
Abstract. Hepatocellular carcinoma (HCC) is responsible
for the second-leading cancer-related death toll worldwide.
Although sorafenib and levantinib as frontline therapy and
regorafenib, cabazantinib and ramicurimab have now been
approved for second-line therapy, the therapeutic benefit is
in the range of only a few months with respect to
prolongation of survival. Aggressiveness of HCC is mediated
by metastasis. Intrahepatic metastases and distant metastasis
to the lungs, lymph nodes, bones, omentum, adrenal gland
and brain have been observed. Therefore, the identification
of metastasis-related new targets and treatment modalities is
of paramount importance. In this review, we focus on
metastasis-related microRNAs (miRs) as therapeutic targets
for HCC. We describe miRs which mediate or repress HCC
metastasis in mouse xenograft models. We discuss 18
metastasis-promoting miRs and 35 metastasis-inhibiting miRs
according to the criteria as outlined. Six of the metastasis-
promoting miRs (miR-29a, -219-5p, -331-3p, 425-5p, -487a
and -1247-3p) are associated with unfavourable clinical
prognosis. Another set of six down-regulated miRs (miR-101,
-129-3p, -137, -149, -503, and -630) correlate with a worse

clinical prognosis. We discuss the corresponding metastasis-
related targets as well as their potential as therapeutic
modalities for treatment of HCC-related metastasis. A subset
of up-regulated miRs -29a, -219-5p and -425-5p and down-
regulated miRs -129-3p and -630 were evaluated in
orthotopic metastasis-related models which are suitable to
mimic HCC-related metastasis. Those miRNAs may represent
prioritized targets emerging from our survey.

Hepatocellular carcinoma (HCC) is the second-leading cause
of cancer-related death worldwide (1). In the next couple of
years, an annual incidence of one million cases is expected (1).
Risk factors for HCC are non-alcohol steatohepatitis, hepatitis
B and C virus (HBV/HCV), alcohol and aflatoxin (2). In Asia
and Africa, 60% of HCC cases are associated with HBV, 20%
are related to HCV (2). Patients with early- and intermediate-
stage HCC are treated with locoreginal therapies, those with
advanced disease receive systemic treatment (3). Sorafenib, a
multikinase tyrosine kinase inhibitor was the only approved
agent between 2007 and 2016 (4). This agent gives rise to only
marginal therapeutic benefit. Recently, therapeutic benefit was
shown with multikinase inhibitors levantinib as frontline
therapy, and regorafenib, cabazantinib and ramucirumab, a
monoclonal antibody directed against vascular endothelial
growth factor receptor 2, as second-line therapies (4). In
addition, nivolumab, a monoclonal antibody directed against
programmed cell death protein 1 (PD1) has been granted
accelerated approval by the Food and Drug Administration for
treatment of HCC and other checkpoint inhibitors are
undergoing phase III clinical trials for this indication (5).
Unsupervised clustering has revealed three subtypes of HCC
based on transcriptional profiling (6) and immune phenotyping
with respect to lymphocyte infiltration has discovered HCC
with high, moderate and excluded tumors, pointing to

1

This article is freely accessible online.

Correspondence to: Ulrich H. Weidle/Ulrich Brinkmann, Roche
Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald
2, D-82372 Penzberg, Germany. Tel.: +49 8856604753, e-mail:
weidle49@t-online.de/e-mail: ulrich.brinkmann@roche.com

Key Words: Antagomirs, intra-hepatic and distant metastasis,
functional reconstitution of miRs, in vivo metastasis models, miR-
mimetics, metastasis-related in vivo models, prognostic correlations,
subcutaneous implantation, tail vein injection, therapeutic
modalities, therapeutic targets, review.

CANCER GENOMICS & PROTEOMICS 17: 1-21 (2020)
doi:10.21873/cgp.20163

Review

MicroRNAs Involved in Metastasis of Hepatocellular
Carcinoma: Target Candidates, Functionality and 

Efficacy in Animal Models and Prognostic Relevance
ULRICH H. WEIDLE1, DANIELA SCHMID1, FABIAN BIRZELE2 and ULRICH BRINKMANN1

1Large Molecule Research, Roche Pharma Research and Early Development (pRED), 
Roche Innovation Center Munich, Penzberg, Germany;

2Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), 
Roche Innovation Center Basel, Basel, Switzerland



opportunities for personalized therapies for HCC (1, 4). Since
the increment of therapeutic benefit for most drugs is relatively
modest, identification of new targets and treatment modalities
is of paramount importance. In this review, we focus on
metastasis-related microRNAs (miRs) with in vivo efficacy in
corresponding preclinical models of HCC.

HCC: Metastasis-related aspects. Several reports describe the
study of HCC-related metastasis (7-12). Intrahepatic
metastasis is an important route of metastasis of HCC. In this
type of tumor, the blood flow is abnormal and the
microvessels are extremely leaky, resulting in promotion of
metastasis (13). The most frequent sites of distant metastases
are the lung, lymph nodes, bones, omentum, adrenal glands
and brain (7-12). Bone metastases of HCC are associated with
particularly poor prognosis (14). The molecular mechanisms
promoting intrahepatic metastases and dissemination to distant
organs have only poorly been resolved.

microRNAs and their role in cancer. miRs are RNAs composed
of 20-22 nucleotides which post-transcriptionally inhibit mRNA
targets in several eukaryotic cell lines and tissues (15). They
mediate degradation or translational inhibition of mRNAs by
binding to complementary nts of corresponding mRNAs (15,
16). More than 1,000 miR-related genes have been identified in
the human genome. The vast majority of them are transcribed
by RNA polymerase II (17, 18). They are synthesized as pri-
mRNA precursors, processed in the nucleus by endonucleases
such as RNase III DROSHA and microprocessor complex
subunit Di George syndrome chromosomal region 8 (DGCR8),
transported to the cytoplasm and cleaved by RNase III DICER
(19). Finally, the mature miR duplex forms the RNA-induced
silencing complex (RISC) which recognizes complementary
sequences in the 3’- untranslated region (3’-UTR) of the target
mRNAs, leading to their degradation or inhibition of their
translation (20). A single miR can target multiple mRNAs and
vice versa, multiple miRs can target the same mRNA (21).
Therefore, inhibition or reconstitution of the function of miRs
can interfere with several pathways and cellular networks (21).
The relevance of miRs in cancer has been demonstrated first for
miR-15a and -16-1 in the pathogenesis of B-cell chronic
lymphocytic leukemia (22, 23). The role of miRs in metastasis
has been documented in several types of cancer (24-27). In this
review, we focus on the role of miRs involved in metastasis of
HCC. We have selected miRs with in vivo efficacy in preclinical
metastasis-related models of HCC (28, 29). 

Up-regulated miRs Mediating Metastasis

miRs targeting tumor-suppressor genes. miR130b, -425-5p
and -429 (Figures 1 and 2A) target phosphatase and tensin
homolog (PTEN) which functions as a tumor suppressor in
HCC and many other types of tumors (30, 31). miR-130b

(Figure 1) promotes proliferation and invasion of HepG2 and
HCCLM3 cells in vitro and increases intrahepatic and lung
metastases of these cell lines. Metastasis-mediated by miR-
130b is driven by PTEN/AKT/hypoxia-inducible factor-1α
(PTEN/AKT/HIF-1α) signaling (32). High levels of miR-130b
correlate with poor overall survival of patients with HCC (32).
Stem cell antigen-1 (SCA1) and PTEN have been identified
as direct targets of miR-425-5p (Figures 1 and 2B) (33). SCA1
localizes to the nucleus and inhibits migration through
transcription of integrin β1 and binds to and inhibits myelin
and lymphocyte protein by forming a ternary complex with
serum response factor (34). miR-425-5p (Figures 1 and 2B)
promotes invasion and migration, but not proliferation of
HCCML3 cells in vitro. It further mediates epithelial
mesenchymal transition (EMT), local growth of HCCML3 in
the spleen as well as intrahepatic metastasis (35). In addition
to PTEN/AKT, integrin β1/focal adhesion kinase (FAK)/SRC
(SRC), Ras homology family member A/cell-division control
protein homolog 42 (RHOA/CDC42) and tissue inhibitor of
metalloproteinases 2/matrix metalloproteinase 9 (TIMP2/
MMP9) signaling are affected by miR-425p (35). It is is a
marker for poor prognosis in patients with HCC and low long-
term post-operative survival (35) and is up-regulated in HCC
versus normal liver tissues according to data derived from The
Cancer Genome Atlas (TCGA) (Figure 3).

miR-429 (Figure 1) induces invasion of HCCML3 and
SMM-7721 cells in vitro (35). miR-429 activates
phosphoinositol 3-kinase (PI3K)/AKT/glycogen synthase
kinase 3β (PI3K/AKT/GSK3β) by inhibition of PTEN
signaling, resulting in nuclear translocation of β-catenin (35)
(Figure 1). In vivo, liver and lung metastases are enhanced
by miR-429 after tail vein injection of HCCML3 and
MHCC97H cells transfected with miR-429 (35). 

miR-135a (Figure 1) promotes invasion of HCC cell lines
in vitro and reduction of its expression in CSQT-2 cells
inhibits intrahepatic metastasis in vivo (36). Metastasis
suppressor 1 (MTSS1) has been identified as a direct target of
miR-135a (36). MTSS1 functions as a tumor suppressor in
gastric cancer and HCC, and interacts with the actin
cytoskeleton (36, 37). Another investigation revealed down-
regulation of Krüppel-like factor 4 (KLF4) as a direct target
of miR-135a in SK-Hep1 HCC cells. KLF4 is a zinc finger
transcription factor which is down-regulated by transforming
growth factor β (TGFβ) and functions as a regulator of the cell
cycle, proliferation and apoptosis, and as a tumor suppressor
in HCC (38, 39). miR-135a mediated increased lung
metastasis after tail vein injection of SK-Hep1 cells expressing
miR-135a in comparison to the control cell line (40). 

miR-362-5p (Figure 1) is up-regulated in HCC, is associated
with HCC progression (41) and promotes cell growth, invasion
and migration of HL-7702 and SMC-7721 cells in vitro.
Subcutaneous implantation of HepG2 cells expressing miR-
362-5p results in increased lung metastasis in comparison to
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the control cell line (41). miR-362-5p targets cylindromatosus
(CYLD), a deubiquitination enzyme which acts as a tumor
suppressor in HCC and other types of cancer (42). CYLD
interacts with various signaling pathways including TGFβ,
wingless-integrated (WNT)/β-catenin and c-jun N-terminal
kinase and inhibitsr ĸB (NFĸB) signaling, resulting in cell
proliferation, survival, invasion and metastasis (43). 

miR-382-5p (Figure 1) is an essential member of the
HBV-regulated miR network. miR-382-5p promotes cell
motility in vitro and lung metastasis of transfected HepG2
cells after tail vein injection (44). It targets deleted in liver
cancer-1 (DLC1), a tumor-suppressor gene in liver cancer
(45). DLC1 contains a Rho GTPase activating protein
domain, a sterile alpha motif (SAM) and a star-related lipid
transfer domain (START) domain (46). Loss of DLC1 leads
to aberrant Rho GTPase function and contributes to
abnormal migration and metastatic properties.

miRs interfering with cell signaling and cell cycle. miR-21: It
has been observed that colony-forming unit endothelial cells
(CFU-ECs) induced chemotaxis through RAs-related C3

botulinium toxin substrate 1 (RAC1) and MMP9 activation
mediated by monocyte chemoattractant protein-1 (MCP1)
released from CFU-ECs (47). From a mechanistic point of
view this phenomenon is due to induction of miR-21 by
interaction of MCP1 with C-C chemokine receptor 2 (CCR2)
on tumor cells (47-49). miR-21 mediated metastasis by
directly targeting Rho GTPase-activating protein 24
(ARHGAP24) and tissue inhitor of metalloproteinases 3
(TIMP3) (47, 50, 51). Inhibition of ARHGAP24 activated
RAC1 and inhibition of TIMP3 activates MMP9, both
mediators of metastasis (50, 51). Huh7 HCC cells co-cultured
with CFU-ECs formed multiple nodules after orthotopic
implantation into the liver of mice and inhibition of miR-21 in
Huh7 cells attenuated intrahepatic metastasis (47).

miR-29a (Figure 2A) promoted metastasis by silencing
suppressor of cytokine signaling 1 (SOCS1), an inhibitor of
metastatic signal transduction (52, 53), due to methylation of its
DNA, and subsequent activation of Janus kinase (JAK)/signal
transducer and activator of transcription 3 (STAT3) signaling
(52). miR-29a directly targets ten eleven translocation enzymes
(TET) which convert 5-methylcytosine to 5-hydroxy-
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Figure 1. Micro-RNAs targeting tumor-suppressor genes in hepatocellular carcinoma. Up-regulation of miR-130, miR-135a, miR-362-5p, miR-382-5p,
miR-425-5p and miR-429 promotes metastasis in HCC. AKT: Serine-threonine kinase AKT; CDC42: cell division control protein 42 homolog; CYLD:
cylindromatosus; DLC-1: deleted in liver cancer 1; MTSS1: metastasis suppressor 1; NFĸB: nuclear factor ĸB; PI3K: phosphoinositol-3-kinase; PTEN:
phosphatase and tensin homolog; RAC1: Ras-related C3 botulinum toxin substrate 1; RHO A: RHO homolog gene family, member A.
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Figure 2. Metastasis-promoting miRs in hepatocellular carcinoma with in vivo activity in metastasis-related models and correlation to poor prognosis
in patients. A: miR-29a, miR-219-5p and miR-331-3p; and B: miR-425-5p, miR-487a and miR-1247-3p. 5CH2OH-C: 5 Hydroxymethyl-cytosine;
5CH3-C: 5 methyl-cytosine; AKT: serine-threonine AKT; B4GALT3: β-1,4-galactosyltransferase 3; CAF: cancer-associated fibroblast; CDH1:
cadherin 1, E-cadherin; G2/M, S: G2/M or S-phase of cell cycle; GSK-3β: glycogen synthase kinase 3β; IL6,8: interleukin 6,8; INT β1: integrin
β1; JAK: janus kinase; MAPK: mitogen-activated protein kinase; NFĸB: nuclear factor ĸB; PHLPP: PH domain and leucine rich repeat protein
phosphatase; PI3K: phosphatidyl-inositol-3 kinase; PIK3R1: phosphatidyl-3 kinase regulatory subunit 1; PTEN: phosphatase and tensin homolog;
SCA-1: stem cell antigen-1; SNAIL: transcription factor SNAIL; SPRED2: Sprouty-related and EvH1 domain-containing protein 2; STAT3: signal
transducer and activator of transcription 3; TC: tumor cell; TET: ten-eleven translocation methylcytosine-dioxygenase.



methylcytosine, resulting in inhibition of SOCS1 promoter
demethylation (52-54). miR-29a promotes proliferation and
invasion of HCC cell lines SMMC-7721 and HCCLM3 and
increases tumor growth and lung metastasis of orthotopically
implanted HCCLM3 and SMMC-7721 HCC cells transfected
with miR-29a (52). miR-29a overexpression is correlated with
poor clinical outcome in patients with HCC and inhibition of
TET-SOCS mediated signaling in HCC tissues.

miR-135b promoted migration and invasion of HCC cell
lines SMMC-7721 and Huh7 (55). Orthotopic implantation
of SMM-7721 cells transfected with miR-135b revealed that
miR-135b induced formation of metastatic nodules in the
liver (55). Reversion inducing-cysteine-rich protein with
kazal motifs (RECK) and ectopic viral integration site 5
(EVI5) were identified as direct targets of miR-135b (55).
RECK is a membrane-anchored MMP inhibitor which acts
as a key regulator of ECM integrity and angiogenesis (56).
Suppression of RECK by miR-135b resulted in activation of
MMP2 and MMP9 (55). EVI5 is a regulator of cell-cycle
progression and in addition functions as an inhibitor of F-
actin (55, 57). Down-regulation of EVI5 by miR-135b
increases invasion and migration of HCC cells (55).

miR-192-5p promoted cell proliferation and metastasis of
HCCLM3 cells, targeting the cancer stem cell (CSC)
population of this cell line (58). Semaphorin 3A, a
suppressor of angiogenesis (59) was identified as a direct
target of miR-192-5p (58).

miR-331-3p (Figure 2A) was found to promote
proliferation and migration of HCC cell lines HCCLM3,
HepG2 and Huh7 (60). In these cell lines, miR-331-3p
promoted intrahepatic metastasis and metastasis to the lungs
after intrahepatic administration (60). PH domain and leucine
repeat protein phosphatase (PHLPP) was identified as a
direct target of miR-331-3p (60, 61). Down-regulation of
PHLPP activates AKT/GSK-3β/SNAIL metastasis-promoting
signaling (60) and mediates entry of HCC cells into the S or
G2/M phase of the cell cycle (60). Increased expression of
miR-331-3p correlates with poor long-term survival of
patients with HCC (60).

miR-487a (Figure 2B) induced migration and wound
healing in HCC cell lines such as HCCLM3 and HepG2
(62). An orthotopic mouse model with HCCLM3 cells
injected into the liver revealed promotion of growth,
intrahepatic metastasis and distant metastasis to the lungs
mediated by miR-487a (62). Sprouty-related EVH1 domain
containing 2 (SPRED2) and phosphoinosite-3-kinase
regulatory subunit 1 (PIK3R1) were identified as direct
targets of miR-487a (62). SPRED2 acts as an inhibitor of the
mitogen-activated protein kinase (MAPK) cascade (63, 64)
and deletion of PIK3R1 has been shown to activate AKT and
to inhibit PTEN (65, 66). miR-487a is highly expressed in
HCC and its expression correlates with poor postoperative
prognosis of patients with HCC (62). Down-regulation of

miR-487a in HCC in comparison to normal liver was not
confirmed through the TCGA data set (Figure 3).

miRs promoting EMT or affecting the ECM. Exosomes from
highly miR-103-expressing HCC cells can interact with
endothelial monolayers (67). miR-103 destabilizes tight
junctions by targeting vascular endothelial cadherin, β120
catenin and zona occludens 1, leading to destabilization of
endothelial integrity (68). miR-103 was also found to
promote migration of HCC cells by targeting p120 catenin
(67, 69). QGY-7703 cells transfected with miR-103 as
xenografts gave rise to high rates of hepatic and pulmonary
metastases in comparison to the control cell line (67).

miR-143 was found to be significantly up-regulated in
patients with HBV-HCC (70). Transcription factor NFĸB up-
regulated miR-143, resulting in migration and invasion of
HCC cell lines HepG2 and Huh7 (70). Fibronectin-type III
domain containing 3B (FNDC3B) has been identified as a
direct target of miR-143 (70, 71). FNDC3B was previously
described to be down-regulated in tumor cells with high
metastatic potential (72). HepG2 cells overexpressing miR-
103 orthotopically transplanted into nude mice gave rise to
intrahepatic and distant lung metastases in contrast to the
control cell line (70).

miR-186 is repressed by metastasis inhibiting runt-related
transcription factor 3 (RUNX3) and inhibits E-cadherin
(CDH1) expression by binding to the 3’-UTR of its mRNA
(73). miR-186 mimics reduced the expression of CDH1 in
HCC cell lines HepG2 and Hep3B (73). RUNX3 suppressed
migration, invasion and angiogenesis of human renal cell
carcinoma (74) and the gene encoding RUNX3 is methylated
in various types of cancer (75). miR-186 mimics abrogated
inhibition of lung metastasis after tail vein injection of
HepG2 cells expressing RUNX3 (73).

miR-219-5p (Figure 2A) can promote proliferation, cell-
cycle transition from G1 into S-phase and increase the anti-
apoptotic potential of HepG2 and MHCC-97H cells (76).
CDH1 mRNA has been identified as a direct target of miR-
219-5p (76). CDH1 inactivation results in loss of cell-cell
adhesion which contributs to metastasis in a variety of tumors
(77-79). Antagomirs of miR-219-5p transfected into MHCC-
97H cells and implanted into the livers of nude mice reduced
the volume of tumors and the total number of lung metastasis
(76). Up-regulation of miR-219-5p is associated with
metastasis and dismal prognosis in patients with HCC (76).

miRs promoting metastasis by interference with sugar-modifying
enzymes. It is well documented that altered glycosylation of
tumor cells can promote metastasis (80, 81). miR-23 is up-
regulated in metastatic mouse HCC cell lines such as Hca-P and
Hepa 1-6, and promotes migration in vitro (82). Subcutaneous
injection of Hca-P cells transfected with a miR-23 mimic
promoted metastasis to the inguinal lymph nodes (82).
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Mannoside acetylglucosaminyl-transferase 3 (MGAT3), an
enzyme catalysing transfer of acetyl-glucose in a β1,4 linkage
to mannose on N-glycans and thus forming a bisected acetyl-
glucose structure, was identified as a direct target of miR-23
(82). MGAT3 has been reported to inhibit cell migration and to
modulate cell adhesion, indicating a relationship between
aberrant glycosylation and metastasis (83).

Exosomes secreted from HCC cells in the pre-metastatic
niche contain miR-1247-3p (Figure 2B) which activates
fibroblasts in the neighourhood to cancer-associated fibroblasts
promoting cancer progression by secreting pro-inflammatory
cytokines such as interleukin (IL) 6 and IL8 (84). miR-1247-3p
targets β1,4 galactosyltransferase 3 (B4GALT3) leading to
activation of β1 integrin–NFĸB signaling in fibroblasts of the
lung premetastatic niche of liver cancer (84). B4GALT3
transfers galactose to N-acetylglu-cosamine to form N-
acetyllactosamine in glycosylated proteins (85). B4GALT3
suppresses integrin β1-mediated phenotypes and metastasis (86,
87). Lung metastasis of subcutaneously implanted HCC cell line
SMMC-7721 was promoted by intravenously administered
exosomes from CSQT-2 and HCC-LM3 cells (84). In patients
with HCC, high expression of miR-1247-3p in exosomes shows
a positive correlation with lung metastasis (84). miR-1247-3p
was down-regulated in HCC compared to normal liver samples
in the available TCGA data set (Figure 3). 

Down-regulated miRs Which 
Inhibit HCC Metastasis

miRs affecting angiogenesis. Down-regulation of miR-100 and
miR-125b (Figure 4A) in HCC tissues is associated with the
presence of blood vessels encapsulating tumor cells (VETCs)
facilitating their entry into the bloodstream (88). In a mouse
orthotopic xenograft model, expression of miR-100 and miR-
125b suppressed VETC formation and abrogate VETC-
dependent metastasis (88). In xeno- and allografts expressing
miR-100 or miR-125b much lower rates of hepatic and
pulmonary metastases were observed with human VETC-2 and
mouse Hepa 1-6 cells in comparison to control cell lines (88).
miR-100 and miR-125b inhibit VETC formation by attenuation
angiopoietin 2 (ANGPTN 2) expression (88, 89). For miR-
125b, ANGPTN2 has been identified as a direct target; miR-
100 targets mammalian target of rapamycin (mTOR) directly,
resulting in attenuation of ANGPTN2 expression (88, 90).

miR-125a (Figure 4A) is down-regulated in HCC-related
tissues and cell lines (91). Ectopic expression of miR-125a
inhibited proliferation of HepG2 and HCC-LM3 HCC cells and
miR-125a directly targets vascular endothelial growth factor
(VEGF) and MMP11, both mediators of metastasis (91-94).
Increased expression of VEGF in HCC is associated with high
proliferation index and poor encapsulation of tumors (92, 93).
HCC-LM3 cells expressing miR-125a showed reduced
metastasis to the lungs and liver after tail vein injection (91).

miR-195 (Figure 4A) is down-regulated in HCC and is
associated with worse prognosis (95). miR-195 inhibited
HCC cell line QGY-7703 promoted migration of endothelial
cells and suppresses in vitro migration and invasion of QGY-
7703 HCC cells (95). In an orthotopic xenograft model, miR-
105 suppresses intrahepatic and pulmonary metastasis (95).
miR-195 inhibits angiogenesis and metastasis by targeting
VEGF, guanine nucleotide exchange factor VAV2 and cell
division control protein 42 (CDC42) (95). VAV2 functions
as a guanine nucleotide exchange factor and CDC42 is a
member of the Rho family of GTPases. Both are involved in
regulation of the cell cycle and in attenuating pro-invasive
functions of the cytoskeleton (96).

miR-199a-3p (Figure 4A) is down-regulated in HCC and
inhibits tumor–stroma cross-talk (97). VEGF is a direct
target of miR-199a-3p, which inhibits VEGF secretion from
tumor cells as well as expression of VEGF receptors 1 and
2 on endothelial cells and thus restricts the cross-talk
between tumor and endothelial cells (97). As further direct
targets, hepatocyte growth factor (98) and MMP2 (99) have
been identifed as mediators of metastasis. miR-199-3p
inhibits growth and lung metastasis of SNU449 HCC cells
subcutaneously implanted into nude mice (97).

miR-497 (Figure 4A) is down-regulated in HCC-related
cells and tissues (100). Overexpression of miR-497 in Huh7
and PLC-PRF-5 HCC cell lines inhibits their migration,
invasion and pro-angiogenic activity (100). miR-497-
transfected Huh7 cells gave rise to smaller tumors in
comparison to the non-transfected cell line after
subcutaneous implantation and reduced the number of lung
nodules after tail vein injection (100). Direct inhibition of
VEGF by miR-497 inhibits angiogenesis. Astrocyte elevated
gene 1 (AEG1) has been identified as another direct target
of miR-497 (100). AEG1 promotes tumor cell invasion and
metastasis by activation of PI3K/AKT and WNT/β-catenin
pathways (100-102).

miRs interfering with signaling, cell cycle and cytoskeleton
function. Ectopic expression of miR-7 reduced invasion and
migration of QGY-7703 cells in vitro (103). Metastatic
nodules in the lungs and the liver were repressed after tail
vein injection of QGY-7703-miR-7 transfected HCC cells
(103). Tumor growth of these cells was inhibited after
scapular implantation in comparison to control cells (103).
PI3K subunit delta, the major component of PI3K was
identified as a direct target of miR-7 (103). Down-regulation
of miR-7 results in activation of AKT-mTOR signaling (104,
105). An inverse correlation between expression of miR-7 and
PIK3CD in clinical HCC specimens has been observed (103).

miR-10a inhibited metastasis of HCC-related QGY-7703
and HepG2 cells to the liver after intrasplenic implantation
(106). EPH tyrosine kinase receptor EPH4 was identified as
a direct target of miR-10a (106). Epha4 binds to EPH-
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receptor-interacting proteins A and B and mainly affects cell
shape and motility by regulating cytoskeletal organization
and cell adhesion (106). miR-10a and EPHA4 affect cell
adhesion via the β1 signaling pathway (106). miR-10a
probably suppresses homing of metastatic HCC cells to
distant organs (106).

miR-26a is frequently down-regulated in HCC tissues and
targets IL6/STAT3 and MYC/enhancer zeste homolog 2
(EZH2)-mediated metastasis (107, 108). In HCC cell lines
HCC-LM3 and MHCC97-H, miR-26a induced G1 arrest and
promotes apoptosis (108). In an intrahepatic nude mouse
model, growth and metastasis to the lungs of HCC-LM3 and
MHCC97-H cells were inhibited by miR-26a. These
observations are based on direct inhibition of IL6 mRNA by
miR-110 (108). IL6 promotes tumor cell growth and invasion
via STAT3 signaling in many types of tumors (109, 110). In
a different system miR-26a interfered directly with several
targets such as cyclin-dependent kinase 8 (CDK8), p21
activated protein kinase 2 (PAK2) and EZH2 (108).
Inhibition of CDK8, a co-activator of WNT signaling, results
in reduced expression of c-MYC (110, 111). PAK2 mediates
invasion of HCC cells by linking Rho GTPases to
cytoskeleton reorganization during the metastatic process
(112). EZH2, a member of the polycomb group of proteins

can repress tumor suppressor miRs by H3K27-dependent and
-independent mechanisms (113, 114). 

TGFβ suppressed expression of miR-34a and is associated
with persistent presence of HBV in liver tissue (115).
Chemokine (C-C motif) ligand 2 (CCL2) was identified as a
direct target of miR-34a (115). TGFβ induces production of
CCL2 via suppression of miR-34a (115, 116). CCL2 functions
as a recruiter of regulatory T-cells (117). In Hepa1-6 mouse
HCC cells, tumor growth and metastasis to mouse liver and
abdomen after intraplenic injection in immuno-competent
mice was suppressed by overexpression of miR-34a in these
cells (115). Growth and metastasis to the lungs of fat pad-
implanted 4T1 murine breast cancer cells overexpressing miR-
34a was severely inhibited in immuno-competent mice in
comparison to control cells (115). An inverse correlation
between CCL2 level and miR-34a was found in HBV-HCC
tumor samples. These results emphasize the importance of
TGFβ–miR-34a–CCL2 signaling in HBV-HCC.

miR-100 inhibits invasion of Hepa 1-6 mouse and human
QGY-7703 HCC cells in transwell assays and reduces the
incidence of pulmonary metastases of miR-100 transfected and
orthotopically implanted Hepa 1-6 cells (118). As direct targets
of miR-100, isoprenylcysteine carboxylmethyltransferase
(ICMT) and RAC1, both promoters of metastasis, were
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Figure 3. Expression of selected miRs in hepatocellular carcinoma compared to normal tissues. Data are shown for miR-101, miR-137, miR-425,
miR-487a and miR-1247. Data from 377 HCC samples and 50 normal liver samples derived from The Cancer Genome Atlas are shown. miR
expression was quantified by RNA sequencing and is shown as log2 of randomized read counts. The red lines indicate lower versus higher expression.
Expression data are shown as box plots. The line in the medium of the box represents the median value, the rectangles show the upper and lower
25% quartiles, and 50% of all data points are included in the greater rectangle. All of the data points, except for the outliers are located within the
upper and lower whiskers.



identified (118). ICMT functions as a post prenylation
processing enzyme which methylates a group of proteins
including Rho GTPases and mediates activation of RAC1 (119,
120). RAC1 signaling promotes actin polymerization,
subsequent lamellopodia formation and induces PI3K/AKT
signaling (121, 122). 

miR-101 (Figure 4B) and miR-139 target RHO-associated
protein kinase 2 (ROCK2) (123, 124). ROCK2 is a
downstream effector of RhoA GTPase and induces formation
of stress fibers and focal adhesions by phosphorylating
myosin light chains (125). ROCK2 confers motility and
invasive capacity to HCC cell lines in vitro and in vivo and
is frequently overexpressed in HCC (125, 126). In addition
to ROCK2, several additional targets for miR-101, such as
induced myeloid leukemia cell differentiation protein, cyclo-
oxygenase 2, stathmin 1, EZH2 and FOS, all involved in
proliferation, invasion and metastasis, have been identified
(123). In vivo, upon transfection with miR-101, the HCC cell
line LM9 exhibited reduced metastatic colonization to the
lungs and the liver after tail vein injection (123). miR-101 is
frequently down-regulated in HCC patients with distant
metastasis and predicts poor prognosis (123). According to
data retrieved from TCGA, miR-101 was down-regulated in
HCC samples in comparison to normal liver tissues (Figure
3). miR-139 reduced migration, but had no impact on
proliferation of SMMC-7721 and BEL-7402 HCC cell lines
in vitro and suppressed lung metastasis of miR-139-
transfected orthotopically implanted MHCC97-H cells in
comparison to control cells (124).

miR-129-3p (Figure 4B) inhibited migration and invasion
of HCC cell lines HCCLM3 and MHCC97-H in vitro and
reduced intrahepatic and lung metastasis in nude mice (127).
Aurora A, a serine-threonine kinase (128), has been identified
as a direct target of miR-129-3p (127). miR-129-3p inhibits
PI3K/AKT and p38/MAPK signaling (127). Expression of
aurora A correlates with lymph node metastasis of HCC, its
inhibition leads to reduced cell growth, proliferation and
enhanced apoptosis in HCC (129, 130). Methylation-
dependent miR-129-3p down-regulation correlates with
metastasis and poor prognosis of patients with HCC (127).

miRs-137 and miR-612. miR-137 (Figure 4B) inhibited
proliferation and migration of SK-Hep1 and QGY-7703 HCC
cells and reduceed liver and lung metastasis of HCC
xenografts injected into the flanks of mice (131). AKT2
(132) has been identified as a target of miR-137 (131).
Overexpression of AKT2 leads to up-regulation of β1
integrins, increased invasion and metastasis in ovarian and
breast cancer cells (133) and correlates with poor prognosis
in HCC (134). Significant down-regulation of miR-137 in
HCC versus normal liver tissues was not demonstrated in
TCGA data set (Figure 3). miR-612 also targets AKT2, is
down-regulated in patients with metastatic HCC and

inhibited metastatic foci of HCCLM3 cells in the liver and
the lungs after tail vein injection (135). 

miR-149 (Figure 4C) inhibited migration and invasion of
HepG2 and MHCC97-H HCC transfectants and in vivo
metastasis to the lungs of miR-149-transfected HepG2 cells
injected into the caudal veins was reduced (136). Mg2+/Mn2+-
dependent protein phosphatase 1F (PPM-1F) was identified as
a target of miR-149 (136). PPM-1F belongs to the protein
phosphatase 2C family of serine-threonine protein
phosphatases and acts as a mediator of motility and adhesion
of cancer cells by regulating cytoskeleton remodeling (137,
138). miR-149 is frequently down-regulated in HCC tissues
and is associated with poor clinicopathological factors and low
postoperative survival rate (136).

miR-150 suppressed proliferation, migration and invasion of
MHCC97-H and SMMC-7721 HCC cell lines and in vivo lung
metastases of i.v. injected miR-150-expressing MHCC97-H
cells was inhibited in comparison to control cells (139). GRB2-
associated-binding-protein-1 (GAB1) was identified as a direct
target of miR-150 (139). GAB1 functions as a scaffolding
adaptor, is involved in tumorigenesis, invasion and metastasis,
and can mediate activation of MAPK signaling (140, 141).

miR-188 is frequently down-regulated in HCC and in vivo,
HCCLM3 cells expressing miR-188 gave rise to smaller
tumors and intrahepatic and lung metastases were reduced
(142). Fibroblast growth factor 5 was identified as a direct
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Figure 4. miRs inhibiting metastasis of hepatocellular carcinoma
xenografts. A: MicroRNAs attenuating angiogenesis and metastasis in
hepatocellular carcinoma. Down-regulation of miR-100, miR-125a, miR-
125b, miR-195, miR-199-3p and miR-497 promotes angiogenesis and
metastasis in hepatocellular carcinoma. B: Metastasis-inhibitory miRs
in hepatocellular carcinoma with in vivo activity in a metastasis related
model and correlation to poor prognosis in patients. miR-101, miR-129-
3p and miR-137. C: Further metastasis-inhibitory miRs in hepatocellular
carcinoma with in vivo activity in a metastasis-related model and
correlation to poor prognosis in patients. miR-149, miR-503 and miR-
630. AEG-1: Astrocyte-elevated gene 1; AKT: serine-threonine kinase
AKT; ANGPTN-2: angiopoietin 2; ARFGEF19: brefeldin-inhibited
guanine nucleotide exchange protein 1; Aurora A: serine-threonine
protein kinase aurora A; CDC42: cell division control protein homolog
42; COX2: cyclo-oxygenase 2; EMT: epithelial–mesenchymal transition;
EZH2: enhancer of zeste homolog 2; FOS: transcription factor FOS;
HGF: hepatocyte growth factor; INT β1: integrin β1; MCL-1: induced
myeloid leukemia cell differentiation protein 1; MLC-P: phosphorylated
myosin light chain; MMP2,9: matrix metalloproteinases 2, 9; mTOR:
mammalian target of rapamycin; NFĸB: nuclear factor ĸB; p38MAPK:
p38 mitogen-activated protein kinase; PAK: p21-activated kinase; PI3K:
phosphatidyl-inositol 3-kinase; PI3K: phosphoinositol-3-kinase; PPM-
1F: protein phosphatase 1F; RHO A: RAS homolog gene family, member
A; ROCK2: RHO associated coil–coil-containing protein kinase 2;
SLUG: transcription factor SLUG; STMN1: stathmin; VAV2: guanine
nucleotide exchange factor VAV2; WNT: wingless-integrated.
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target of miR-188 which attenuates MAPK signaling (142),
and regulates tumor growth and invasion (143).

miR-345 inhibited liver metastasis of HCCLM3 cells after
i.v. injection. Interferon regulatory factor (IRF1) was
identified as a target of miR-345 (144). IRF1 functions as an
oncogene which up-regulates p-mTOR, p-STAT3 and p-AKT
and inhibits expression of SLUG, SNAIL and TWIST,
modulators of migration and invasion (145). In a parallel
approach, YES-associated protein (YAP1), a transcription-
regulating oncogene in human cancer, promoting growth and
metastasis of HCC cells (146-148), was identified as a target
of miR-345. Cell migration and invasion of MHCC97-H cells
overexpressing miR-345 as well as lung metastasis of these
cells after tail vein injection were inhibited in comparison to
control cells (144).

miR-367 inhibited tumor growth, intra-hepatic and lung
metastatic foci of HCC cell lines and targets mouse double
minute 2 homolog (MDM2) directly (149). Ring-finger
containing E3 ligase MDM2 (150) ubiquitinylates androgen
receptor, leading to its degradation. Increase of androgen
receptor expression promoted expression of FK506 binding
protein 5 (FKBP5) and PHLPP, resulting in inactivation of
p-AKT (149, 151) and concomitant inhibition of metastases.

miR-379 is significantly down-regulated in patients with
HCC and inhibits HCC cell line migration in vitro and
metastasis in vivo (152). FAK has been identified as a direct
target of miR-379 (152). Repression of FAK leads to
inhibition of AKT signaling (152). FAK has been identified
as a mediator of metastasis of HCC (153).

miR-422 is down-regulated in HCC samples and cell lines
and inhibited proliferation and migration of HCC cell lines
HCCLM3, MHCC97-H and SMMC-7721 (154). Forkhead
box transcription factors FOXG1, FOXQ1 and FOXE1 were
identified as direct targets of miR-422 (154). FOXG1 plays
a critical role in HCC pathogenesis and metastasis (155).
HCCLM3 and MHCC97-H cells transfected with an
expression vector for miR-422 gave rise to reduced numbers
of hepatic metastases after subcutaneous implantation into
immuno-deficient mice in comparison to a corresponding
control cell line (154).

Down-regulation of miR-503 (Figure 4C) correlates with
increased metastatic potential of HCC cell lines and clinical
HCC (156). Subcutaneous implantation of HCCLM3 cells
transfected with an expression vector for miR-503 reduced
tumor growth and lung metastases in comparison to a
corresponding control cell line (156). Brefeldin-inhibited
guanine nucleotide exchange factor protein 1 (ARHGEF19),
was identified as a direct target of miR-503 (156). ARHGEF19
catalyzes the release of GDP on small GTPases in exchange
for GTP and results in their activation (157). Small GTPases
play an important role in metastasis of HCC (158). 

Expression of miR-885-5p suppressed migration of
HCCLM3, SK-Hep1 and HepG2 cells (159). In vivo, in an

orthotopic HCCM3-miR-885-5p model, number and size of
nodules in the lungs are reduced in comparison to
corresponding controls (159). β-Catenin was identified as a
direct target of miR-885-5p (159). The WNT signaling pathway
plays an important role in pathogenesis and metastasis of HCC
(160). Down-regulation of miR-885-5p correlates with poor
survival in patients with HCC and miR-885-5p expression is
inversely correlated with expression of β-catenin (159).

miRs interfering with EMT. miR-139-3p is down-regulated in
HCC and inhibits growth after subcutaneous implantation and
formation of pulmonary metastatic foci after tail vein injection
of HepG2 cells transfected with miR-139-3p in immuno-
deficient mice (161). miR-139-3p targets the annexin A2
receptor (ANXA2R) which is involved in EMT, regulation of
adhesion, migration, growth and homing of tumor cells (162).
miR-139-3p expression is inversely correlated with ANXA2R
expression in human HCC tissues (161).

miR-148a inhibits migration of several HCC cell lines in
a transwell assay and represses pulmonary metastases in an
orthotopic xenograft model (163). Receptor tyrosine kinase
c-MET was identified as a direct target of miR-148a (163).
Inhibition of c-MET attenuates AKT signaling and reduces
nuclear accumulation of SNAIL, a transcription factor
promoting EMT (163, 164). Expression of miR-148a is
significantly reduced in HCC tissues in comparison to
normal liver-related tissues (163).

miR-187-3p is down-regulated in patients with HCC in
comparison to normal liver tissue and inhibits invasion of HCC
cells in vitro and metastasis in vivo in mice. Hypoxic conditions
are responsible for the reduced levels of miR-187-3p in HCC
(165). S100 calcium binding protein 4 (S100A4), the direct
target of miR-187-3p, promotes metastasis via EMT (166).
Down-regulation of miR-187-3p correlates with adverse clinical
features and poor prognosis of patients with HCC (165).

miR-192 is down-regulated in metastatic HCC cell lines and
patients and inhibited migration and invasion of HCC-LM3,
Huh7 and SK-Hep-1 HCC cells (167). In an orthotopic
xenograft model, Huh7 cells transfected with miR-192 gave
rise to fewer intrahepatic metastases in comparison to control
cells (167). Solute carrier 39A6 (SLC39A6) was identified as
a direct target of miR-192 (167). SLC39A6 is a transmembrane
zinc transporter that regulates invasion of several types of
cancer (168, 169).

miR-200a functions in HCC cells enriched in CSC-like
activity and CSC-related phenotype, referred to as side
population cells (170). miR-200a inhibits invasion and
migration of side population cells derived from MHCC-97H
and Huh7 HCC cells (170). Up-regulation of miR-200a in
side population cells reduced the number of lung metastatic
nodules after injection into the caudal vein of mice and
increased their overall survival time (170). Transcription
factor zinc finger E-box binding 2 (ZEB2) was identified as
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a direct target of miR-200a (170). ZEB2 together with
SNAIL, AKT and FOX are drivers of EMT, which is
associated with expression of mesenchymal markers (N-
cadherin, vimentin) and repression of epithelial markers
(CDH1 and zona occludens protein 1) (171, 172).

Liver regeneration and hepatectomy has been reported to be
involved in recurrence and metastasis of a residual HCC (173).
In a rat model, HCC was initiated by administration of
diethylnitrosamine and CCL4 (174). A recombinant adenovirus
expressing miR-203 injected after 30% hepatectomy inhibited
residual HCC invasion and lung metastases (174). miR-203
down-regulates EMT mediator IL1β, SNAIL and TWIST
(174). Independent work has shown that miR-203 directly
targets SNAIL, ZEB and TWIST transcription factors in
nasopharyngeal carcinoma (174). 

Ectopic expression of miR-449a suppressed invasion and
HCC cell colony formation in vitro of Hep3B, Bel-7402,
SMCC-7721, MHCC-LM9, Huh7 and HepG2 cells (175).
Restoration of miR-449 expression in Huh7 cells inhibitand
lung metastases after intrahepatic implantation (175). FOS
and c-MET were identified as direct targets of miR-449a
(175). FOS and c-MET are overexpressed in HCC and are
able to induce EMT (176, 177).

miR-501-3p inhibits migration, proliferation and EMT of
HCCLM3 and PLC/PRF/5 HCC cells as shown by gain and
loss of function experiments (178). The incidence of lung
metastasis of HCCLM3 transfected with miR-501-3p cells was
reduced in comparison to control cells in an orthotopic mouse
model (178). LIN7A homolog A (LIN7A) was identified as a
target of miR-501-3p (178). It was shown that LIN7A mediates
the effects of miR-501-3p in vivo (178). LIN7A is a member
of the crumbs-complex polarity genes and polarity deficiency
has been identified as an essential step of EMT progression and
a hallmark of tumor invasion and metastasis (179).

miR-630 (Figure 4C) inhibited migration and EMT in
HCC cell lines Bel7402 and HLF (180). miR-630 had no
effect on tumor growth of Bel7402 cells after subcutaneous
implantation, but its inhibition in Bel7402 cells increased
metastatic foci in an orthotopic mouse model (180). miR-630
is repressed by TGFβ and directly targets SLUG, a nuclear
transcription factor which increases transcription of CDH1
mRNA by binding to the E-box element of the CDH1
promoter (181). Decreased miR-630 expression is associated
with metastasis and poor clinical outcome (181).

miR-1271 inhibits HCC migration, invasion, EMT and the
formation of lung metastases (182). miR-1271 targets protein
tyrosine phosphatase 4A member 1 (PTP4A1) which inactivates
SRC, a tyrosine kinase which promotes metastasis (183). miR-
1271 down-regulation correlates with HCC progression (182).

miR-1296 inhibited cell migration, invasion and EMT of
HCC cell lines HCCLM3 and Hep3B (184). HCCLM3 cells
transfected with miR-1296 gave rise to fewer and smaller
foci in the lungs of nude mice after injection into the lateral

vein in comparison to control cells (184). Serine/threonine-
protein kinase (SRPK1) was identified as a direct target of
miR-1296 (184). SRPK1 can activate PI3K/AKT which is
crucial for EMT of HCC (185). 

miRs inhibiting additional targets. miR-30a acts as an inhibitor
of autophagy during starvation in HCC cell lines and attenuates
anoikis resistance (186). miR-30a reduced lung metastasis of
HCCLM3 cells in nude mice after tail vein injection (186).
Pro-autophagic proteins beclin 1 and autophagy-related 5
(ATG5) were identified as direct targets of miR-30a (186).
Autophagy plays a role in HCC metastasis through facilitating
anoikis resistance and colonization of HCC cells (187). In
addition, miR-30a inhibited microvascular invasion and
recurrence in HCC tissue samples (186).

miR-122 inhibits in vivo growth and metastasis of
Mahlavu cells after intrahepatic administration, partly based
on inhibition of angiogenesis (188). A disintegrin and
metalloproteinase 17 (ADAM17) has been identified as a
critical downstream target (188). ADAM17 facilitates
activation of tumor necrosis factor α (TNFα) and epidermal
growth factor receptor (EGFR) ligand TGFα, modulates
integrin signaling during cell adhesion, and is associated
with endothelial cells (189-192).

miR-382 is down-regulated in HCC cell lines and tissues
(193). miR-382 suppresses migration and invasion of Huh7
and HepG2 cells and inhibits lung metastasis of these cells
after tail vein injection (193). No effect on proliferation,
apoptosis and cell-cycle-related parameters has been
observed in HCC cell lines (193). Golgi membrane protein
1 (GOLM1) was identified as a direct target of miR-382
(193). GOLM1 has been shown to be involved in EGFR
recycling and metastasis in HCC (194). 

Therapeutic Aspects

We have summarized metastasis-promoting and -inhibiting
miRs as modulators of HCC-related metastasis, focusing on
those with documented efficacy in metastasis-related in vivo
models. They can be grouped into different functional
categories such as tumor-suppressor gene-, angiogenesis-, cell-
cycle-, cytoskeleton-, signaling-, EMT- and glycosylation-
related. For further ranking with respect to potential as
therapeutic targets, correlation between expression in patients
with HCC and corresponding prognostic value is important to
differentiate/prioritize miRNA as target candidates. Based on
criteria as outlined we have identified six metastasis-promoting
miRs: miR-29a, miR-219-5p, miR-331-3p, miR-425-5p, miR-
487a and miR-1247-3p (Figure 2), and six metastasis-inhibiting
miRs: miR-101, miR-129-3p, miR-137, miR-149, miR-503,
miR-630) (Figure 4A and B) as potential therapeutic targets to
address HCC-related metastasis. For those, in vivo efficacy was
evaluated in metastasis-related mouse xenograft models

Weidle et al: MicroRNAs Involved in Metastasis of Hepatocellular Carcinoma (Review)

11



making use of orthotopic implantation (n=6), subcutaneous
implantation (n=2), intrasplenic implantation (n=1) or tail vein
injection (n=3). We did not prioritize miRs with deregulated
expression in HCC in comparison to corresponding tissues but
instead pending correlation with respect to patients’ outcomes.
Considering that orthotopic implantation may most closely
simulate HCC-related metastasis, metastasis-promoting miR-
29a, miR-219-5p, miR-425-5p and miR-487a, and metastasis-
inhibiting miR-129-3p and miR-630 may represent potential
therapeutic targets. However, the currently available data do
not permit an assignment of these miRs to defined molecular
and immunological subtypes of HCC.

Depending on the type of deregulation of the target miRs,
the therapeutic options are either inhibition or reconstitution
their function. miR antagonists (antagomirs) are single-stranded
antisense oligonucleotides (ASOs) which anneal to the mature
miR guide strand and induce its degradation or formation of
stoichiometric inhibitory duplex. Antagomirs are the most
popular miR inhibitors because all optimizations achieved for
ASOs can be incorporated into the design of antagomirs (16,
196-198). Another option for inhibition of miRs are miR
sponges which contain in-tandem multiple complementary
binding sites for the target miR. They are expressed in target
cells by corresponding vectors (16, 195, 196). 

Therapeutic application of nucleic acid-based entities and
small molecule inhibitors of miRs are an emerging field (197).
Specificity issues inherent to the latter approach might be
circumvented by targeting unique secondary structures. There
are two options for replenishment of down-regulated miRs.
One option is the design of miR mimetics, synthetically
derived RNA duplexes which mimic the function of the
corresponding miR. The other option is reconstitution of miR
function by inserting miRs into viral vectors and express them
in corresponding target cells (198). Since miRs regulate a
large set of genes, inhibition or reconstitution of their function
has the potential of restoring coordinated functionality. On the
other hand, there are many issues which have to be resolved
regarding application (and optimization) of miRs and miR-
targeting entities as therapeutic agents. Among these are
toxicity-related issues due to nonspecific hybridization with
non-target miRs, targeting of healthy tissues, case-by-case
optimization of pharmaco-kinetic and pharmaco-dynamic
properties, degradation by nucleases, elimination by the
reticulo-endothelial system, kidney filtration, immunogenicity,
sequestration into endosomes and fundamental issues of their
delivery to cancer tissues (199-205). 

Efforts to enhance properties of nucleic acid-based
therapeutics have led to multiple chemical modifications in
the sugar, base and backbone of RNA nucleotides. These
modifications have mainly focused on increasing the affinity
to the target RNA sequence, improving the pharmacokinetic
properties and reducing immunogenicity. The most widely
applied nucleotide modification for ASOs has been the

replacement of the phosphodiester backbone with a
phosphorothioate linkage. This modification dramatically
increases nuclease resistance and ASO binding to serum
albumin, which leads to a much improved pharmacokinetic
profile and distribution to most peripheral tissues, with
distinct accumulation in liver and kidney (206-208).

Besides albumin, phosphorothioate-modified ASOs also
bind to extracellular, cell membrane and intracellular proteins,
which facilitates their entry into cells and intracellular
trafficking. Upon adsorption to membrane proteins, ASOs
internalize into cells through multiple pathways, which can
lead to ‘productive’ uptake and antisense effects intracellularly
or the ASOs become routed and trapped in ‘non-productive’
cellular compartments. Although the requirements for
productive intracellular trafficking have not been fully
identified and antisense efficacy varies greatly between 
ASOs as well as cell types and their activation status,
phosphorothioate-modified ASOs can reach the cytoplasm and
nucleus. Achieving antisense efficacy without the need of an
additional delivery agent represent a major advantage to
previous nucleic acid-based therapeutics (209-211).

Recently, quantitative fluorescence imaging revealed that
locked nucleic acid-modified ASOs traffick to the nucleus
within minutes upon injection directly into the cytoplasm.
Approximately 105 ASOs are required for 50% target knock
down, suggesting that a large proportion remains bound to
nuclear components and is not available for RNase H1-
mediated degradation of the target RNA (212).

Considering this high number of required ASOs, current
research is focused on the improvement of their intracellular
delivery. Uptake of nucleic acid-based therapeutics into cells
can be enhanced by various means. For example, making use
of polymers such as high molecular weight polyethyleneimine
(PEI) and encapsulation in lipid-based nanoparticles with a
positive charge enabling binding to the negatively charged cell
surface has improved delivery (204). Stabilization of the
delivery vehicles or of the therapeutic agents with polyethylene
glycol is also an important improvement (213). Liver specific
delivery can be achieved by conjugation of PEI with
galactosamine which interacts with asialoprotein receptors on
hepatocytes and leads to internalization of the complexes by
receptor-mediated endocytosis (203, 204). Further options for
hepatocyte-specific delivery are outlined elsewhere (203, 204).
Even local administration of miRs into the liver may be an
option. Advantageous characteristics of a potential miR-related
target under consideration would be simultaneous inhibition of
proliferation, migration, invasion and intrahepatic metastasis.
Eradication of local and distant metastases by the
corresponding miR-related therapeutic agent as a single agent
or in combination with other agents should be the ultimate goal
of anti-metastatic therapy. Unfortunately, the described
preclinical models do not include models which allow targeting
of established metastases. Preventive scenarios do not seem to
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be realistic due the necessity of continued application and
resulting possible toxicity-related issues.

The field of miR-related agents has witnessed several
severe drawbacks in the recent past (214). Clinical studies of
Regula Therapeutics with miR-17 and miR-21 inhibitors for
treatment of inherited polycystic kidney disease and Alpert
syndrome were paused due to toxicity issues (214).

In 2016, clinical evaluation of a miR-122 inhibitor for
treatment of HCV infections was put on hold due to jaundice
in patients caused by inhibition of a bile duct transporter,
despite an excellent efficacy profile (214). Also, in 2016, a
clinical study of a synthetic mimic of miR-34 (miRNA
Therapeutics) for treatment of multiple types of cancer was
halted in phase I due to severe side-effects (214). On the
other hand, miRagen is pursuing clinical studies with MRG-
106 (cobomersen), a gapmer, in patients with leukemias and
lymphomas without any adverse effects observed during
phase I (214). It remains to be seen whether second-
generation molecules with an improved toxicity profile will
emerge as game changers in this field.
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