
Abstract. Machine learning with maximization (support) of
separating margin (vector), called support vector machine
(SVM) learning, is a powerful classification tool that has
been used for cancer genomic classification or subtyping.
Today, as advancements in high-throughput technologies
lead to production of large amounts of genomic and
epigenomic data, the classification feature of SVMs is
expanding its use in cancer genomics, leading to the
discovery of new biomarkers, new drug targets, and a better
understanding of cancer driver genes. Herein we reviewed
the recent progress of SVMs in cancer genomic studies. We
intend to comprehend the strength of the SVM learning and
its future perspective in cancer genomic applications.

Machine learning (ML) “learns” a model from past data in
order to predict future data (1). The key process is the
learning which is one of the artificial intelligences. Many
different statistical, probabilistic, and optimization
techniques can be implemented as the learning methods such
as the logistic regression, artificial neural networks (ANN),
K-nearest neighbor (KNN), decision trees (DT) and Naive
Bayes. There are two main types of ML learning - supervised

learning and unsupervised learning. The supervised learning
builds a model by learning from known classes (labeled
training data). In contrast, unsupervised learning methods
learn the common features from unknown class data
(unlabeled training data). 

ML algorithms have been used for key feature training and
recognition and for group classification. The strength of ML
methods is it could detect hard-to-discern patterns from large,
noisy or complex data sets. This capability is particularly
well-suited to complex genomic data, especially in cancer
studies. For example, ANN and DT have been used in cancer
detection and diagnosis for nearly 20 years (2-3). The clinical
implication of cancer heterogeneity and various cancer
genomic data available motivate the applications of ML for
cancer classification using genomic data. 

SVM learning is one of many ML methods. Compared to
the other ML methods SVM is very powerful at recognizing
subtle patterns in complex datasets (4). SVM can be used to
recognize handwriting, recognize fraudulent credit cards,
identify a speaker, as well as detect face (5). Cancer is a
genetic disease where the genomic feature patterns or feature
function patterns may represent the cancer subtypes, the
outcome prognosis, drug benefit prediction, tumorigenesis
drivers, or a tumor-specific biological process. Therefore, the
Artificial Intelligence of SVM can help us in recognizing
these patterns in a variety of applications. 

SVM Model

SVM is a powerful method for building a classifier. It aims
to create a decision boundary between two classes that
enables the prediction of labels from one or more feature
vectors (6). This decision boundary, known as the
hyperplane, is orientated in such a way that it is as far as
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possible from the closest data points from each of the
classes. These closest points are called support vectors. 
Given a labeled training dataset: 
(x1, y1), ..., (xn, yn), xi ∈ Rd and yi∈ (−1, +1)

where xi is a feature vector representation and yi the class
label (negative or positive) of a training compound i.
The optimal hyperplane can then be defined as:
wxT + b=0

where w is the weight vector, x is the input feature vector,
and b is the bias. 
The w and b would satisfy the following inequalities for all
elements of the training set:
wxiT + b ≥ +1  if  yi=1
wxiT + b ≤ −1  if  yi=–1

The objective of training an SVM model is to find the w and
b so that the hyperplane separates the data and maximizes
the margin 1 / || w ||2. 

Vectors xi for which |yi| (wxiT + b)= 1 will be termed
support vector (Figure 1). 

The SVM algorithm was originally proposed to construct
a linear classifier in 1963 by Vapnik (7). An alternative use
for SVM is the kernel method, which enables us to model
higher dimensional, non-linear models (8). In a non-linear
problem, a kernel function could be used to add additional
dimensions to the raw data and thus make it a linear problem
in the resulting higher dimensional space (Figure 2). Briefly,
a kernel function could help do certain calculations faster
which would otherwise would need computations in high
dimensional space. 
It is defined as:
K (x, y)=<f(x), f(y)>

Here K is the kernel function, x, y are n dimensional inputs.
f is used to map the input from n dimensional to m
dimensional space. <x, y> denotes the dot product. With
kernel functions, we could calculate the scalar product
between two data points in a higher dimensional space
without explicitly calculating the mapping from the input
space to the higher dimensional space. In many cases,
computing the kernel is easy while going to the high
dimensional space to compute the inner product of two
feature vectors is hard. The feature vector for even simple
kernels can blow up in size, and for kernels like the Radial
Basis Function (RBF) kernel (KRBF(x, y) = exp (-γ||x - y||2),
the corresponding feature vector is infinite dimensional. Yet,
computing the kernel is almost trivial. 

The choice of kernel function among other factors could
greatly affect the performance of an SVM model. However,
there is no way to figure out which kernel would do the best
for a specific pattern recognition problem. The only way to
choose the best kernel is through trials. We can start with a
simple SVM and then experiment with a variety of
‘standard’ kernel functions. Depending on the nature of the
problem, it is possible that one kernel is better than the other

kernels. An optimal kernel function can be selected from a
fixed set of kernels in a statistically rigorous fashion by
using cross-validation.

Cancer Classification and Subtyping

SVM as a classifier has been used in cancer classification
since the high throughtput microarray gene expression data
was avaliable in the early 2000’s. Golub et al. (9) first tried
a linear SVM to classify two different types of leukemia
using gene expression microarray data. In this study, 38
patients were used as training set. A simple learning
algorithm called “weighted voting” was trained to recognize
the distinction between two known (labeled) forms of
leukemia. The Affymetrix Hgu6800 chips covered 7,129
gene features (gene expression probes) and each of the whole
gene features was weighted in contributing to the two
classes. The learned SVM model was used to test another
independent data of 34 patients. This study has demonstrated
the superior performance of SVM in classifying high-
dimensional (gene features) and low sample size data.
Subsequently, Vapnik et al. (10) improved upon the accuracy
of the weighted voting method of the SVM, reducing the
error rate from 6% (2 errors out of 34) to 0%. But in this
study no feature selection was performed before the model
development. 

Moler et al. (11) applied SVM in a colon cancer tissue
classification using selected features. They used a collection
of 40 colon cancer tumors and 22 normal colon tissues. First,
a feature selection metric, the naive Bayes relevance (NBR)
score, was proposed, which was based on the probability of

CANCER GENOMICS & PROTEOMICS 15: 41-51 (2018)

42

Figure 1. Linear SVM model. Two classes (red versus blue) were
classified.



a class given the observed value of the feature, under a
Gaussian model. SVMs were then trained using only the 50-
200 top-ranked genes, which had the same or better
generalization performance than the full repertoire of 1, 988
genes in discriminating non-tumor from tumor specimens. In
addition, the performance of the SVM using various numbers
of selected genes was compared to the performance of a
naive Bayes classifier using the same genes. In each case,
the SVM outperformed naive Bayes. Furey et al. (12)
applied linear SVMs with feature selection to three cancer
data sets. The first data set consisted of 31 tissues samples,
including cancerous ovarian, normal ovarian and normal
non-ovarian tissue. The other two sets were the leukemia (9)
and colon cancer sets (11). In this study, A feature selection
metric called the signal-to-noise ratio (9), which was closely

related to the Fisher criterion score used in Fisher’s linear
discriminant, was used to select genes for training the
classifier. Overall, the SVM provided reasonably good
performance across multiple data sets, although the
experiments also demonstrated that several perceptron-based
algorithms performed similarly. Segal et al. (13) proposed a
genome-based SVM classification scheme for clear cell
sarcoma, which displays characteristics of both soft tissue
sarcoma and melanoma. Firstly, 256 genes were selected by
student t-test. Subsequently, a linear SVM was trained to
recognize the distinction between melanoma and soft tissue
sarcoma using the selected genes. In a leave-one-out setting,
the classifier correctly classified 75 out of 76 examples. In
another study (14), SVM was applied to investigate the
complex histopathology of adult soft tissue sarcomas. A data
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Figure 2. Kernel function. Data that cannot be separated by linear SVM can be transformed and separated by a kernel function.

Figure 3. Feature selection methods. Two frameworks (Feature filter and wrapper) were presented.



set including 51 samples that had been classified by
pathologists into nine histologic subtypes was used. The
SVM could successfully recognize the four subtypes for
which molecular phenotypes are already known. Among the
remaining samples, a combination of SVMs and hierarchical
clustering could uncover a well-separated subset of the
malignant fibrous histiocytoma subtype, which is a
particularly controversial subtype. 

Above SVMs are binary sample classifiers. Cancer is
heterogeneous and multiclass classification is needed. For
example, breast cancer consists of mainly four molecular
subtypes (Lumina A, Lumina B, HER2-enriched and Basal).
SVM can be extended for multiclass problems using the so-
called one-vs-rest approach (15). For N class problems, SVMs
will be trained independently between one specific class which
is seen as the positive class and the other classes will form the
negative cases. Li et al. (16) compared various state-of-the-art
classification methods on numerous multiclass gene
expression datasets and found that the multiclass classification
problem was much more difficult than the binary one for the
gene expression datasets due to the fact that the data are of
high dimensionality and small sample size. 

Besides mRNA expression features, DNA methylation was
also applied in SVM modeling for cancer classification.
Methylation is a molecular modification of DNA, where a
methyl group is added to the nucleotide cytosine. Methylation
patterns in the upstream regions of genes are considered a
major factor in gene regulation. Twenty-five patients with two
forms of leukemia were classified by methylation pattern that
contained measurements from 81 positions along the DNA
strand (17). In this study, various feature selection methods
were employed prior to model training, including principle
components analysis, the signal-to-noise ratio, the Fisher
criterion score, the student t-test, and a method called backward
elimination. Kim (18) proposed a weighted K-means support
vector machine (wKM-SVM) method for two methylation
profiles of breast and kidney cancer. Level 3 DNA methylation
of beta values targeting on methylated and the un-methylated
probes were downloaded from The Cancer Genome Atlas
(TCGA) database (https://tcga- data.nci.nih.gov/tcga/). The
breast cancer set consisted of methylation data of 10,121 genes
for 316 tumor samples and 27 control cases. The kidney set
included methylation data of 10,121 genes for 219 tumor
samples and 199 control cases. They compared wKM-SVM
with other different algorithms, including classification and
regression tree (CART), KNN and random forest in
recognizing tumor from normal. The wKM-SVM had the best
performance. Yang et al. (19) used an extension of the random
forest, Boruta, to select important DNA methylation features
and establish an SVM classifier for liver cancer diagnosis.
Alkuhlani et al. (20) developed a multistage approach to select
the optimal CpG sites from three different DNA methylation
cancer datasets (breast, colon and lung). Three different filter

feature selection methods (Fisher Criterion, t-test and Area
Under ROC Curve) were first combined to reduce the CpG
sites. The final SVM Recursive Feature Elimination (SVM-
RFE) resulted in classification accuracies of 96.02, 98.81 and
94.51% for the three cohorts, respectively. SVM was also
applied in the identification and validation of the methylation
biomarkers of non-small cell lung cancer (NSCLC) (21). 

Other data types were also used in SVM modeling. An
SVM algorithm has been used to classify or diagnose multiple
cancers based on a protein chip that was fabricated with
twelve monoclonal antibodies to quantify the tumor markers
(22). Tyanova et al. (23) used proteomics data to train an
SVM model to classify breast cancer subtypes. Copy number
variations (24) and single nucleotide polymorphisms (SNPs)
(25) were used to train SVM classifiers for bladder, uveal
cancer and breast cancer respectively. Wu et al. (26) built three
SVM classification models based on the identified pathways
which effectively classified different breast cancer subtypes.

New machine-learning methods have been developed to
classify integrated multilayer heterogeneous genomic data
(27). For example, for a given gene we might know the
protein it encodes, the mRNA expression levels associated
with the given gene for hundreds of patients, the occurrences
of known or inferred transcription factor binding sites in the
upstream region of that gene, and the identities of many of the
proteins that interact with the given gene’s protein product.
Each of these distinct data types provides one view of the
molecular machinery of the cell. Thus, integrating the multi-
layers of omics data could facilitate uncovering biological
processes and capturing the interplay of multi-level genomic
features. Several efforts have been made for multiple omics
data integration in the context of SVM learning. Kim et al.
(28) proposed a meta-analytic support vector machine (Meta-
SVM) that can accommodate multiple omics data, making it
possible to detect consensus genes associated with diseases
across studies. The Meta-SVM method was applied to breast
cancer expression profiles provided by TCGA including
mRNA, copy number variation (CNV) and epigenetic DNA
methylation. The three inter-omics features of breast cancer
were aligned on identical protein coding regions. The results
demonstrated that the Meta-SVM showed better performance
in discovering the underlying true signals and in detecting
gene sets enriched for cancer disease process validated as
biologically significant. 

Biomarker/Signature Discovery

Biomarkers discovery involves selecting biologically
meaningful or associated gene expression, SNPs, DNA
methylation, or micro-RNA from high-dimensional data and
modeling scores based on the selected features to help cancer
diagnosis, prognosis or treatment response (29). This process
can be viewed as selecting features for classifications (cancer
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versus none cancer, good versus poor outcome classes, drug
response versus no response classes). There are two main
methods for selecting features: filter methods and wrapper
methods. In filter methods, the features (i.e. genes) are
selected by predetermined ranking criteria and then are fitted
into cancer classifier algorithms (Figure 3). For example,
genes can be ranked by correlation coefficients (9, 12) and
hypothesis testing statistics (30-33). The drawbacks with the
gene-ranking methods are: (i) one has to specify the number
of selected genes in advance and often subjectively and (ii)
the selection is individual-based and hence ignores any
significant gene-gene correlations that may occur in the data.
Xu et al. (34) used differentially expressed genes (DEGs)
and protein-protein interaction (PPI) network-based
neighborhood scoring to select features and trained a SVM
model of a 15-gene signature for prediction of colon cancer
recurrence and prognosis. Hu et al. (35) built an SVM
algorithm based on the structural risk minimization principle
for the identification of thirty-eight markers involved in brain
development from single-cell transcriptomic data. An SVM
feature selection based on profiling of urinary RNA
metabolites was applied to predict breast cancer (36). SVMs
coupled with proteomics approaches were applied for
detecting biomarkers predicting chemotherapy resistance in
small cell lung cancer (37).

In the wrapper methods, the gene selection and classifier
modeling occur at the same time (38, 39). Wrapper methods
utilize the learning machine of interest as a black box to score
subsets of variable according to their predictive power
(Figure 3). Based on the inferences drawn from the previous
modeling, gene features will be added to or removed from the
current subset. These methods are usually computationally
expensive. Some common examples of wrapper methods are
forward feature selection, backward feature elimination, and
recursive feature elimination. 

One example is the SVM recursive feature elimination
(SVM-RFE) proposed by Guyon et al. (39, 40). The idea is that
the orientation of the separating hyperplane modelled by the
SVM can be used to select informative features, i.e. if the plane
is orthogonal to a particular feature dimension, then that feature
is informative, and vice versa. Thus, the SVM-RFE method
could remove the least important features and select the most
important features based on the weights of classifiers. Firstly,
the SVM-RFE wrapper initializes the data set to contain all
features. Then, it trains an SVM on the extended data set and
applies a feature importance measure (i.e. criterion) to evaluate
the importance of each feature. It ranks features in each
iteration according to the criterion and constantly removes the
lowest-ranked feature. Finally, the algorithm stops either when
all features get confirmed or rejected.

The SVM-RFE algorithm has been tested on both the
AML/ALL and the colon cancer data sets (40). In the leukemia
dataset, SVM-RFE selected two genes which together yielded

zero leave-one-out error. In the colon cancer dataset, SVM-
RFE identified only 4 genes that yielded an accuracy of 98%.
In addition, several other classification algorithms have been
trained using the genes selected by SVM-RFE. 

In biomarker discovery using SVM-RFE, the sampling
variation may greatly influence subsequent biological
validations. Abeel et al. (38) addressed this issue by
introducing the ensemble concept into the original RFE
method. In the ensemble SVM-RFE method, bootstrap was
used to resample K times from the training data. SVM-RFE
was then applied to each of the K resamples and thus K
marker sets were obtained. In the final phase, the output of
these separate marker selectors was aggregated and returned
as the final (ensemble) result. This ensemble SVM-RFE
method was tested in four microarray datasets: a Leukemia
dataset with acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL) tissues; a Colon Cancer
dataset consisted of samples from 40 tumor and 22 normal
colon tissues probed by an Affymetrix microarray chip
measuring more than 6,500 genes; a lymphoma dataset from
a study on diffuse large B-cell lymphoma; and a prostate
dataset. The ensemble SVM-RFE was showing increases of
up to almost 30% in robustness of the selected biomarkers,
along with an improvement of about 15% in classification
performance evaluated on the four microarray datasets
compared to the original SVM-RFE. The stability
improvement with ensemble methods is particularly
noticeable for small signature sizes (a few dozens of genes),
which is most relevant for the design of a diagnosis or
prognosis model from a gene signature.

Chen et al. (41) developed a network-constrained support
vector machine (netSVM) for identifying biologically
network biomarkers using integration of gene expression
data and protein-protein interaction data. The netSVM was
tested in two breast cancer gene expression data sets to
identify prognostic signatures for predicting cancer
metastasis. The results showed that the network biomarkers
identified by netSVM were highly enriched in biological
pathways associated with breast cancer progression and
helped improve the prediction performance when tested
across different data sets. Specifically, many of the identified
genes were related to apoptosis, cell cycle, and cell
proliferation, which are hallmark signatures of breast cancer
metastasis. Importantly, several novel hub genes, biologically
important with many interactions in Protein-protein
interaction (PPI) network but often showing little change in
expression when compared to their downstream genes, were
also identified as network biomarkers; the genes were
enriched in signaling pathways such as the TGF-beta
signaling pathway, MAPK signaling pathway, and JAK-
STAT signaling pathway. These signaling pathways may
provide new insight to the underlying mechanism of breast
cancer metastasis. 
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Drug Discovery for Cancer Therapy

Drugs for a variety of deadly cancers remain limited. The
major challenges in cancer drug discovery include side
effects of drugs, high toxicity and drug resistance towards
current anticancer drugs. The traditional drug discovery
process involves an iterative procedure of finding
compounds that are active against a biological target, which
is time-consuming when selecting from a large collection of
compounds. Experimental techniques used for drug
discovery are costly and time-consuming (42). Today SVM
can aid this screening process using the maximum margin
hyperplanes. This hyperplane separates the active from the
inactive compounds and has the largest possible distance
from any labeled compound. 

Selecting anticancer drugs. Warmuth et al. (43) used active
learning to develop an SVM model for selecting active
compounds. Instead of separating the data into training set for
deriving models and testing set for validating models, the
learning set was incremented and a new, further improved
model was learned with each round in active learning. Gupta
et al. (44) applied an SVM model to prioritize anticancer
drugs against a cancer using the genomic features of cancer
cells. The drug profile of 24 anticancer drugs was tested
against a large number of cell lines in order to understand the
relation between drug resistance and altered genomic features
of a cancer cell line. Bundela et al. (45) built an SVM-RBF
model to identify potential therapeutic compounds for oral
cancer from the large pool of compounds from the publicly
available compound databases. 

Matsumoto et al. (46) used SVM for virtual screening of
radiation protection function and toxicity for radioprotectors
targeting p53. Radiation therapy is one of the main approaches
against cancer cells, although this therapy has adverse side
effects, including p53-induced apoptosis of normal tissues and
cells (47). It is considered that p53 would be a target for
therapeutic and mitigative radioprotection to avoid the
apoptotic fate. It was found that SVM is better than other
machine learning in the case that the target protein is known
and we search for a compound that bond to the target protein.  

Identifying novel cancer drug targets. SVMs have been used
for predicting druggability scores for targets (48). The model
was trained using three to six global descriptors of protein
binding sites accounting for size, compactness and
physicochemical properties. With these descriptors, the
druggability scores could be assigned to new targets (48).
The SVM methodology was also used to prioritize docking
poses. Li et al. (49) used a Support Vector Machine-based
scoring function in regression mode (SVR) to assess target-
ligand interactions. Knowledge-based pairwise potentials
derived from complex crystal structures were used to

develop the scoring function. In another study, a support
vector regression (SVR) algorithm was derived from a set of
descriptors and was applied to predict protein-ligand binding
affinities (50).

The identification of drug target proteins (DTP) plays a
critical role in biometrics. Wang et al. (51) designed a novel
framework to retrieve DTPs from a collected protein dataset,
which represents an overwhelming task of great significance.
Previously reported methodologies for this task generally
employ protein-protein interactive networks but neglect
informative biochemical attributes. A novel framework was
formulated utilizing biochemical attributes to address this
problem. In the framework, a biased support vector machine
(BSVM) was combined with the deep embedded
representation extracted using a deep learning model, stacked
auto-encoders (SAEs). In cases of non-drug target proteins
(NDTPs) contaminated by DTPs, the framework is beneficial
due to the efficient representation of the SAE and relief of
the imbalance effect by the BSVM. The experimental results
demonstrated the effectiveness of this framework, and the
generalization capability was confirmed via comparisons to
other models. This study is the first to exploit a deep learning
model for IDTP. In summary, nearly 23% of the NDTPs
were predicted as likely DTPs, which are awaiting further
verification based on biomedical experiments. 

Jeon et al. (52) utilized SVM to learn five genomic
features from various types of high-throughput data for the
genome-wide identification of cancer therapeutic targets.
These features include gene essentiality, expression level,
mutation, copy number and closeness in a PPI network. The
SVM was trained by known cancer targets versus non-
targets, and then used for novel target discovery.

Drug/nondrug classification. Singh et al. (53) developed a
hybrid method of SVM on thousands of anticancer and non-
anticancer molecules tested against 60 National Cancer
Institute (NCI) cancer cell lines. This highly accurate hybrid
method can be used for classification of anticancer and non-
anticancer molecules. Also a non-linear machine learning
techniques has been used to generate robust multiomic
signatures that predict cancer cellular response to 17-AAG,
AZD0530, AZD6244, Erlotinib, Lapatinib, Nultin-3, Paclitaxel,
PD0325901, PD0332991, PF02341066, and PLX4720 using
data from the CCLE, CGP, and NCI60 databases(54).

Anticancer drug sensitivity prediction. Computational models
to predict the response of cancer cell lines to drug
compounds facilitate cancer therapeutics development
process. Hejase et al. (55) built an ensemble SVM model to
predict the sensitivity of the breast cancer cell lines to
previously untested drug compounds. The ensemble SVM
model extracts features from different types of data
(proteomic data, gene expression, RNA-seq, DNA
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methylation, and DNA copy number variation) rather than
using different base algorithms on a single type of data. The
ensemble model based on the different types of data
enhanced and improved the accuracy of the overall model.

Predicting substrates of the cancer resistance. Human breast
cancer resistance protein (BCRP) is an ATP-binding cassette
(ABC) efflux transporter that confers multidrug resistance in
cancers and also plays an important role in the absorption,
distribution and elimination of drugs. Hazai et al. (56)
developed SVM models to predict wild-type BCRP
substrates based on a total of 263 known BCRP substrates
and non-substrates collected from literature. The final SVM
model had an overall prediction accuracy of approximately
73% for an independent external validation data set of 40
compounds.

Cancer Driver Gene Discovery

Cancer is initiated by somatic mutations, called cancer driver
gene mutations. However, all various cancers cannot be
explained by the handful number of driver genes currently
reported. The continuing decline in the cost of genome
sequencing, as well as the relative ease of interpreting the
effects of mutations in many proteins via methods such as
activity assays has led to a sustained drive to understand the
effects of cancer derived mutations on cancer progression.
The challenge of finding mechanistic links between
mutations and cancer progression is made even more
imperative by the fact that many cancer drugs target
mutations that have specific effects, as well as the
observation that many clinical trials fail due to patient
cohorts that are not suitable for specific therapies (57).
Sequencing efforts as well as the frequent failure of targeted
therapies has led to an increasingly well-recognized principle
that not all mutations confer selective advantage on cancer
cells. These mutations are known as passenger mutations
while mutations that confer some advantage are commonly
referred to as driver mutations, because they can be seen as
properties of the residues from the mutations. They showed
that this classifier performs driving cancer progression (58). 

SVM is one of the most widely used techniques to classify
mutations specific to cancer. This essentially geometric
method tries to find combinations of features that are
common to mutations of different classes so that mutations
of unknown class (i.e. driver or passenger) can be classified
(59). SVM classifiers were also trained to predict whether
mutations occur across the whole genome (60) as well as in
a specific class of proteins (61). These methods based on
cross-validation showed high accurate predictions, high
receiver operating characteristic area under the curve (AUC),
or high probability of distinguishing between examples of
different classes. 

Jordan et al. (59) developed an SVM method to predict the
activation status of kinase domain mutations in cancer and the
method showed it to be reliable with an accuracy of 78%
when a balanced dataset was used. This method did not need
to make any decisions in advance about which mutations are
driver mutations, as many recent machine learning efforts
have. It was also faster than molecular dynamics (MD) to
predict the effect of kinase domain mutations which are ofted
used to predict. Interestingly, the ability to affect salt bridge
formation was demonstrated to be an important factor in
determining whether a given mutation is likely to be a driver.
Tan et al. (62) developed a novel missense-mutation-related
feature extraction scheme for identifying driver mutations. A
total of 126 features were investigated for each missense
mutation, including (i) changes in the physiochemical
properties of the residues from the mutations; (ii) substitution
scoring matrix (SSM) features from published sources; (iii)
protein sequence-specific (PSS) features, which extract
various patterns of two consecutive amino acid residues or a
six-letter exchange group in a protein sequence; and (iv) other
annotated features derived from the UniProt KnowledgeBase,
Swiss Prot variant page and COSMIC database. A classifier
was derived based on the features using SVM. The classifier
was then tested on a new data set using n-fold cross-
validation. From the 126 candidate features, they were able to
identify the top 70 features that were best able to discriminate
between driver and passenger mutations. Most (61 of 70) of
the top 70 features consisted of the SSM and PSS features
rather than simple changes in the physiochemical better than
the previous methods by comparing their ability (in terms of
ROC and prediction precision) to identify 117 EGFR and 1029
TP53 missense mutations (58). Capriotti et al. (63) trained an
SVM classifier on a set of 3163 cancer-causing variants and
an equal number of neutral polymorphisms. The individual
variants identified could be indicators of cancer risk. The
method achieved 93% overall accuracy, a correlation
coefficient of 0.86, and area under ROC curve of 0.98. 

Bari et al. (64) built SVM models to uncover a new class
of cancer-related genes that are neither mutated nor
differentially expressed. This SVM-Assisted Network
Inference (MALANI) algorithm assesses all genes regardless
of expression or mutational status in the context of cancer
etiology. 8807 expression arrays corresponding to 9 cancer
types were used to build more than 2×108 SVM models for
reconstructing a cancer network. Approximately 3% of
~19,000 not differentially expressed genes are the new class
of cancer gene candidates. 

Cancer Gene/Protein Interaction and Networks 

Cancer is a complex disease of impacted biological processes
with multiple genes or factors. Modeling the gene-gene
interaction helps understand the underlying biological
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mechanisms. Traditional statistical tools are not appropriate
for analyzing large-scale genetic data. However, it appears
some of the computational limitations of detecting gene-gene
interactions can be overcome using modern techniques, such
as machine learning and data mining. The problem of
detecting interactions among multiple genes can be
considered as a combinatorial optimization problem: finding
the best combination of gene features from a given dataset
which can produce the highest prediction accuracy. 

A few early studies (40, 65, 66) have shown that SVMs
are promising predictors for the detection of gene-gene
interactions. Later an applicable computational SVM
framework for detecting gene-gene interactions was
described (67). SVM and combinatorial optimization
techniques (local search and genetic algorithm) were tailored
to fit within this framework. Although the proposed approach
is computationally expensive, the results indicate this is a
promising tool for the identification and characterization of
high order gene-gene and gene-environment interactions. On
one hand, several advantages of this method, including the
strong power for classification, less concern for overfitting,
and the ability to handle unbalanced data and achieve more
stable models, have been demonstrated. On the other hand,
this method was computationally expensive.

In a study conducted by Guo et al. (68), SVM model
derived from the primary sequences of proteins was used for
predicting PPIs. The SVM model was developed with the aid
of auto covariance (AC). AC was used to cover the
information of interactions between amino acid residues a
certain distance apart in the sequence. Thus, the neighboring
effect was taken into consideration in this method. The AC
and SVM combined method showed a very promising
prediction result when performed on the yeast
Saccharomyces cerevisiae PPI data. This method achieved
an accuracy of 88.09% another independent data set of
11474 yeast PPIs. The superiority of this method over the
existing sequence-based methods will make it useful for the
study of protein networks. Chai et al. (69) built a new Net-
SVM model which selected fewer but more relevant genes.
This Net-SVM can be used to construct simple and
informative PPI networks that are highly relevant to cancer.

Perspective

Cancer genomic data are high-dimensional, heterogeneous
and noisy. The application of SVM learning in cancer
genomics is a popular and successful undertaking (Table I).
The appeal of SVM approach is due in part to the power of
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Table I. Summary of typical applications of SVM in cancer genomics.

Applications                                                                   SVM model*                                     Data                                       Cancer type                     Ref

Classification/subtyping                                                 Linear SVM                                    mRNA                              Soft tissue sarcomas               14
                                                                                        Linear SVM                                Methylation                                   Leukemia                       17
                                                                                         SVM-RFE                                 Methylation                                    Multiple                         20
                                                                                         Meta-SVM                                 Multi-omics                               Breast cancer                    28
                                                                                        Linear SVM                                    Protein                                        Multiple                         22
                                                                                        Linear SVM                                Proteomics                                Breast cancer                    23
                                                                                        Linear SVM                                     CNV                                    Bladder cancer                   24
                                                                                        Linear SVM                                      SNP                                      Breast cancer                    25
Biomarker/signature                                                        SVM-RFE                                     mRNA                                        Multiple                        38
                                                                                           NetSVM                        Expression & interaction                     Breast cancer                    41
Drug discovery                                                                                                                                                                                                                   
   Screen radiation protection                                         RBF-SVM                           Normal cell culture                                  All                             46
   Identify novel drug targets                                         Linear SVM                        Druggability data set                                 All                             48
   Assess target-ligand interactions                                  Reg-SVM                     Structure-activity data sets                            All                             49
   Identify drug target proteins                                      Biased SVM                   A collected protein dataset                            All                             51
   Anti/non-anticancer molecule classification              Linear SVM               Anti-, non-anticancer molecules                NCI-60 cells                     53
   Anticancer drug sensitivity prediction                    Ensemble SVM                         Cell multi omics                               Cell lines                        55
   Predicting substrates of the cancer resistance           Linear SVM                            BCRP substrates                            Breast cancer                    56
Driver gene discovery                                                                                                                                                                                                        
   Kinase mutation activation                                        Linear SVM                             Kinase data set                                      All                             59
   Drivers versus passengers                                           Linear SVM                                  COSMIC                                          All                             62
Gene interaction                                                                                                                                                                                                                 
                                                                                         RBF-SVM                      Interacting proteins (DIP)                             All                             68

*SVM-RFE: SVM recursive feature elimination; RBF-SVM: radial basis function SVM; netSVM: network-constrained SVM; Reg-SVM: regression
SVM; CNV: copy number variation; SNP: single nucleotide polymorphism; COSMIC: the catalogue of somatic mutations in cancer; BCRP: human
breast cancer resistance protein.



the SVM algorithm, and in part to the flexibility of the
kernel approach to representing data. If the parameters C and
r are appropriately chosen, SVMs can be robust, even when
the training sample has some bias. 

Although SVMs with non-linear kernels are extremely
powerful classifiers, they do have some downsides as
following: 1). Finding the best model requires testing of
various combinations of kernels and model parameters; 2). It
can be slow to train, particularly if the input dataset has a large
number of features or examples; 3). Their inner workings can
be difficult to understand because the underlying models are
based on complex mathematical systems and the results are
difficult to interpret. The success or failure of machine learning
approaches on a given problem may vary strongly with the
expertise of the user. Of special concern with supervised
applications is that all steps involved in the classifier design
(selection of input variables, model training, etc.) should be
cross-validated to obtain an unbiased estimate for classifier
accuracy. For instance, selecting the features using all available
data and subsequently cross-validating the classifier training
will produce an optimistically biased error estimate (70). 

The cancer genomic and epigenomic data are
exponentially increased as the new generation of sequencing
technologies advances. The challenge in analyzing these
large complex data motivates us to use artificial intelligent
approaches. Developing new kernel functions will aid to
discover new targets and new target drugs for various
cancers, especially for those deadly and heterogeneous
cancers, such as triple-negative breast cancers (TNBCs),
soft tissue sarcomas (STS), etc.
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