
Abstract. Background/Aim: The chromosome translocation
t(14;21)(q11;q22) was reported in four pediatric T-cell
lymphoblastic leukemias and was shown to activate the OLIG2
gene. Materials and Methods: A pediatric T-cell lymphoblastic
lymphoma was investigated using G-banding chromosome
analysis, fluorescence in situ hybridization (FISH), and
immunocytochemistry. Results: The malignant cells carried a
t(14;21)(q11;q22) aberration. The translocation moves the
enhancer elements of TRA/TRD from band 14q11 to 21q22, a
few thousands kbp downstream of OLIG1 and OLIG2, resulting
in the production of both OLIG1 and OLIG2 proteins.
Conclusion: The translocation t(14;21)(q11;q22) occurs in
some pediatric T-cell lymphoblastic malignancies. Activation of
both OLIG1 and OLIG2 by t(14;21)(q11;q22) in T-lymphoblasts
and the ensuing deregulation of thousands of genes could
explain the highly malignant disease and resistance to treatment
that has characterized this small group of patients.

T-cell acute lymphoblastic leukemia (T-ALL) and T-cell
lymphoblastic lymphomas (T-LBL) are malignant diseases in
which early T-cell precursors proliferate and replace the

normal hematopoietic cells. Although there is a difference
between them with regards to gene expression profiles (1-3),
the two diseases are considered to be aspects of the same
malignancy and distinguished only by the degree of blast cell
infiltration in the bone marrow (4-6). Bone marrow blast cell
infiltration higher than 25% defines T-ALL whereas less than
25% infiltration defines T-LBL (2, 4, 5). Thus, in T-LBL, the
abnormal lymphocytes are found in the lymph nodes or
thymus whereas in T-ALL, the abnormal lymphocytes are
seen mainly in the blood and bone marrow.

T-ALL and T-LBL patients carry in their malignant cells
acquired genetic changes that contribute to increased
proliferation, prolonged survival, and/or impaired
differentiation of lymphoid hematopoietic progenitors (7-11).
Many of the changes are in the form of non-random
numerical or structural chromosome aberrations that can be
detected microscopically and often carry prognostic
significance (8). 

We herein present a T-cell lymphoblastic lymphoma with
the chromosome aberration t(14;21)(q11;q22), review the
relevant literature, and conclude that the translocation
probably carries an adverse prognosis. 

Materials and Methods

Ethics statement. The study was approved by the regional ethics
committee (Regional komité for medisinsk forskningsetikk Sør-Øst,
Norway, http://helseforskning.etikkom.no). 

Case report and immunocytochemical studies. A 13-year-old boy
was admitted with vena cava superior syndrome, night sweats, and
pain below the right costal margin. Diagnostic work-up showed a
large mediastinal tumor, pleural fluid that almost filled the whole
right lung, and metastases in both kidneys as well as in the skin. T-
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lymphoblasts were found in the pleural fluid, bone marrow, and
spinal fluid (Figure 1A-D). Cytogenetic analysis revealed a
translocation t(14;21) in T-cells from a mediastinal tumor biopsy and
from the pleural fluid. The final diagnosis was T-cell non-Hodgkin’s
lymphoma. Because of the genetic findings (see below),
immunocytochemistry was performed using OLIG1 and OLIG2
antibodies (Figure 1E and F). The OLIG1 antibody was a mouse
monoclonal antibody (OLIG1 Monoclonal antibody 257219)
purchased from Thermo Fisher Scientific (Waltham, Massachusetts,
United States; Catalogue number MA5-23954) and applied at 1:400
dilution. For visualization, the Dako EnVision Flex + System
(K8012; Dako, Glostrup, Denmark) was used as previously described
(12). The OLIG2 antibody was a polyclonal goat antibody purchased
from R&D Systems (Catalog number AF2418) and applied at 1:50
dilution. The Roche Ventana BenchMark ULTRA instrument was
used. The section was pretreated with Cell Conditioning Solution
(CC1) and detected using the OptiView DAB system.

The patient started on the EURO-LB-02 lymphoma protocol (13)
but developed a large sinus venous thrombosis. Evaluation after 2
weeks of treatment showed some reduction of disease load, but after
4 weeks the tumor had again increased in size. Treatment was then
switched to the NOPHO ALL 2008 high-risk protocol with intensive
block treatment (14). No response after the first block
(cyclophosphamide/etoposide) was seen, but there was good
response after the second block (high dose methotrexate/high dose
cytarabin). Before onset of the third block, however, the tumor
again increased in volume. The patient received Nelarabin for five
days with no effect on tumor and, during the following week, the
blast count increased rapidly in the blood. The patient died
peacefully in his sleep 4 months after diagnosis.

G-banding analysis. Cells from bone marrow, lymph node, and
pleural effusion were cultured and harvested using standard
techniques (15, 16). Chromosome preparations were G-banded with
Leishman stain and examined (Figure 2). The karyotype was written
according to The International System for Human Cytogenomic
Nomenclature (ISCN) 2016 guidelines (17).

Fluorescence in situ hybridization (FISH). FISH analyses were
performed on metaphase spreads and interphase nuclei using a
commercial break apart probe (Cytocell) for the T cell receptor
alpha/delta locus on chromosome band 14q11 (TRA/TRD) and a
home-made break apart probe for chromosome band 21q22 (Figures
3 and 4). The BAC probes were purchased from the BACPAC
Resource Center located at the Children’s Hospital Oakland
Research Institute (Oakland, CA) (https://bacpacresources.org/).
Selection of BAC probes was based on the published (18) genomic
breakpoint on der(21) (see below).

The BAC clones used were RP11-79D9 (proximal part of the
probe, containing both the OLIG1 and OLIG2 genes, Position:
chr21:32910480-33075022, GRCh38/hg38 assembly) and RP11-
996D17 (distal part of the probe, Position: chr21:33281951-
33446033). DNA was extracted whereupon the RP11-79D9 and
RP1-995D17 probes were labelled with Fluorescein-12-dCTP
(PerkinElmer, Boston, MA, USA) and Texas Red-5-dCTP
(PerkinElmer) in order to obtain green and red signals, respectively,
using the Abbott’s nick translation kit (Des Plaines, IL, USA), and
hybridized according to Abbott Molecular recommendations (http://
www.abbottmolecular.com/home.html). Chromosome preparations
were counterstained with 0.2 μg/ml DAPI and overlaid with a 24 x

50 mm2 coverslip. Fluorescent signals were captured and analyzed
using the CytoVision system (Leica Biosystems, Newcastle, UK).

Sequence analysis. The BLAT alignment tool and the human
genome browser at UCSC (19, 20) were used to map on the Human
GRCh38/hg38 assembly the previously published (18) nucleotide
sequence resulting from the t(14;21)(q11;q22).

Results
Cytogenetics. G-banding analysis of bone marrow cells yielded
a normal karyotype (46,XY), whereas the analysis of lymph
node cells showed 46,XY,t(14;21)(q11;q22)[3], and pleura
effusion cells had the karyotype 46,XY,t(14;21)(q11;q22)
[17]/46,XY,idem,del(6)(q13q23)[3] (Figure 2).

FISH. FISH with the TRA/TRD break apart probe showed
that the TRA/TRD locus (14q11) had been rearranged and
that the distal part of the probe had moved to the 21q22
band (green signal in Figure 3B and C). FISH with the
21q22 break apart probe showed that the distal part of the
probe with BAC RP11-996D17 (red signal in Figure 4B and
C) had moved to 14q11 whereas the proximal part with
BAC RP11-79D9 and containing both the OLIG1 and
OLIG2 genes, hybridized to the der(21)(q22) (green signal
in Figure 4B and C) .

Immunocytochemistry. Immunostaining experiments with
OLIG1 and OLIG2 antibodies showed that both proteins
were produced in the T-cells (Figure 1E and F).

Sequence analysis. The sequence of the genomic breakpoint on
der(21) reported by Wang et al. (18) was: AGGTGTTCAGT
GCCTTGCGCGCGTGGCTGTCG-GGGATAGCAACTA
TAAACTGACATTTGG. Using the BLAT alignment tool, we
mapped this sequence on the Human GRCh38/hg38 assembly
and found that the breakpoint occurred at position
Chr21:33110158 (AGGTGTTCAGTGCCTTGCGCGCGTGG
CTGTCG: position chr21:33,110,127-33,110,158 and GGGA
TAGCAACTATAAACTGACATTTGG position chr14:22,483,
012-22,483,040). Our mapping of the above-mentioned sequence
showed that the 3’-end of TRA/TRD, including the gene’s
enhancer, was placed distal to both the OLIG1 and OLIG2 genes
which are transcribed from centromere to telomere. The genetic
distance from the breakpoint to OLIG1 is 40 kbp, the genetic
distance from the breakpoint to OLIG2 is 82 kbp, and hence the
distance between OLIG1 and OLIG2 is 42 kbp. 

Discussion

Including the present case, the cytogenetic aberration
t(14;21)(q11;q22) has now been reported in five patients (18,
21-23). The four previously described patients had ALL
whereas the present case was a T-LBL. Four of the patients
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were children aged 7, 8, 13, and 13 years whereas the fifth
was a 50-week-old infant (Table I). Four patients died of
their disease (including our case) whilst one was reported as
being in relapse. Thus, although information is limited, the

chromosome translocation t(14;21)(q11;q22) seems to occur
in children with T-cell lymphoblastic malignancies, mostly
in boys (male-to-female ratio is 4:1 so far), and may signify
an adverse prognosis. 
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Figure 1. Microscopic examination of the T-cell lymphoblastic lymphoma. A: H&E stained image, magnification: ×60. B: Immunocytochemical
staining with anti-CD3, magnification: ×60. C: Immunocytochemical staining with anti-CD1a, magnification: ×60. D: Immunocytochemical staining
with anti-CD10, magnification: ×60. E: Immunocytochemical staining with anti-OLIG1, magnification ×60. F: Immunocytochemical staining with
anti-OLIG2, magnification: ×60. 



In the first report of t(14;21)(q11;q22), cloning of the
translocation breakpoint showed rearrangement of TRA/TRD in
14q11, identified OLIG2 in 21q22 (it was originally named
BHLHB1), and showed that the latter gene was activated by the
translocation (18). In the present study, we mapped the
sequence of the genomic breakpoint on der(21) reported by
Wang et al. (18) and found that the 3’-end of TRA/TRD,
including the enhancer, was placed distal to both the OLIG1
and OLIG2 genes. We therefore estimated that, although only
the OLIG2 gene was discovered and studied by Wang et al.
(18), the result of t(14;21)(q11;q22) in their case probably was
activation of both OLIG1 and OLIG2. FISH investigation of
our case with a 21q22 break apart probe (Figure 4) indicated
that the breakpoint was in the same region as that reported by
Wang et al. (18). Furthermore, immunostaining experiments
showed that both OLIG1 and OLIG2 proteins were produced
by the T-cells (Figure 1E and F). Thus, the main molecular
consequence of t(14;21)(q11;q22) is the relocation of enhancer
elements of TRA/TRD from band 14q11 to 21q22, a few
thousand kbp downstream of the OLIG1 gene, resulting in
activation of both the OLIG1 and OLIG2 genes leading to the

production of OLIG1 and OLIG2 proteins (Figure 1E and F).
The proteins OLIG1, OLIG2, and OLIG3 form the OLIG

sub-family of transcription factors within the larger family
of basic helix-loop-helix (bHLH) transcription factors (24).
The OLIG1 and OLIG2 genes are expressed exclusively
within the central nervous system where they play an
important role in the development of motor neurons,
oligodendrocytes, and a subset of astrocytes and ependymal
cells (25-28). OLIG3 maps on chromosome band 6q23 and,
at least in mice, plays a role in the development of class A
and B neurons of the dorsal horn of the spinal cord (29).
Expression profiling in mice models has shown that OLIG1
and OLIG2 regulate thousands of genes (24): 2,570 were up-
regulated whereas 2,654 genes were down-regulated
specifically in Olig2-/- mice, 2265 genes were up-regulated
and 2,096 genes were down-regulated specifically in Olig1-
/- mice, and there were also 1,383 commonly upregulated
genes and 1491 commonly downregulated genes found in
both Olig2-/- and Olig1-/- mice (24). 

The OLIG2 gene has been shown to be involved in the
development of brain cancers and can be used as a molecular
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Figure 2. G-banding analysis of cells from a lymph node showing the 46,XY,t(14;21)(q11;q22) chromosome translocation. Breakpoint positions are
indicated by arrows.



marker for diffuse gliomas (30-32). Expression of OLIG2 was
also reported in leukemia cell lines as well as breast cancer,
melanoma, and non-small cell lung carcinoma cell lines (33).
In the same study, the authors concluded that expression of

OLIG2 in thymocytes was only weakly oncogenic and
required collaborative events such as overexpression of
LMO1, NOTCH1 or other cell proliferation signals in order to
induce a highly penetrant leukemia (33). Recently, OLIG2 was
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Table I. The published lymphoblastic malignancies carrying the chromosome translocation t(14;21)(q11;q22).

Gender/Age (years)                                      Reported karyotype                                     Diagnosis                     Clinical output                     Reference

F/7                                                   46,XX,del(6)(q21),t(14;21)(q11;q22)                          T-ALL          Died after 4 months of therapy              18
M/<1                                              46,Y,t(X;4)(p21;q31),t(14;21)(q11;q22)                         ALL              Died 62 months after relapse                21
M/8                                                46,XY,t(14;21)(q11;q21)[29]/46,XY[1]                        T-ALL                              Relapse                                  22
M/13                                             46,XY,t(14;21)(q11;q21)[22]/46,XY[12]                       T-ALL         Died after 18 months of therapy             23
M/13                             46,XY,t(14;21)(q11;q22)[17]/46,XY,idem,del(6)(q13q23)[3]       T-LBL           Died 4 months after diagnosis       Present case

Figure 3. FISH analysis of cells from a lymph node using a commercial TCR alpha/delta locus (TRA/TRD) break apart probe. A: Ideogram of
chromosome 14 showing the mapping of TRA/TRD on chromosome band 14q11.2 (red box). B: Diagram showing the proximal (red) and distal
(green) parts of the TRA/TRD break apart probe. Additional genes in this region are also shown. Arrow indicates the genomic breakpoint (BP)
reported by Wang et al. (18). The reported sequence around the BP is also given. C: Metaphase spread showing splitting of the TRA/TRD probe.
The distal part (green label) of the probe hybridized to der(21) whereas the proximal part (red label) hybridized to der(14). Both distal and proximal
parts hybridized to normal chromosome 14. 



found to be epigenetically regulated via DNA methylation in
acute myeloid leukemia and expressed in two patients carrying
the translocation t(15;17)/PML-RARA (34). Furthermore,
stable overexpression of OLIG2 in non-expressing cell lines
Kasumi-1 (a leukemic cell line with a t(8;21)(q22;q22)
translocation resulting in the RUNX1-RUNX1T1 fusion gene)
and U-937 (a histiocytic lymphoma cell line with a
t(10;11)(p14;q23) translocation resulting in the CALM-AF10
fusion gene), using a lentiviral vector system, led to moderate
growth inhibition after 4 days and resulted in signs of
differentiation in U-937 cells (34). The authors concluded that
OLIG2 may exert anti-proliferative activity in leukemia cell
lines. The two studies mentioned above indicate that the

expression of OLIG2 is not sufficient for the development of
malignancy; additional genetic/expression events may be
required. 

We conclude that activation of both OLIG1 and OLIG2 is of
the essence in T-cell acute lymphoblastic leukemia/lymphoma
brought about by the translocation t(14;21)(q11;q22).
Deregulation of a plethora of genes by the proteins OLIG1 and
OLIG2 may be the key to the highly malignant disease profile
characteristic of these lymphoid malignancies. 
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Figure 4. FISH analysis of cells from a lymph node using an OLIG2/OLIG1 break apart probe which was made from commercially available BACs.
A: Ideogram of chromosome 21 showing the mapping of OLIG2/OLIG1 on chromosome band 21q22.1 (red box). B: Diagram showing the proximal
(BAC RP11-79D9, green) and the distal (BAC RP11-996D17, red) parts of the OLIG2/OLIG1 break apart probe. Additional genes in this region
are also shown. Arrow indicates the genomic breakpoint (BP) reported by Wang et al (18). The reported sequence around the BP is also given. C:
Metaphase spread showing splitting of OLIG2/OLIG1 probe. The distal part (red label) of the probe hybridized to der(14) whereas the proximal
part (green label) hybridized to der(21). Both distal and proximal parts hybridized to normal chromosome 21. 
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