
Abstract. Background/Aim: Osteoblastoma is a rare benign
tumor of the bones in which recurrent rearrangements of FOS
have been found. Our aim was to investigate two
osteoblastomas for possible genetic aberrations. Materials and
Methods: Cytogenetic, RNA sequencing, and molecular
analyses were performed. Results: A FOS-ANKH transcript was
found in the first tumor, whereas a FOS-RUNX2 was detected
in the second. Exon 4 of FOS fused with sequences either from
intron 1 of ANKH or intron 5 of RUNX2. The fusion events
introduced a stop codon and removed sequences involved in the
regulation of FOS. Conclusion: Rearrangements and fusions of
FOS show similarities with those of HMGA2 (a feature of
leiomyomas and lipomas) and CSF1 (tenosynovial giant cell
tumors). The replacement of a 3’-untranslated region,
controlling the gene’s expression, by a new sequence is thus a
common pathogenetic theme shared by FOS, HMGA2, and
CSF1 in many benign connective tissue tumors.

Osteoblastoma is a rare benign tumor that accounts for 1%
of all bone tumors. It is most often found in patients between
10 and 30 years of age and is 2.5 more common in males
than females (1). The tumor was first described in 1956 in
two different publications, one by Jaffe and the other by

Lichtenstein (2, 3). In the 1970s, a more aggressive type of
osteoblastoma was described under various names such as
malignant osteoblastoma (4), aggressive osteoblastoma (5),
and epithelioid osteoblastoma (6, 7). Recently, recurrent
rearrangements of Fos proto-oncogene, AP-1 transcription
factor subunit (FOS) and FosB proto-oncogene, AP-1
transcription factor subunit (FOSB) were described in
osteoblastoma and the FOS-ANKH, FOS-KIAA1199, FOS-
MYO1B, FOS-IGR (in two tumors), and PPP1R10-FOSB
fusion genes were found in six tumors (8). 

In a previous study using RNA sequencing and other
molecular genetic techniques, we found fusion of the
collagen type I alpha 1 (COL1A1) and the FYN proto-
oncogene, Src family tyrosine kinase (FYN) genes in an
epithelioid osteoblastoma (9). Herein, we used cytogenetic,
RNA sequencing, and other molecular genetic techniques to
find a novel fusion of FOS with RUNX family transcription
factor 2 (RUNX2 in chromosome band 6p21.1) in one tumor
and fusion of FOS with ANKH inorganic pyrophosphate
transport regulator (ANKH in chromosome band 5p15.2) in
another osteoblastoma, proving that the FOS-ANKH fusion
is recurrent in this tumor type. 

Materials and Methods

Ethics statement. The study was approved by the Regional
Committee for Medical and Health Research Ethics, South-East
Norway (REK Sør-Øst; http://helseforskning.etikkom.no) and
written informed consent was obtained from the patients’ parents to
publication of the case details. The ethics committee’s approval
included a review of the consent procedure. All patient information
has been de-identified.

Case description
Case 1. The patient was a 7-year-old boy who had ongoing pain in
his knee, worsening during the night. Curettage was performed. 
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Case 2. The patient was an 11-year-old boy who has suffered from
localized pain in his arm, worsening during the night and by
frequent use. Clinically and radiologically the findings suggested
osteoblastoma. The patient was operated on, with curettage, but
histologically there was no tumor tissue. Radiofrequency ablation
was tried 3 times, with only a short clinical effect. Open curettage
was performed 2 years after first biopsy.

G-banding and karyotyping. Fresh tissue from a representative area
of the tumors was short-term cultured and analyzed cytogenetically
as previously described (10).

Fluorescence in situ hybridization (FISH). The BAC probes
reported by Fitall et al. (8) were purchased from BACPAC Resource
Center located at the Children’s Hospital Oakland Research Institute
(Oakland, CA) (https://bacpacresources.org/) (Table I). FISH
analyses were performed on metaphases and interphase nuclei using
a FOS (see below) home-made break-apart probe (Table I). Detailed
information on the FISH procedure is given elsewhere (10). 

RNA sequencing and reverse transcription (RT) PCR analyses. Total
RNA was extracted from frozen (–80˚C) tumor tissue adjacent to that
used for cytogenetic analysis and histologic examination using
miRNeasy Mini Kit (Qiagen Nordic, Oslo, Norway) and 300 ng of total
RNA was sent to the Genomics Core Facility at the Norwegian Radium
Hospital, Oslo University Hospital (http://genomics.no/oslo/) for high-
throughput paired-end RNA-sequencing. The deFuse software was used
to find possible FOS fusion transcripts (11).

In order to confirm the existence of the FOS-ANKH and FOS-
RUNX2 fusion transcripts (see below), reverse transcription (RT)
PCR and Sanger sequencing analyses were performed, as described
previously (10). For the detection of FOS-ANKH fusion transcript,
the primer combinations were the forward FOS-F1 together with the
reverse ANKH-R1 and FOS-F2 together with the reverse ANKH-
R2 (Table II). For the detection of FOS-RUNX2 fusion transcript,
the primer combinations were the forward FOS-F3 together with the
reverse RUNX-R1 and FOS-F4 together with the reverse RUNX-
R2 (Table II). Cycling was performed at 94˚C for 30 sec followed
by 35 cycles of 7 sec at 98˚C, 30 sec at 60˚C, 30 sec at 72˚C, and a
final extension for 5 min at 72˚C. The BLAST software
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used for computer
analysis of sequence data.

Results

Case 1. The G-banding analysis of short-term cultured tumor
cells revealed the karyotype 46,XY,der(13;14)(q10;q10)c
[6]/46,Y,der(X)t(X;3)(p22;p14~21),der(3)t(3;14)(p14~21;q23~2
4),add(5)(p15),der(13;14)ct(X;14)(p22;q23~24),add(22)(q12~13
)[9] (Figure 1A). No material was available to perform FISH
analysis, nor did we have a blood sample for verification that
the Robertsonian 13;14-translocation was indeed constitutional.

Using the deFuse software on the fastq files of the RNA
sequencing data, a FOS-ANKH fusion transcript was found
(Figure 1B).

RT-PCR with the primer combinations FOS-F1/ANKH-R1
and FOS-F2/ANKH-R2 amplified a 296 bp fragment and a
168 bp fragment, respectively (data not shown). Direct

sequencing of the PCR fragments showed that they were
FOS-ANKH chimeric cDNA fragments (Figure 1C). There
was a two nucleotides discrepancy at the fusion point
between Sanger sequencing and that found by analysis of the
RNA sequencing data using deFuse (Figure 1C). However,
the discrepancy would not affect the ensuing output which
is a TAG stop codon 6 nucleotides after the fusion point
(Figures 1B and 1C). Thus, in the FOS-ANKH chimeric
transcript, exon 4 of FOS (nt 1061 in reference sequence
with accession number NM_005252.3) was fused with a
sequence from intron 1 of ANKH. The FOS-ANKH transcript
codes for a putative protein which contains amino acid
residues 1-285 of the FOS protein (accession number
NP_005243.1) followed by two amino acid residues from the
intronic sequence of ANKH.

Case 2. The karyotype was normal 46,XY in 25 examined
metaphase plates (data not shown). In FISH experiments,
however, the FOS probe was found to be split in both
metaphase spreads examined and in 6 out of 100 interphase
nuclei (Figure 2A and B).  Using the deFuse software on the
fastq files of the RNA sequencing data, a FUS-RUNX2
fusion transcript was found (Figure 2C).

RT-PCR with the primer combinations FOS-F3/RUNX2-
R1 and FOS-F4/RUNX2-R2 amplified a 509 bp fragment
and a 321 bp fragment, respectively (data not shown). Direct
sequencing of the PCR fragments showed that they were
FOS-RUNX2 chimeric cDNA fragments with a fusion point
identical to that found by analysis of the RNA sequencing
data using deFuse (Figure 2D). Thus, in the FOS-RUNX2
chimeric transcript, exon 4 of FOS (nt 945 in reference
sequence with accession number NM_005252.3) was fused
with a sequence from intron 5 of RUNX2. The FOS-RUNX2
transcript codes for a putative protein which contains amino
acid residues 1-247 of the FOS protein (accession number
NP_005243.1) and 10 amino acid residues (VQRSHTTNDC)
from the intronic sequence of RUNX2.

Discussion

We identified FOS-ANKH and FUS-RUNX2 fusion genes in
two osteoblastomas. The FOS-ANKH was previously reported
in another osteoblastoma (8) but, to the best of our knowledge,
not in other tumors. Thus, our data showed that FOS-ANKH
is a recurrent fusion gene in osteoblastomas. In both cases, the
one described here and the previously reported one, part of
exon 4 of FOS (nt 1061 and 982, respectively) was fused with
a sequence from intron 1 of ANKH. 

The FOS-RUNX2 fusion gene is reported here for the first
time. Again, part of exon 4 of FOS was fused with an
intronic sequence from the partner gene, in this case RUNX2.

The FOS gene is a part of the FOS family of transcription
factors which consists of 4 members: FOS (on chromosome
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band 14q24.3), FOSB (on band 19q13.3), FOSL1 (on band
11q13.1), and FOSL2 (on band 2p23.2). These genes encode
leucine zipper proteins that can dimerize with proteins of the
JUN family, thereby forming the transcription factor
complex AP-1 (12, 13). As such, the FOS proteins have been
implicated as regulators of cell proliferation, differentiation,
and transformation (12-16). 

The amount of FOS protein in cells is tightly regulated at
the transcriptional and translational levels and by interaction
between transcription and translation (17-20). In the 3’-
untranslated region (3’-UTR), there are two domains of AU-
rich elements involved in the stability of FOS mRNA, a
localization signal which binds the mRNA to the perinuclear
cytoskeleton, a sequence that binds the miR-7b miRNA
decreasing mRNA translation, and AU-rich regions which
interact with parts of FOS coding regions facilitating mRNA
deadenylation (poly(A) tail-shortening process) and decay by
a mechanism coupled to translation (17, 19, 21-27). FOS is
an unstable, easily degradable protein. The carboxy terminal
part of FOS was found to be essential for FOS protein
degradation (18, 20, 28-32).

Rearrangements and fusions of FOS have been reported in
epithelioid hemangioma of the bone (FOS-LMNA, FOS-
MBNL1, and FOS-VIM) as well as in osteoblastoma (FOS-
RUNX2, FOS-ANKH, FOS-CEMIP, and FOS-MYO1B) (8,
33, 34). In all examined cases, the breakpoint occurred in
exon 4 where the fusion event introduced a stop codon and
removed both the C-terminal part of FOS, which is essential

for FOS degradation, and the 3’- untranslated region of FOS
mRNA which maintains FOS mRNA stability (8, 33, 34) . 

The resulting, truncated FOS protein contains the N-
terminal transactivation domain, which plays a crucial role
in transformation, and the basic leucine zipper domain
(bZIP) making it more stable than wild-type FOS (8, 20, 33-
35). In vitro experiments have shown that truncated FOS
protein is resistant to degradation and has a longer half-life
than the wild-type FOS protein (circa 1-2 h) (20). 

Rearrangements of FOS and its fusion with various
partners share similarities with rearrangements and fusions
of the HMGA2 and CSF1 genes. In lipomas and other benign
connective tissue tumors, chromosome aberrations, mainly
translocations, disrupt the HMGA2 locus in 12q14 and fuse
part of HMGA2 with various partners (10, 36-42). In all
reported cases, the pattern is the same: Disruption of the
HMGA2 locus leaves intact exons 1-3 which encode the AT-
hook domains separating them from the 3’-untranslated
region of the gene (3’-UTR). The 3’-UTR of HMGA2 was
shown to regulate transcription of the HMGA2 gene (43-45).
Mouse embryonic NIH3T3 fibroblasts are transformed in
vitro by the expression of truncated HMGA2 protein
carrying the three DNA-binding domains (46).
Overexpression of truncated HMGA2 in human myometrial
cells was shown to induce leiomyoma-like lesions (47).
Moreover, transgenic mice expressing a truncated form of
the HMGA2 protein developed benign mesenchymal tumors
(48, 49). 
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Table I. BAC probes used for FISH experiments.

BAC clones                       Chromosome band                        Targeted gene                     Position on GRCh38/hg38 assembly                    Labelling

RP11-484J14                              14q24.3                              Centromeric-FOS                          chr14:75060453-75231755                               Green
RP11-652M15                            14q24.3                              Centromeric-FOS                          chr14:74841928-75034860                               Green
RP11-905L16                             14q24.3                              Centromeric-FOS                          chr14:74617042-74814819                               Green
RP11-782G23                             14q24.3                                Telomeric-FOS                            chr14:75344174-75519840                                 Red
RP11-714F24                             14q24.3                                Telomeric-FOS                            chr14:75541885-75739308                                 Red
RP11-68E9                                 14q24.3                                Telomeric-FOS                            chr14:75778914-75940947                                 Red

Table II. Primers used for PCR amplification and Sanger sequencing analyses.

Name                                          Sequence (5’->3’)                                           Position                              Reference number               Chromosome band

FOS-F1                      GTGGAACCTGTCAAGAGCATCAG                          962-984                                 NM_005252.3                           14q24.3
ANKH-R1                 ATTCATGTTGTGCTCTCAGAATGG               14789425-14789448                      NC_000005.10                           5p15.2
FOS-F2                         CTGAAGACCGAGCCCTTTGAT                            995-1015                                NM_005252.3                           14q24.3
ANKH-R2                  TTCAGTGTTTGGCTTGGTAACCT                 14789520-14789542                      NC_000005.10                           5p15.2
FOS-F3                       AGACCGAGATTGCCAACCTGCT                           744-765                                 NM_005252.3                           14q24.3
RUNX2-R1                  AGCGGCTCAAAGGGCTAGAGG                  45483160-45483180                      NC_000006.12                           6p21.1
FOS-F4                        ACCTGCCTGCAAGATCCCTGAT                            808-829                                 NM_005252.3                           14q24.3
RUNX2-R2                 GCAGCCTTTCCCAGCAAAGATT                 45483284-45483305                      NC_000006.12                           6p21.1
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Figure 1. Genetic analyses of the osteoblastoma of case 1. (A) Karyogram showing the chromosome aberrations (arrows). (B) FOS-ANKH fusion
sequence obtained from the raw data using deFuse software after RNA sequencing. The G|A junction of FOS with ANKH is highlighted in red. The
position of the forward FOS-F1 and reverse ANKH-R1 primers are highlighted in green. The position of the forward FOS-F2 and the reverse ANKH-
R2 primers are highlighted in blue. (C) Partial sequence chromatogram of the cDNA amplified fragment showing the junction position of FOS with
intron 1 of ANKH.
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Figure 2. Genetic analyses of the osteoblastoma of case 2. (A) Fluorescence in situ hybridization (FISH) on a metaphase plate with the FOS break-
apart probe. (B) FISH on interphase nucleus with the FOS break-apart probe. (C) FOS-RUNX2 fusion sequence obtained from the raw data after
RNA sequencing using the deFuse software package. The C|G junction of FOS with RUNX2 is highlighted in red. The position of the forward FOS-
F3 and reverse RUNX2-R1 primers are highlighted in green. The position of the forward FOS-F4 and the reverse RUNX-R2 primers are highlighted
in blue. (C) Partial sequence chromatogram of the cDNA amplified fragment showing the junction position of FOS with intron 5 of RUNX2.



In tenosynovial giant cell tumors, chromosome aberrations,
mainly translocations, disrupt the CSF1 locus in 1p13 and
replace the 3’-UTR of CSF1 (exon 9 in sequence with accession
number NM_000757) with new sequences contributed by the
rearrangement partner (50-52). Exon 9 of CSF1 mRNA
(accession number NM-000575) contains microRNA targets
(miRNA), a noncanonical G-quadruplex, and AU-rich elements
(AREs) which control CSF1 expression (53-56)

Thus, replacement of the expression-controling 3’-UTR
region with a new sequence, often contributed by a
translocation partner, appears to be a common pathogenetic
theme shared by FOS, HMGA2, and CSF1 and occurring
particularly often in benign connective tissue tumors.
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