(HIPK) were identified as targets of the miRs of the miR-17-
92 cluster which are involved in self-renewing of GC stem
cells (70). E2F can activate transcription of β-catenin-
interacting protein (ICAT), an inhibitor of β-catenin (71).
HIPK1 phosphorylates homeodomain transcription factors
and co-repressors of homeobox transcriptions factors and
modulates β-catenin signaling by interaction with
dishevelled, a multi-domain scaffold protein required for
virtually all WNT signaling activities (72). Data derived
from the TCGA show that miRs-19b, -20a and -92a are
overexpressed in GC tissues in comparison to corresponding
normal tissues (Figure 2).
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Figure 2. Expression of selected miRs in stomach adenocarcinoma compared to normal tissues. Data are shown for miR-106a, miR-19b, miR-20a,
miR-20b, miR-221, miR-25, miR-340, miR-421, miR-493, miR-589 and miR-92a. Data from 436 tumor samples and 41 normal stomach samples
derived from The Cancer Genome Atlas are shown. miR expression was quantified by RNA sequencing and is shown as log2 of normalized read
counts. The red lines indicate lower versus higher expression. Expression data are shown as box plots. The line in the medium of the box represents
the median value, the rectangles show the upper and lower 25% quartiles, and 50% of all data points are included in the greater rectangle. All
data points, except for the outliers are located within the upper and lower whiskers.



miR-493. miR-493 (Figure 4) is up-regulated in GC and
promotes proliferation of SGC-709 and MGC-803 GC cells
(73). TG of MGC-803 GC cells overexpressing miR-493 is
increased after subcutaneous implantation in comparison to
the control cell line (73). Dickkopf-related protein-1 (DKK-1)
has been identified as direct target of miR-493 (73). Ectopic
expression of DKK-1 can rescue the effect of a miR-493
inhibitor on proliferation in vitro and TG in vivo (73). DKK-
1 is an antagonist of the WNT/β-catenin signaling pathway by
isolating the low-density lipoprotein receptor-related protein
6 (LRP6) co-receptor so that it can not aid in activating the
WNT signaling pathway (74, 75). High DKK-1 expression
regardless of β-catenin positivity is a crucial prognostic factor
for predicting tumor recurrence and survival of patients with
resected advanced GC (76). Data derived from TCGA show
that miR-493 is over-expressed in GC tissues in comparison
to corresponding normal tisses (Figure 2).

miR-664a-3p. miR-664a-3p (Figure 4) is up-regulated in GC
tissues and promotes GC cell proliferation (77). miR-664a-3p
mimics promote tumor volume of SGC790 and HGC27 GC
tumor cells subcutaneously injected into nude mice, wheras a
miR-664a-3p inhibitor decreases the tumor volume (77). MOB
kinase activator 1A (MOB1A) was identified as a direct target

of miR-664a-3p (77). MOB1A is a component of the Hippo
pathway which is involved in restraining cell proliferation and
promoting apoptosis. The Hippo pathway is frequently
deregulated in different human cancers, but most Hippo
pathway genes are not commonly mutated (78-80). MOB1A
inhibits large tumor suppressor kinases 1 and 2 (LATS 1/2)
which modulates two other kinases, nuclear dbf2-related 1 and
2 (NDR1 and NDR2) resulting in enrichment of yes-associated
protein-1 (YAP) and transcriptional activator with PDZ-binding
motif (TAZ) in the nucleus leading to a negative impact on
transcription of Hippo pathway-related genes (78-80).

micro-RNAs Modulating Apoptosis

miRs-23a/b, -93. miRs-23a/b and -93 (Figure 4) are up-
regulated in GC tissues in comparison to normal tissues (81,
82). Programmed cell death 4 (PDCD4) has been identified
as a direct target of miRs-23a/b and -93 (81, 82).
Introduction of miR-23a/b mimetics into MKN-45 and AGD
GC cells reduces PDCD4 levels, whereas miR-23a/b
antisense oligonucleotides increase PDCD4 levels (81). AGS
cells transfected with PDCD4 small interfering RNA
(siRNA) showed decreased apoptosis, transfection of a
PDCD4 expression plasmid had the opposite effect (82). In
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Figure 3. Up-regulated miRs mediating efficacy in gastric cancer-related in vivo models. (A): miRs targeting ubiquitinylation related mRNAs.
FBXW7: F-box/WD repeat-containing protein 7; RNF144B: ring finger protein 144B. (B): miRs targeting transmembrane receptors. CD95: cluster
of differentiation 95; FASR: FAS receptor; LIFR: leukemia inhibitory factor receptor.



vivo, MKN-45 and AGS GC cells overexpressing miR-23a/b
or miR-93 respectively, exhibited increased tumor size and
weight after subcutaneous implantation into immuno-
compromized mide (81, 82). PDCD4 mediates sensitivity to
apoptosis by suppressing FLICE inhibitory protein (FLIP), a
negative regulator of apoptosis (83, 84). Down-regulation of
PDCD4 has been observed in tumorigenesis and progression
of human digestive cancers (85). In gastric GC, PDCD4 has
been identified as a TS gene (86). 

miR-135a. mR-135a (Figure 4) is up-regulated in GC
patients and is associated with poor prognosis (87). miR-
135a correlates with resistance to oxaliplatin (OXA) (87).
OXA-resistant GC cells proliferate in response to miR-135a
expression (87). TG of MGC-803/OXA GC transfected with
miR-135a was increased and TG was reduced with MGC-
803/OXA cells transfected with a miR-13 functional inhibitor
after subcutaneous implantation into nude mice (87). E2F1
and death-associated protein kinase 2 (DAPK2) were
identified as direct targets of miR-135a, promoting OXA-
resistance (87). DAPK2 is stimulated by E2F1 and induces
apoptosis by the kruppel-like factor (KLF/Sp1) transcription
factor pathway (88). Restoration of DAPK2 TS in cancer
cells by fusion protein containing a tumor-targeting module

and DAPK2 reconstitution is a therapeutic strategy to
selectively induce apoptosis in cancer cells (89, 90). In
patients with GC hypermethylation of the DAPK gene has
been observed (91).

miR-151-5p. miR-151-5p (Figure 4) expression is increased
by activated Notch1 pathway (92). miR-151 promotes
growth of SC-M1 GC cells and induces focal adhesion
kinase (FAK) (92). SC-M1 cells overexpressing miR-151-5p
exhibit augmented tumor sizes in comparision to control
cells after subcutaneous implantation into nude mice (92).
After tail vein injection of these cells, metastatic nodules in
the lungs were significantly increased (92). p53 was
identified as a target of miR-151-5p (92). The apoptosis-
mediating function of p53 in cancer is well documented
(93,94). The suppressive effects of miR-151 antagomirs on
Notch1 signalling-induced metastasis of SC-M1 cells could
be partially recovered by cotransfection of an siRNA vector
against p53 (92).

microRNAs Interfering With the Cell-Cycle

miR-27a-3p. miR-27a-3p (Figure 5A) is over-expressed in GC
tissues and promotes proliferation and TC growth in NCI-N87,
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Figure 4. Up-regulated miRs mediating efficacy in gastric cancer-related in vivo models targeting signaling- and apoptosis-related pathways. DAPK2:
Death-associated protein kinase 2; DKK-1: dickkopf-related protein-1; E2F: transcription factor E2F; HIPK: homeobox-interacting protein kinase;
MOB-1A: MOB kinase activator A; p53: protein 53; PDCD4: programmed cell death protein 4; SOCS1: suppressor of cytokinase signaling 1.



MGC-803 and GES-1 GC cells (95). Ectopic expression of
miR-27a-3p in GES-1 cells promotes tumor weight and
volume after subcutaneous administration into immuno-
deficient mice, the opposite holds true for MGC-803 cells with
inhibited expression of miR-27a-3p (95). B-cell translocation
gene (BTG2) has been identified as a direct target of miR-27a-
3p (95). BTG2 induces apoptosis and triggers cell cycle arrest
by inhibiting G1/S transition (96, 97). BTG2 is frequently
deleted or mutated in B-cell malignancies and functions as a
TS in several types of tumors (98).

miR-340. miR-340 (Figure 5A) is up-regulated in GC tissues
and cell lines (99). Elevated expression of miR-340 is
correlated with adverse clinicopathological features and poor
prognosis in GC patients (99). miR-340 promotes motility,
proliferation and cell-cycle progression of GC cells such as
SGC-7901 and MGC-803 (99). Inhibition of miR-340
decreased TG of MGC-803 cells in nude mice and cyclin G2
was identified as a direct target of miR-340 (99). CCNG2 is
critical for the functional effects of miR-340 in GC cells,
because knockdown of CCNG2 abrogated the effects of
miR-340 knockdown in MGC-803 cells (99). CCNG2 is a
regulator of cell proliferation and induces G1/S phase cell
cycle arrest (100, 101). CCNG2 expression is decreased in
GC (102). Based on data derived from TCGA, miR-240 is

over-expressed in GC tissues in comparison to matching
normal tissues (Figure 2).

Other miRs Affecting Growth of Gastric Cancer

miR-10b. miE-10b (Figure 5B) promotes proliferation,
invasion, colony formation and EMT of HGC27 GC cells
(103). MKN74 cells overexpressing miR-10b show increased
tumor volume and weight and metastasis to the liver after
subcutaneous implantation in nude mice (103). CUB and
sushi multple domains 1 (CSMD1) was identified as a target
of miR-10b (103). Expression of CSMD1 was negatively
correlated with expression of miR-10b in GC tissues (103).
Inhibition of CSMD1 leads to activation of the NFĸB
pathway resulting in up-regulation of cyclin D1 (CCND1)
and EMT markers (103). CSMD1 is a single membrane
spanning protein which contains 14 N-terminal CUB
domains that are separated from each other by a SUSHI
domain followed by an additional 15 tandem SUSHI domain
segment and functions as a complement inhibitor (104). In
melanoma cells, CSMD1 exhibits anti-tumor activity by
inhibiting cell-cycle progression and apoptosis via the
SMAD pathway (105). Loss of CSMD1 has been observed
in head-and-neck squamous cell carcinoma, lung- and breast
cancer (106).
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Figure 5. Up-regulated miRs mediating efficacy in gastric cancer-related in vivo models. (A): miRs targeting cell-cycle-related proteins. BTG2:
BTG family member 2; CCNG2: cyclin-G2. (B): miRs interfering with other targets. CMTM3: CKLF like MARVEL transmembrane domain
containing 3; CRMP1: collapsin response mediator protein 1, CSMD1: CUB and sushi multiple domains 1; KDM2B: Lysine (K)-specific demethylase
2B; TIA-1: T cell intracellular antigen-1.



miR-130a. miR-130a (Figure 5B) is elevated in GC cell lines
(107). In BGC823 cells, miR-130a promotes proliferation
and inhibits cell-cycle arrest in G1 phase, colony formation,
cell invasion and migration as well as cell adhesin by
targeting collapse response mediator protein 4 (CRMP4)
(107). CRMP4 reversed the in vitro effects of miR-130a as
described above (107). miR-130a functions as an oncomir.
miR-130a accelerates TG of BGC823 cells in nude mice and
depletion of CRMP4 with small hairpin RNA (shRNA)
results in retardation of TG (107). CRMPs are a family of
five cytosolic proteins which are expressed in the nervous
system during development and through interactions with
microtubules play important roles in axon formation and
growth cone guidance and collapse (108). They are
implicated in proliferation, apoptosis, differentiation,
progression and metastasis of tumors (109). In melanoma
cells, CRMP1 plays an anti-tumoral role in cell-cycle
regulation and controlling apoptosis via the SMAD pathway
(110). It was shown that VEGF promotes GC development
by up-regulation of CRMP4 (111).

miR-135b-5p. miR-135b-5p (Figure 5B) expression in GC
tissues is significantly higher compared to normal tissues
(112). SGC-7901 GC cells infected with a lentivurs
expressing a miR-135b-5p inhibitor exhibit reduced
proliferation, suppressed cell-cycle progression and
invasiveness and promotion of apoptosis (112). In vivo, this
cell line has characteristics of reduced tumor growth in nude
mice (112). Chemokine-like factor (CKLF)-like MARVEL
transmembrane domain-containg family member 3
(CMTM3) was identified as a direct target of miR-135b-5p
(112). CMTM3 is member of a family of nine genes in
humans of the chemokine-like factor gene family similar to
the chemokine and transmembrane 4 superfamilies of
signaling molecules (113). It was previously shown that
CMTM3 inhibits GC cell growth through apoptosis and its
knockdown promotes metastasis of GC cells via the
STAT3/Twist1/EMT signaling pathway (114-116). CMTM3
also decreases epidermal growth factor receptor (EGFR)
expression and EGFR-mediated tumorigenicity in GC (117).
Altogether, CMTM3 functions as a TS in GC and CMTMs
excert TS functions in additional types of cancers (118).

miR-448. miR-448 (Figure 5B) is over-expressed in GC and
is associated with poor survival (119). miR-448 promotes
growth and carcinogenicity of MKN87 and SGC7901 GC
cells in vitro and in vivo (119). Lysine (K)-specific
demethylase 2B (KDM2B) was identified as a direct target
of miR-448. Suppression of KDM2B promotes glycolysis in
GC cells and miR-448 is a positive regulator of glycolysis
(119). Inhibition of of KDM2B induces expression of
transcription factor MYC and glycolysis (119). KDM2B
removes methyl groups from H3K36me2 and H3K4me3 of

histones and inhibits glycolysis of cancer cells which are
addicted to glycolysis in contrast to differentiated cells which
use mitochondrial oxidative phosphorylation for energy
production (119). MYC is known as inducer of glucose
uptake and lactate production in cancer cells (120). However,
from a general point of view, one should keep in mind that
KDM2B is a double-edged sword in the regulation of cancer
development which can act in a context-dependent manner
as a TS or as an oncogene (121).

miR-487a. miR-487a (Figure 5B) promotes proliferation and
suppresses apoptosis of GC in vitro and knockdown of miR-
487a has opposite effects (122). miR-487a enhances growth
of GC xenografts (122). T cell intracellular antigen-1 (TIA-
1) has been identified as a direct target of miR-487a (122).
TIA-1 contains three RNA recognition domains, the latter
two have been shown to be important for RNA binding and
selectivity (123). TIA-1 alters both co-transcriptional and
post-transcriptional RNA processing and binds to VEGF-A
mRNA (124). Alternative splicing of VEGF induced by TIA-
1 influences the angiogenic capability of colorectal cancer
(125). TIA-1 also acts as a stress-induced translational
inhibitor localizing to stress granules containg polyA RNA
(126). Alternative splicing, export and translational
regulation have been shown to contribute to tumor formation
and progression and these events are attractive targets for
therapeutic intervention (127, 128). 

Technical Aspects

Oncomirs can be inhibited at several stages of their generation:
at the level of transcription by RNA Pol II or III, at the level
of precursor cleavage by DICER and at the level of functional
inhibition of mature RNA, resulting in mRNA degradation and
functional repression (129). The latter is the most popular
mode of intervention. miRs inhibit several mRNAs, wheras
siRNA inhibits only one specific mRNA (130). siRNAs are 21-
23 nt RNA duplexes with two nts 3’-overhang fully
complementary to mRNA, whereas miRs are 19-25 nts RNA
duplexes with two nts 3’-overhang with complementary
binding in the seed region (nts 2 to 7 at the 5’-end) of the
corresponding miR to the 3’-UTR of the mRNA (130). siRNA
mediates endonucleolytic cleavage of the corresponding
mRNA, wheras miRs preferentially induce degradation of
mRNAs and translational repression (129, 130). 

Anti-miR-oligonucleotides (AMO) are designed to bind a
sequence complimentary to mature miRs. Incorporation of a
phosphoro-thioate backbone and ribose 2’-OH modification
(2’-F, 2’-O-methyl, 2’-O-methoxyethyl) have improved
binding and pharmaco-kinetic and pharmako-dynamic
properties of AMO’s (130). Anti-miRs with a 2’-O-
methoxyethyl modification are referred to as antagomirs.
Also, incorporation of locked nucleic acids (LNA) which
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contain an additional bridge between the 2’-oxygen and the
4’-carbon of the pentose have significantly improved the
drug-like properties of AMO’s (131). 

Peptide nucleic acids (PNA) are under evaluation as miR-
inhibitory agents (132). In these agents the deoxy-phosphate
backbone of nucleic acids is replaced by a polyamide chain
of N-aminoethyl-glycyl units to result in polymers with an
artificial backbone structure as a main chain with similarity
to DNA or RNA (132). PNAs are resistant to nucleases, have
stronger affinity and greater specificity for DNA and RNA
than natural nucleic acids (132). 

Identification of small molecule inhibitors of miRs is
under active investigation. Several inhibitors which inhibit
transcription of defined miRs have been identified, however
specificity issues and target deconvolution of the identified
compounds have to be tackled (133). Identification of
compounds which target secondary elements in human miR
hairpin precursors have been reported (134). It has been
shown that a secondary structure of pre-miRs contains a
narrow groove to which a positively charged compound can
bind at nM affinity, making it a druggable candidate (135).
Combination of bioinformatics and high throughput
screening has revealed compounds which inhibit DICER
cleavage sites in pre-miRs (136). 

miR sponges are DNA constructs which contain
artificially designed, tandemly reiterated miR-binding sites
thus competing for miRs with the mRNA under
consideration (137). They have to be transduced into the
corresponding recipient cells (137). Furthermore, oncomirs
have been knocked-out by making use of the genome-editing
tool clustered regularly interspaced short palindromic
repeats- CRISPR associated (CRISPR-CAS) (138, 139).

However, many additional issues have to be optimized
case-by- case for optimization of therapeutic efficacy of
miR-inhibitors. Extended circulation time by PEGylation
[attachment of polyethylene glycol (PEG)] polymer chains
attached to miRs has been achieved (140). Optimization of
delivery is a crucial process for achieving therapeutic
efficacy. Cationic complexes which interact with negatively
charged RNA through electrostatic interactions have been
created with synthetic polyethyleneimine (PEI) as early
generation polymers for RNA delivery (141). Also,
dendrimers, branched synthetic polymers are under
evaluation as delivery agents (142, 143). Polymers also
promote endosomal escape of miRs thus avoiding
endosomal-lysosomal RNA degradation. Poly (lactic-co-
glycolic acid) (PLGA) is an FDA-approved synthetic
biodegradable polymer for delivery of miR-inhibitors (144).
Moreover, the use of cyclodextrins as delivery agents has
been explored (145). Another class of delivery agents are
lipid-based agents. These agents are composed of cationic
lipids and liposomes which can form complexes with RNA
through electrostatic interactions (146). Also, lipolyplexes

composed of polymers and lipids are under investigation as
delivery agents (147). Conjugation of miRs to specific
ligands such as N-acetylgalactosamine, a triantennary N-
acetylgalactosamine, high-affinity ligand specific for the
asialoglycoprotein receptor, enhances potency of anti-sense
oligonucleotides 6-10-fold in mouse liver (148). Several
ciritical issues are not discussed in further details in this
review such as toxicity issues, cytokine release syndrome,
delivery into target tissues, efficient release of miR-related
agents from endosomes, optimization of pharmaco-kinetic
and pharmaco-dynamic properties, excretion by the kidneys
and unspecific hybridization (149-155). 

Synopsis. We have identified 31 miRs covering 26 different
targets which promote growth of GC cells in vitro and in
vivo as xenografts. Five miRs (miRs -10b, 151-5p, -187,
532-3p and -589) additionally have an impact on metastasis.
Thirteen of the identified miRs (-19b, -20s, -25, -92a, -106a,
-135a, -187, -221-3p, -340a, -421, -493, -575 and -589
correlate with worse prognosis in GC patients. The oncomirs
identified are up-regulated in GC tissues, the corresponding
targets are down-regulated. The homogeneity of expression
of the target candidates miRs should be investigated in more
details. As outlined previously GC patients have a high
relapse rate after surgical resection and following
chemotherapy. It would be of interest to investigate, whether
inhibition of any of the identified miRs has an impact on
established metastases in preclinical in vivo models.

miRs Landscape Cancer

miR-related therapeutics may be particulary suited for
complex, multigenic disorders such as cancer, since they can
interfere with several pathways. The first micro-RNA based
therapeutic evaluated in clinical studies in cancer patients
was MRX-34 by Mirna Therapeutics (156, 157). MRX-34 is
an intra-venously injected liposomal formulation of a miR-
34 mimetic. miR-34 acts as a TS and inhibits proliferation,
invasion by inhibition of WNT, NOTCH, TGFβ and EMT-
related transcription factors (156,157). Repression of miR-
34 target genes such as forkhead box protein P1 (FOXP1),
B-cell lymphoma 2 (BCL2), histone deacetylase 1 (HDAC1)
and cyclin B1 (CTNNB1) was demonstrated in cancer
patients, however, clinical studies were halted due to
multiple immune-related side effects (156, 157). Another
agent is a miR-16-based mimetic which is administered as
EGFR-conjugated bacterial mini-cells (158). The agent was
intra-venously injected into recurrent patients with malignant
pleural mesothelioma with signs of radiologic progression
after chemotherapy (NCI02369198). Twenty-two patients
were enrolled and one objective response (5%), in 15
patients (68%) stabilisation of disease and in 6 patients
(27%) progression of disease was observed with an
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acceptable safety profile (158). miR-16 preferentially targets
BCL2 (159). Inhibition of miR-155 is pursued by miRagen.
miR-155 acts oncogenically in many haematological diseases
and its expression correlates with prognosis in lymphoma
and leukemic diseases (160). Cobomersen is a 14 nucleotides
mixed-type (deoxynucleotide plus LNA phosphorothioate-
based oligonucleotide which inhibits proliferation of tumor
cells and T-cell activation and simultaneously regulates
JAK/STAT, MAPK/ERK and PI3K/AKT signalling (160). In
68 patients with cutaneous T-cell lymphoma (CTCL), acute
T-cell leukemia/lymphoma (ATLL), diffuse B-cell lymphoma
(DBCL) and chronic lymphpcytic leukemia (CLL)
cobomersen was administered for 2 years, reversion of the
disease genetic signature and no serious side effects were
observed (www.miragen.com). In CTLL patients cobomersen
has reduced lesion severity after i.v. injection in a Phase I
study. It remains to be seen whether miR-based therapeutic
agents have a bright future in the space of cancer therapy.
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