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Abstract. Background: Previous work characterized variants
of the EL4 murine lymphoma cell line. Some are non-
metastatic, and others metastatic, in syngenic mice. In addition,
metastatic EL4 cells were stably transfected with
phospholipase D2 (PLD2), which further enhanced metastasis.
Materials and Methods: Microarray analyses of mRNA
expression was performed for non-metastatic, metastatic, and
PLD2-expressing metastatic EL4 cells. Results: Many
differences were observed between non-metastatic and
metastatic cell lines. One of the most striking new findings was
up-regulation of mRNA for the matricellular protein WNT1-
inducible signaling pathway protein 1 (CCN4) in metastatic
cells; increased protein expression was verified by
immunoblotting and immunocytochemistry. Other differentially
expressed genes included those for reproductive homeobox 5
(Rhox5; increased in metastatic) and cystatin 7 (Cst7;
decreased in metastatic). Differences between PLD2-expressing
and parental cell lines were limited but included the signaling
proteins Ras guanyl releasing protein 1 (RGSI18; increased
with PLD2) and suppressor of cytokine signaling 2 (SOCS2;
decreased with PLD2). Conclusion: The results provide
insights into signaling pathways potentially involved in
conferring metastatic ability on lymphoma cells.

EL4 is a murine lymphoma cell line developed in 1945 by
treating C57 black mice with 9:10-dimethyl-1:2-benzanthra-
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cene (1). The cells were originally propagated in animal hosts,
prior to adaptation to cell culture. EL4 cells were used for many
years as a source of interleukin-2 (IL2), which they secrete
when treated with phorbol 12-myristate 13-acetate (PMA).

The EL4 cell line originally provided to us, by a colleague
at the University of Washington, was heterogeneous with
respect to PMA response. We, therefore, developed and
characterized EL4 sub-lines. Wild-type (WT)-derived cell lines,
which are PMA responsive, grow readily in suspension culture
as did the original strain. Variant (V)-derived (PMA-resistant)
sub-lines were selected for enhanced adhesion to tissue culture
plastic (2). Clonal lines were developed from both cell types
by limiting dilution (3). The PMA sensitivity of WT-derived
cells, as reflected by PMA-induced IL2 production and
mitogen-activated protein kinase (ERK1/2) activation, has been
attributed to expression of Ras guanyl nucleotide releasing
protein 1 (RasGRP1), which binds PMA and directly activates
Ras (4); V-derived cells do not express RasGRP1.

Clonal EL4 cell lines were used for experimental
metastasis studies in syngeneic mice, with WT2 and V7 as
prototypes (5, 6). WT2 cells do not form tumors (non-
metastatic), while V7 cells form liver tumors (metastatic)
after tail vein injection. ‘Metastasis’ more strictly refers to
tumorigenesis in this model, since circulating EL4 cells
home to the liver to form tumors (5). The clonal C5 cell line
was developed after stably overexpressing human
hemagllutinin (HA)-tagged phospholipase D2 (PLD2) in V7
cells in order to characterize the signaling role of PLD2
using a cell line expressing little or no endogenous PLD2
(5). As compared to V7, C5 cells exhibit increased cell
migration (7) and tumor growth (5), providing an early
example of the positive role of PLD2 in tumorigenesis.

This report presents data from microarray analyses
comparing transcripts expressed by these three EL4 cell
types, with the goal of further defining their phenotypes.
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Materials and Methods

Cell culture. Clonally-derived EL4 cells were maintained in RPMI-
1640 (Gibco/Thermo Fisher Scientific, Waltham, MA, USA) with
10% fetal bovine serum (Atlanta Biologicals, Atlanta, GA, USA) as
previously described (3, 5). All cells were grown on standard tissue
culture dishes, except for WT2, which was grown on suspension
culture plastic (Corning Incorporated, Tewksbury, MA, USA). C5
was maintained with 0.25 mg/ml G418 (Calbiochem/EMD
Millipore, Billerica, MA, USA), and switched to G418-free medium
24 hours prior to experiments.

Cell migration. For migration assays, 5x103 cells were seeded into
8.0 um pore Falcon cell culture inserts (BD Biosciences, San Jose,
CA, USA) in a 24-well plate. Cells were allowed to migrate for 8
or 12 hours at 37°C with 5% CO,. Non-migrated cells were
swabbed from the insert. Migrated cells were fixed with methanol
at —20°C for 10 minutes, stained with crystal violet at room
temperature for 10 minutes, washed with distilled water, and
counted using microscopy.

RNA preparation. Total RNA was extracted from cells (serum-
starved overnight) using the RNeasy Mini kit (Qiagen, Hilden,
Germany). Genomic DNA was removed by treating with DNase 1
from Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA).
Concentration and purity of total RNA were determined by
absorbance at 260 nm and by Ajqrg¢ ratio, respectively. RNA
integrity was determined by separating 2 pg total RNA on a
denaturing ethidium bromide-containing agarose gel, visualized by
Gel Doc imaging system (BioRad Laboratories, Hercules, CA,
USA). The 28s band was two-fold that of 18s rRNA for all three
cell lines.

Microarray. Differential gene expression was assessed using an
Affymetrix (Santa Clara, CA, USA) mouse 430 2.0 array containing
39,000 mouse transcripts as previously described (6). Two duplicate
arrays, from separate aliquots of cells, were analyzed for each cell
line. Normalized and log-transformed microarray data were
analyzed using Genesifter software (PerkinElmer, Waltham, MA,
USA). Differential expression of genes was determined by using
pairwise analysis. Statistical significance was determined using
Student’s #-test and corrected with Benjamini and Hochberg method.
Genes differentially expressed by 2-fold or more were included in
the analysis. The microarray data have been submitted to the GEO
archive (GSE79635).

Immunoblotting. Cells were rinsed with phosphate-buffered saline
(PBS); attached cells were harvested by scraping. Cells were
collected by centrifugation at 1,200 x g. Whole cell lysates were
prepared as previously described (3). Coomassie blue reagent
(Pierce Chemical, Rockford, IL, USA) was used to determine
protein concentrations. Equal amounts of protein (100 pg) were
loaded in each lane of a 10% sodium dodecyl sulfate-
polyacrylamide gel, electophoretically separated, transferred to
polyvinylidene fluoride membranes, incubated with primary
antibodies, and developed using enhanced chemiluminescence
reagents (Amersham Pharmacia Biotech, Piscataway, NJ, USA).
Anti-actin was from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). Anti-HA was from Babco (Richmond, CA, USA). Anti-
CCN4 was from R&D Systems (Minneapolis, MN, USA).

438

Immunocytochemistry. Cells were pelleted, fixed in formalin,
embedded in paraffin, sectioned, and stained with anti-CCN4 (1:50
dilution; sc-25441; Santa Cruz Biotechnology, Santa Cruz, CA, USA)
followed by fluorescent secondary antibody (1:100 dilution; Cy5-
conjugated donkey anti-rabbit; Jackon ImmunoResearch, West Grove,
PA, USA); controls lacked primary antibody. Nuclei were stained
with 4’ ,6-diamidino-2-phenylindole (DAPI). Images were captured
using an Olympus IX81 automated Inverted fluorescence microscope
and processed using Image-Pro software (MediaCybernetics,
Rockville, MD, USA).

Results

Differential expression of genes in WT2 (non-metastatic) vs.
V7 (metastatic) EL4 cells. Over 2800 genes were found to
be differentially expressed above the threshold (2-fold
change) between WT2 and V7 cells in the microarrays.
Genes of particular interest are presented in Table I. Several
results confirmed published findings. Specifically, the Ptk2
transcript for focal adhesion kinase (FAK) was 12-fold
higher in V7 than in WT2 cells, while the Pyk2 transcript for
the related tyrosine kinase Pyk2 was 3-fold lower; both
results are consistent with mRNA and protein differences
reported previously (6). The Prkch transcript encoding
protein kinase C 1) was 3-fold lower in V7 than in WT2 cells,
consistent with protein levels (2). Rasgrpl mRNA was 5-fold
lower in V7 than in WT2 cells, consistent with the previous
finding that RasGRP1 protein is greatly reduced in V7 as
compared to WT2 cells (4). Thus, the results for previously
examined genes validate the microarray method. Although
the differences in mRNA expression noted above are only of
the order of several-fold, they are consequential since some
of the encoded proteins [e.g. FAK (6)] were previously noted
to be essentially absent from the lower-expressing cell line.

The microarray analysis also identified many other
interesting transcripts that had not been studied previously in
the EL4 cell lines. The greatest difference in expression (453-
fold higher in V7) was observed for reproductive homeobox
5 (Rhox5), a member of the homeobox gene family.

Of particular interest with respect to metastasis, transcript
for CCN4 was 372-fold higher in V7 than in WT2. CCN4 is
a member of the CCN family of matricellular proteins
involved in cell signaling and adhesion. The expression of
CCN4 protein was examined. CCN4 protein was found to be
expressed in V7 cells, but was undetectable in WT2 cells
(Figure 1). Immunocytochemistry showed that CCN4 was
dispersed throughout the cytosol of V7 cells (Figure 2).

Transcript for the protease cystatin F (leukocystatin; Cst7)
was expressed at 13-fold higher levels in WT2 than in V7
cells; protein levels were not examined.

Differential expression of genes in V7 (metastatic) vs. C5
(PLD2-expressing, highly metastatic) EL4 cells. We first
confirmed expression of transfected PLD2 at the time when
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Table 1. Selected transcripts differentially expressed between WT2 and V7 EL4 cells.

Gene name

Gene symbol

Expression in V7 vs. WT2 cells Adjusted p-value

Reproductive homeobox 5

WNT1-inducible signaling pathway protein 1; CCN4

Cystatin F (cystatin 7; leukocystatin)

Protein tyrosine kinase , cytoplasmic; focal adhesion kinase (FAK)
Ras guanyl releasing protein 1

Protein tyrosine kinase 2 beta

Protein kinase C, eta

Rhox5 453-fold higher 0.0062
Wispl 372-fold higher 0.0078
Cst7 13-fold lower 0.0114
Ptk2 12-fold higher 0.0118
Rasgrpl 4.7-fold lower 0.0214
Ptk2b 2.9-fold lower 0.0219
Prkch 2.3-fold lower 0.0158

All of the listed genes are discussed in the text.

Table II. Selected transcripts differentially expressed between V7 and C5 EL4 cells.

Gene name

Gene symbol

Expression in C5 vs. V7 Adjusted p-value

Regulator of G-protein signaling 18
BTB (POZ) domain containing 3

Rho GTPase activating protein 29
Growth factor receptor bound protein 10
Phospholipase C, beta 1

Suppressor of cytokine signaling 2
Protein kinase C, eta

RgsI8 16-fold higher 0.0124
Btbd3 10-fold lower 0.0301
Arhgap29 7.3-fold lower 0.0261
Grbl0 5.9-fold higher 0.0308
Plc 4.3-fold lower 0.0272
Socs2 2.8-fold lower 0.0368
Prkch 2.0-fold higher 0.0301

Some, but not all, of the listed genes are discussed in the text.

the microarray analyses were performed, since the C5 cell
line had been developed approximately 5 years earlier. C5
cells expressed human HA-PLD2, detected by
immunoblotting for HA (Figure 3A), as reported previously
(5). Human PLD2 was detected in C5, but not V7, cells by
reverse transcription polymerase chain reaction (data not
shown). The migration of C5 cells was enhanced as
compared to that of V7 cells (Figure 3B), also as reported
previously (5-7). Thus, any differences in gene expression
between C5 and V7 cells are likely attributable to continued
PLD2 overexpression.

Microarray analysis was utilized to determine differential
expression of genes in PLD2-transfected C5 as compared to
V7 cells. There were 102 genes differentially expressed
between V7 and C5 cells with greater than 2-fold change.
The magnitude of the differential expression ranged up to
16.5-fold. Epidermal growth factor receptor (mRNA and
protein), encoded by Egfrr, was more highly expressed in C5
than V7 cells in a previous analysis using cells growing in
serum (7), but was not noted in the current study, which used
serum-starved cells. Table II lists selected genes
differentially expressed between V7 and C5 cells.

Many of the differentially expressed genes are signal
transduction proteins. One transcript of interest was that for
suppressor of cytokine signaling 2 (Socs2), which negatively
regulates signal transduction (9). Socs2 expression was lower

Actin

C5 V7  WT2

Figure 1. Expression of WNT1-inducible signaling pathway protein 1
(CCN4) in EL4 cell lines. Whole-cell extracts from WT2, V7 and C5
cells, equalized for protein, were immunoblotted for CCN4 and actin.

in C5 cells by 2.8-fold at the mRNA level (Table I).
Immunoblotting for SOCS2 protein suggested that SOCS2
expression is decreased in C5 as compared to V7 cells (10).

Regulator of G-protein signaling 18 (Rgs/8) showed the
greatest difference in expression between V7 and C5 cells,
with 16-fold higher levels in C5. Growth factor receptor-
bound protein 10 (Grb10) expression was increased 6-fold
in C5 cells. The potential significance of these and other
differences is discussed below.
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Figure 2. Localization of WNT1-inducible signaling pathway protein 1 (CCN4) in EL4 V7 cells. V7 cells were fixed and stained with 4°,5-diamidino-
2-phenylindole (DAPI) and anti- CCN4 (merged in right panels). The control used secondary antibody only. Bars=50 um.

Discussion

This report highlights results from two separate but
concurrent microarray analyses of gene expression of clonal
EL4 lymphoma cell lines. The first analysis, comparing
PMA-sensitive, non-metastatic WT2 cells with PMA-
resistant, metastatic V7 cells, identified nearly 3,000
differences (=2-fold). The second analysis compared V7 cells
to V7 stably transfected with human PLD2 (C5). In this case,
only ~100 transcripts were differentially expressed.

Some differences between WT2 and V7 cells (Prkch, Ptk2,
Rasgrpl) were discovered previously. Prkch transcript encoding
protein kinase C 1 was decreased in V7 cells, consistent with
protein expression (2), However, since Prkch transcript was
higher in C5 than in V7 cells, there is no apparent correlation
with metastasis. The potential roles of hundreds of other
differentially expressed genes remain to be determined. The
many differences may reflect that the cell line was
heterogeneous when first developed in 1945, and that this
heterogeneity has persisted and likely expanded over time. In
the original report characterizing EL4 cells, the author
commented that the phenotype of the cells, as seen by gross
morbid anatomy, shifted from "lymphatic leukemia" to
"lymphosarcoma" when they were propagated by intraperitoneal
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injection (1). Thus, different cell types in the original line could
have been subject to selection under different growth
conditions.

EL4 was characterized as an "NK T-cell tumor" by Gays
and colleagues (11), NK referring to natural killer cells. They
noted that NK-related markers are expressed in a fluctuating
manner, even in clonal EL4 cell lines, ascribing this to an
epigenetic process. Thus, another explanation for the
heterogeneity is that variant phenotypes are continuously
generated as the cells are maintained in culture. In our hands,
clonal EL4 cell lines were relatively stable with respect to
phenotype, although we discouraged selection for V-type
cells by maintaining WT-derived cells in suspension culture.

From the WT2 vs. V7 microarray, Wispl was selected for
verification at the protein level. CCN4 is a member of the CCN
family of secreted matricellular proteins (12). CCN proteins
modulate interactions between cells and extracellular matrix,
largely via binding to integrins (13). A review of CCN4 in all
cancer types emphasized its up-regulation in non-hematological
neoplasms (14); an example is prostate cancer (15). In contrast,
CCN4 is a potential biomarker for multiple myeloma, and is
overexpressed in peripheral T-cell lymphomas (16). We
detected cysteine-rich angiogenic inducer 61 (CYR61, CCN1)
in V7 by immunoblotting (unpublished data), but Ccn4
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Figure 3. Comparison of V7 and C5 EL4 cell lines. Panel A: Whole-cell
extracts from the indicated cell lines, equalized for protein, were
immunoblotted for hemagllutinin (HA) to detect transfected HA-tagged
phospholipase D2 (PLD2). V7 is the non-transfected parental cell line,
C5 was transfected with catalytically active human HA-PLD2. D3 (not
otherwise discussed herein) was transfected with catalytically-inactive
HA-PLD?2 (5). Panel B: V7 and C5 cells were incubated for 6 hours in
a Boyden chamber in serum-containing medium. Cells that migrated
through the insert were counted. Each data point represents the
mean+SEM of triplicate wells.

transcript was not differentially expressed between WT2 and
V7 cells in the microarray data. Wells and colleagues note little
redundancy between the functions of CCN proteins (16). The
authors commented that the same CCN protein can be involved
in normal differentiation and in neoplasia, suggesting that
differential expression of CCNs may provide a growth
advantage to tumor cells through pathways that remain to be
elucidated. These authors also noted that CCN4 is the least
studied of the family with respect to human neoplasms of
hematological origin. Thus, it is important to further explore
the role of CCN4 in hematological neoplasms.

Rhox5, which encodes a homeobox transcription factor,
was the transcript with greatest difference between WT2 and
V7 cells, and was expressed primarily (if not exclusively) in
metastatic V7 cells. RHOXS is particularly important in
development of reproductive tissues (17). It is expressed in
immortalized and neoplastic cell lines, but not in normal adult
tissues. The gene was originally identified from a murine T-
lymphoma library as a gene differentially expressed between
lymphomas at different stages of malignancy (18). It is
tempting to hypothesize that expression of Rhox5 may be a
driving force in many of the other differences in gene

expression noted between V7 and WT?2 cells. Further studies
will be required to address this hypothesis.

Cystatin F, encoded by Cst7, is a protease inhibitor that may
suppress apoptosis in hematopoietic cells, where it is selectively
expressed (19). Its potential role in NK cells has been discussed
(20). Although CST7 can be secreted, it localizes to lysosomes
in a pro-monocyte cell line (21). Like other type II cystatins,
CST7 is generally expressed at lower levels in tumors (19),
consistent with its lower expression in metastatic V7 EL4 cells.
However, CST7 was found to be overexpressed in colorectal
tumor cells metastasized to liver (22). Since expression of CST7
protein was not tested in EL4 cells, the significance of its lower
expression in metastatic V7 cells remains to be determined.

The changes in gene expression observed between C5
(PLD2-expressing) and V7 were generally modest in
magnitude. SOCS2, which is decreased following PLD2
transfection, is an inducible protein of interest in neoplasia.
SOCS2 expression is generally associated with increased body
growth in rodents (9). Expression of SOCS?2 is associated with
positive prognosis in human breast cancer (23, 24), but with
malignancy in prostate (25) and colorectal (26) cancer. Its role
in hematological malignancies is not yet clear, although SOCS2
is involved in T-cell differentiation (27), and stability (28).
SOCS2 inhibits Janus kinase/signal transducer and activator of
transcription signaling, but can also influence EGFR signaling.
Since EGF response is increased in EL4 cells after PLD2
transfection (7), the observed decrease in SOCS2 could
potentially play a role. However, additional studies will be
needed to determine whether SOCS2 is downstream of PLD2.

Rgs18, which is up-regulated in C5 (PLD2-expressing)
cells, is expressed in a myeloerythroid lineage-specific
manner (29). RGS18 negatively modulates the function of
G-protein-coupled receptors (GPCRs). RGS18 makes
platelets less sensitive to activation (30, 31). Since PLD2 can
be activated downstream of GPCRs (32), it is conceivable
that the increase in RGS18 is a compensatory response to
some of the effects of PLD2 overexpression. The adapter
protein GRB10, which is increased in PLD2-transfected
cells, suppresses activation of protein kinase G (AKT) by
growth factors (33); this could also be compensatory since
C5 cells exhibit enhanced AKT activation (7).

In conclusion, our studies of mouse EL4 cell lines with
different phenotypes have answered some questions, and
raised many new ones. The microarray data provide the basis
for further studies into the factors that contribute to the
progression of hematologic malignancies.
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