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Druggable Cancer Secretome: Neoplasm-associated Traits
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Abstract. Background: The genome association databases
provide valuable clues to identify novel targets for cancer
diagnosis and therapy. Genes harboring phenotype-associated
polymorphisms for neoplasm traits can be identified using
diverse bioinformatics tools. The recent availability of various
protein expression datasets from normal human tissues,
including the body fluids, enables for baseline expression
profiling of the cancer secretome. Chemoinformatics
approaches can help identify drug-like compounds from the
protein 3D structures. Materials and Methods: The National
Center for Biotechnology Information (NCBI) Phenome
Genome Integrator (PheGenl) tool was enriched for neoplasm-
associated traits. The neoplasm genes were characterized using
diverse bioinformatics tools for pathways, gene ontology,
genome-wide association, protein expression and functional
class. Chemogenomics analysis was performed using the
canSAR protein annotation tool. Results: The neoplasm-
associated traits segregated into 1,305 genes harboring 2,837
single nucleotide polymorphisms (SNPs). Also identified were
65 open reading frames (ORFs) encompassing 137 SNPs. The
neoplasm genes and the associated SNPs were classified into
distinct tumor types. Protein expression in the secretome was
seen for 913 of the neoplasm-associated genes, including 17
novel uncharacterized ORFs. Druggable proteins, including
enzymes, transporters, channel proteins and receptors, were
detected. Thirty-four novel druggable lead genes emerged from
these studies, including seven cancer lead targets.
Chemogenomics analysis using the canSAR protein annotation
tool identified 168 active compounds (<1 uM) for the neoplasm
genes in the body fluids. Among these, 7 most active lead
compounds with drug-like properties (1-600 nM) were
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identified for the cancer lead targets, encompassing enzymes
and receptors. Conclusion: Over seventy percent of the
neoplasm trait-associated genes were detected in the body
fluids, such as ascites, blood, tear, milk, semen, urine, etc.
Ligand-based druggabililty analysis helped establish lead
prioritization. The association of these proteins with diverse
cancer types and other diseases provides a framework to
develop novel diagnosis and therapy targets.

A vast amount of genome-wide association studies (GWAS)-
based datasets is becoming available for mining the genome
for disease association (1-10). Discovery of novel molecular
targets for diverse diseases is greatly aided by the Phenome
to Genome analysis tools. The National Center for
Biotechnology Information (NCBI) Phenome Genome
Integrator bioinformatics tool (PheGenl) offers an effective
approach to decipher a gene’s polymorphic association with
a disease phenotype (11). The association evidence, together
with the Expression Quantitative Trait Loci (eQTL) analysis
(12), allows us to prioritize molecular targets for rational
drug discovery.

The recent availability of numerous protein expression
analysis tools has expanded our capability to monitor the
protein levels in diverse normal and tumor tissues (13-19).
Tools, such as the human protein reference database (HPRD),
Multi-omics profiling expression database (MOPED) and
Proteomics database (Proteomics DB) encompass protein
expression datasets from a large number of body fluids.
Discovery of molecular targets that can be detected in the
body fluids (the cancer secretome) offers an advantage for
biomarker lead prioritization efforts (20, 21). Changes in the
target gene expression level can be readily monitored in
response to cancer progression or therapy in a non-invasive
manner.

Further, novel diagnostic and response-to-therapy indicator
proteins may emerge from a database of neoplasm-associated
genes that can be readily detected in the body fluids.

Major druggable class of proteins for small molecular weight
compounds in the human genome includes cluster of
differentiation (CD) markers, enzymes, ion channel proteins, G-
protein-coupled receptors, nuclear receptors and transporters
(16, 22). Currently, only 640/22,000 proteins present in the
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Figure 1. Neoplasm-associated traits in the human genome. The NCBI Phenome-Genome Integrator was used to enrich neoplasm-associated traits.
For the indicated traits, the number of genes (red) and the number of associated SNPs (blue) are shown. p-Values <1x10-3. The SNP class included

the exon, intron, near gene and untranslated region.

human genome are targeted by the Federal Drug Administration
(FDA)-approved drugs. Additional targets are clearly needed to
provide a basis for cancer drug discovery. The 3D structures of
the human proteins can be readily mined for ligand-based
druggability prediction using chemogenomics approaches (23,
24). A cancer-oriented protein annotation tool, canSAR,
provides tools to mine the cancer proteome for druggableness
with links to the chEMBL repository of compounds (25-28). By
utilizing such an approach, recently novel molecular targets
were identified for diverse diseases, including diabetes (29),
Ebola virus disease (30), neurodegenerative diseases (31) and
pancreatic cancer (32).

To aid in the discovery of novel cancer-related targets and
facilitate drug discovery efforts, a database of genes related
to the neoplasm-associated traits was established. Protein
expression profile of these genes in diverse body fluids was
established. Druggable class of proteins from the secretome
was analyzed using chemogenomics approaches. Active lead
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compounds (<1 pM) with drug-like property were identified.
These results open up novel opportunities for cancer drug
discovery efforts, as well as for the development of new
biomarkers.

Materials and Methods

The bioinformatics and proteomics tools used in the study have been
described previously (32-34). The protein annotation and chemical
structure-based mining was performed using the canSAR integrated
knowledgebase 2.0 (26, 35). The browse canSAR section was used
and the neoplasm-associated proteins were batch-analyzed for
protein annotations, 3D structures, compounds and bioactivity
details. The canSAR compounds link for genes has diverse filters,
such as activity and assay types, concentrations, molecular weight,
rule of five (ROS5) violations, prediction of oral bioavailability and
toxicophores. The protein 3D structure information was obtained
from the Swiss Protein Database (36). The chemical structures were
obtained from the chEMBL (28). Comprehensive gene annotation for
the neoplasm- associated genes was established using the GeneCards
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Figure 2. Cancer proteome expression in diverse human body fluids. The protein expression in diverse body fluids was inferred from the Multi-Omics
Protein Expression Database, the Proteomics DB and the Human Protein reference database. The numbers indicate the number of genes detected

for each of the body fluids.

(37), the DAVID functional annotation tool (38) and the UniProt (39)
databases. Protein expression was verified using the HPRD (13), the
human protein map (HPM) (14), Proteomics DB (17), the MOPED
(18- 19) and the human protein atlas (HPA) (16, 40).

Putative drug hits were filtered from the canSAR datasets for the
neoplasm-associated genes using the Lipinski’s rule of five (also
known as Pfizer’s rule of five), RO5. The ROS is a rule of thumb to
evaluate druggableness or to determine whether a compound with a
certain pharmacological or biological activity possesses properties
that would make it a likely orally active drug in humans (41- 42).
Highest stringency was chosen for the ROS5 violation (value=0).
Drugs with half-maximal inhibitory concentration (ICs,) values,
inhibitory activities and inhibitory constant (Ki) values are chosen
for the CanSAR output. The chemical structures were verified using
the chEMBL tool (27). Toxicophore negative was chosen to filter
the hits for toxicity associated compound structures (43). FDA
approved listing of drugs were obtained from the DrugBank
database (22).

Results

Cancer polymorphic traits in the human genome. The NCBI
PheGenl genetic association studies tool was used to
establish an initial database of neoplasm-associated traits.
Among the diverse association evidence in the GWAS
database, neoplasm-associated genes and the single
nucleotide polymorphisms (SNPs) were enriched (Figure 1).
The human genome segregated into 1,305 neoplasm-
associated genes encompassing 2,837 polymorphic SNPs.
Sixty five previously uncharacterized open reading frames
(ORFs) were also identified in these studies. These novel
ORFs, part of the “Dark Matter” proteome have been
recently characterized in the context of cancer and other
diseases (34, 44). The neoplasm traits were further classified
into individual tumor types, risk factor and response to
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Figure 3. Pathway mapping of the cancer proteome from the body fluids. The neoplasm-associated proteins were analyzed for gene pathways using
the GeneALaCart and the DAVID functional annotation tools. The numbers indicate the number of genes associated with the indicated pathways.

therapy. The largest number of associated genes and SNPs
was seen in neuroblastoma, prostate, pancreatic and breast
carcinomas. Association evidence was also seen in telomere
function, smoking behavior and response to chemotherapy
and radiation. This database of cancer subtype-related
association provided a framework for detailed bioinformatics
and proteomics characterization.

Enrichment of cancer proteome in the body fluids. The
majority of the neoplasm-associated genes (n=1,305) are
well-characterized proteins. However, the data for these
proteins exist in diverse databases making the lead gene
prioritization for cancer drug discovery often difficult. It was
reasoned that the protein biomarkers detectable in diverse
body fluids (the cancer secretome) might offer a diagnostic
and response to therapy indicator potential. Hence, the
protein expression databases, the HPRD, the MOPED and
the Proteomics DB, which have proteome expression datasets
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from normal and cancer patient-derived body fluids, were
batch-analyzed for the neoplasm-associated genes (Figure 2).
A large number of the neoplasm-associated proteins
(913/1,305) were detected in diverse body fluids. Among
these, 192 proteins had signal peptide sequence predicted by
the Signal P program (45-46). The remaining proteins
(n=721) belong to the non-classical secretary pathways.
Blood plasma, pancreatic juice and the ascitic fluid showed
the maximum number of proteins. In addition, neoplasm
proteins were detected in cerumen (earwax), milk, saliva,
tear and urine.

Pathway analysis. In order to develop a rationale for novel
cancer therapeutic targets discovery, a comprehensive
pathway mapping was undertaken for the neoplasm-
associated proteins. The GeneALaCart and the Database for
Annotation, Visualization and Integrated Discovery
(DAVID) functional annotation tools were used and batch-



Narayanan: Cancer Traits

Active Compounds (<1puM)(= 90% homology)

Ligand-based Druggability Percentile Rank >90%

Ligand-based Druggability Score

Number of 3D Structures Druggable
(= 90% homology)

Number of 3D Structures with Small Molecule
Ligand(= 90% homology)

Total proteins in body fluids

168

121

244

175

217

913

|

Figure 4. Druggability analysis of the cancer proteome from the body fluids. The canSAR protein annotation tool was used to batch-analyze the
neoplasm-associated proteins from the body fluids. A summary of the output based on the druggable 3D structures of the proteins and the ligand-
based druggability indication is shown. The numbers indicate the number of genes for the criteria shown. The filter was chosen at >90% homology
for the hits. Only the active compounds for the proteins (<1 uM in bioactivity) are included.

analyzed to cluster the pathways implicated with the cancer
proteome (Figure 3). The pathway data was merged from
the output from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway, the Interactome pathway, the
Biosystem pathways, the Tocris pathway, the Thomson
Reuters pathway and the PharmGKB pathway tools. The
pathways segregated into cell growth regulation
(angiogenesis, apoptosis, cell cycle, DNA damage and
degradative), metabolic (biosynthesis, glycolytic, hormonal
and purines and pyrimidines), signaling (Akt, cytokines,
ErbB, MAPK, Ras/RaP1 and protein), druggable targets
(adhesion, ligands, transporters, receptors,and G
protein—coupled receptors (GPCRs), pharmacokinetics and
pharmacodynamics, chemotherapy and neoplasm-related
diseases (inflammation, infection and immune). These
results were also verified from the gene ontology analysis
from the canSAR and the DAVID functional annotation
datasets. Cell localization ontology categorized neoplasm-
associated genes into the membrane (n=516), nuclear
(n=446), cytosol (n=416), cytoskeletal (n=81), endoplasmic
reticulum (n=87), Golgi (n=81), mitochondria (n=77),
receptors (n=233), extracellular (n=206), neuron (n=123),
axonal (n=81) and vesicle (n=126).

Druggable proteins in body fluids: the cancer secretome. In
order to develop an understanding over the druggableness of
the neoplasm-associated proteins, genes were classified into
classes of coding and non-coding genes. A comparison of all
neoplasm-associated genes with the genes identified in the
body fluids is shown in Table I. The protein coding genes
clustered into druggable class, including cell adhesion
molecules, ion channel proteins, enzymes, GPCRs and other
receptors and transporters. Enzymes were the largest class of
proteins detected in the body fluids (n=144). In addition, 17
uncharacterized ORFs, pseudogenes, RNA genes and linc
RNAs were also identified in the body fluids. Utilizing a
recent dataset from the HPA (16), these body fluid proteins
were further investigated. The list was filtered into authentic
secreted proteins with Signal P prediction (n=192) and
current FDA-approved drug targets (n=23).

Druggablity profile of cancer secretome. To facilitate the
discovery of new cancer therapeutics, the canSAR integrated
protein annotation tool was batch-analyzed for the cancer
proteome from the body fluids (Figure 4). Using 3D
structural evidence and ligand-based druggability ranking
(>90% confidence), 121/913 body fluid proteins were
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Table 1. Protein classes of the neoplasm-associated genes.

Protein class Neoplasm- Body
associated genes  fluid genes
Neoplasm-associated proteins 1350 913
Antisense non-protein coding 5 0
Antisense protein coding 1 0
Apoptosis 56 47
Blood group 4 4
Cell adhesion 53 44
Channel proteins 19 6
Cytoskeletal 39 8
Endogenous ligands 23 15
Enzymes 214 144
Factors 97 47
G protein—coupled receptors (GPCR) 43 19
Immunoglobulins 42 28
Interleukins 10 8
linc RNA 12 1
Lipoproteins 7 3
Open reading frames (ORFs) 65 17
Protein coding 983 908
Pseudogenes 249 4
Receptors 69 31
RNA genes 34 1
Transcription factors 71 47
Transporters 6 2
Secreted proteins (Signal P) 192 192
FDA-approved drug targets 41 23

The genes associated with neoplasm traits were batch-analyzed using
the GeneALaCart Met Analysis tool and classified into major protein
classes. The protein expression in the body fluids was established using
MOPED and Proteomics DB tools. Druggable class of proteins is shown
in bold.

predicted to be capable of binding to a ligand. Twenty
percent of the body fluid proteins (175/913) were predicted
to be druggable based on 3D structures. Active small-
molecular-weight compounds were identified (<1 pM
bioactivity) for 168 neoplasm-associated protein targets.

Using a high-stringency definition of druggability percent
score (>90%); ROS violation score (zero); bioactivity cut off
(<1 pM); and lack of toxicophore groups, thirty-two
secretome proteins were identified as putative drug lead
targets (Table II). These lead proteins encompass enzymes
(alcohol dehydrogenese, aldo-keto reductase, amine oxidase,
demethylase, glucokinase, serine/threonine kinases,
lipoxygenease and thymidine phosphorylase), receptors
(dopamine receptor, insulin-like growth factor receptor, stem
cell growth factor receptor, melanocyte-stimulating hormone
receptor and purinoceptor), coagulation factor XIII and
cytochrome P450 286 protein.

Cancer lead targets and putative compounds. Seven out of
these 32 proteins showed strong Phenome-Genome
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association evidence in diverse neoplasms: a downstream
effector of Cdc42 in cytoskeletal reorganization (CDC42BP)
with large B-cell diffused lymphoma, (47); Casein kinase I
isoform alpha (CSNK1A1) involved in Wnt signaling with
esophageal cancer (48); a Serine/threonine-protein kinase
(CHEK?2) with stomach neoplasms (49); an intronless
melanocyte-stimulating hormone G-protein coupled receptor
(MCI1R), which is a genetic risk factor for melanoma and
non-melanoma skin cancer (50, 51) and basal cell carcinoma
(52); a Lysine-specific demethylase 4C (KDM4C), which is
an indicator for response to radiation (53); a S-methyl-5’-
thioadenosine phosphorylase (MTAP), which is co-deleted in
diverse tumors along with the tumor suppressor P16 gene
(581) and P2Y purinoceptor 12 (P2RY12), a G-protein
coupled receptor with neuroblastoma (54).

These seven lead proteins also had active drug-like
compounds (nanomolar bioactivity, ROS5 violation value of
zero, molecular weight <500 and lack of toxicophore
structures) in the chEMBL chemical repository (Table III).
A compound against the target, protein, check point kinase 2,
CHEK?2 (canSAR # 404540ICHEMBL574737), is currently
a clinical candidate (55).

Mining the cancer-oriented databases, such as the NCBI
ClinVar, the catalogue of somatic mutations in cancer
(COSMIC) and the cBioPortal provided additional supporting
evidence implicating other tumor types for these genes.
Pathogenic clinical variations were seen for the lead genes in
malignant melanomas (56-57), neoplastic syndromes,
hereditary, familial cancer of breast, Li-Fraumeni syndrome
2 (58), diaphyseal medullary stenosis with malignant fibrous
histiocytoma (59) and platelet-type bleeding disorder 8 (60).
The COSMIC database showed somatic mutations for diverse
tumors and the top three tumor types with mutations are
shown (Table III). The cBioPortal Meta analysis tool’s
mutational assessor was used to identify high impact
missense mutations for distinct tumor types.

Discussion

The human proteome consists of over 22,000 proteins and
various isoforms associated with these proteins (61). Detailed
knowledge of these proteins at the level of variations,
polymorphisms, gene ontology, motifs and domains, gene
expression at mRNA and protein levels and disease relevance
exist across diverse bioinformatics databases. Despite the
large number of proteins, only 620 proteins are the basis of
mechanism-based FDA approved drugs (DrugBank listing).
These target proteins predominantly involve four protein
families, such as enzymes, transporters, ion channels and
receptors called druggable genes (62-67). The current drugs
largely encompass antagonists or agonists for these protein
targets. Gene ontology prediction tools indicate that over 70%
of the drug targets are membrane-bound or secreted (16).
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Table II. Neoplasm-associated lead proteins.

Gene Name  Gene description PheGenl association Expression in body fluids

ADHIC Alcohol dehydrogenase 1B Blood plasma, pancreatic juice

AKRIC2 Aldo-keto reductase family 1 member C2 Bile, earwax, semen

AKTI RAC-alpha serine/threonine-protein kinase Milk

AKT2 RAC-beta serine/threonine-protein kinase Semen

ALOX5 Arachidonate 5-lipoxygenase Blood pressure Ascites, blood plasma, saliva, semen

CDC42BPA  Serine/threonine-protein kinase MRCK alpha Monocytes Ascites, pancreatic juice

CDC42BPB  Serine/threonine-protein kinase MRCK beta Lymphoma, Large B-cell, Diffuse Semen, urine

CDC42BPG  Serine/threonine-protein kinase MRCK gamma Leprosy Blood plasma

CHEK2 Serine/threonine-protein kinase Chk2 Stomach Neoplasms|Optic Disk Blood plasma, proximal fluid

CSNKIA1 Casein kinase I isoform alpha Esophageal Neoplasms Ear wax, semen

CYP2B6 Cytochrome P450 2B6 Smoking Pancreatic juice

DRDI D(1A) dopamine receptor Ear wax

FI3A1 Coagulation factor XIII A chain Alzheimer DiseaselWalking|Lipoproteins, Blood plasma, brancheoalveolar
VLDLILipidsITriglycerides lavage, ear wax, serum, saliva,semen

GCK Glucokinase GlucoselHemoglobin A, Glycosylated Blood plasma

IGFIR Insulin-like growth factor 1 receptor Body heightlSleeplRespiratory function tests Blood plasma, semen

ITPRI Inositol 1,4 ,5-trisphosphate receptor type 1 Triglycerides|Cholesterol Blood plasma, serum,

pancreatic juice, semen
KDM4C Lysine-specific demethylase 4C Response to radiationIBody Mass Index Blood plasma

KIT Mast/stem cell growth factor receptor Kit

MAOA Amine oxidase [flavin-containing] A
MCIR Melanocyte-stimulating hormone receptor
MTAP S-methyl-5'-thioadenosine phosphorylase
MTOR Serine/threonine-protein kinase mTOR
P2RY12 P2Y purinoceptor 12
PIK3C2A Phosphatidylinositol 4-phosphate

3-kinase C2 domain-containing subunit alpha
PIK3C2B Phosphatidylinositol 4-phosphate

3-kinase C2 domain-containing subunit beta
PIM1 Serine/threonine-protein kinase pim-1
PLK2 Serine/threonine-protein kinase PLK2
PRKDI Serine/threonine-protein kinase D1
RAF1 RAF proto-oncogene serine/threonine-protein kinase
RIOK] Serine/threonine-protein kinase RIO1
SMG1 Serine/threonine-protein kinase SMG1
TBK1 Serine/threonine-protein kinase TBK1
TYMP Thymidine phosphorylase

Carcinoma, Basal CelllHair

EchocardiographylSubcutaneous
FatlCholesterol, LDLIAbdominal
FatiBody Weights and Measures

Blood plasma

Pancreatic juice

Blood plasma

ColorIMelanosis

Melanoma Ascites, ear wax, semen,
blood plasma, milk,
proximal fluid, serum

Pancreatic juice
Pancreatic juice

Blood plasma, pancreatic juice

Corneal topography
Neuroblastoma
Schizophrenia

Blood plasma

Bone marrow, blood plasma
Blood plasma
Blood pressure Pancreatic juice
Cardiomegaly
Ear wax
Pancreatic juice
Pancreatic juice, semen
Ascites, blood plasma,
broncheoalveolar
lavage, ear wax, semen

Erythrocyte indices

Lead neoplasm-associated secretome proteins were identified using the ligand-based druggability percentile rank (>90%) and with active compounds
(<1 uM). Genes with neoplasm association evidence are shown in bold. Protein expression from MOPED and Proteomes DB analysis is shown.

The cancer therapeutics, which is moving toward
personalized medicine (68), requires additional drug targets.
Reasoning that the GWAS databases can provide an attractive
starting point for developing a list of druggable cancer targets,
mining of the NCBI Phenome-Genome Integrator database was
undertaken. The PheGenl tool from the GWAS database
identified a total of 1,305 genes associated with distinct
neoplasm traits. Largely, these genes encompassed protein-

coding genes (983/1,305); however, non-protein coding
sequences, including long intergenic RNAs, linc RNAs (n=12),
pseudogenes (n=249) and antisense RNAs (n=5) were also part
of this list of genes. A significant number of druggable genes
(enzymes, receptors, channel proteins, transporters and cell
adhesion molecules) were identified in the study (n=404).
Furthermore, 192 putative secreted proteins were identified in
the neoplasm-associated gene list.
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Cancer cells secrete numerous proteins by both classical
and non-classical secretory pathways (21, 45). The cancer
secretome includes the extracellular matrix components, as
well as all the proteins that are released from a given type
of cancer cells, such as growth factors, cytokines, adhesion
molecules, shed receptors and proteases (20, 68). The
secreted proteins in diverse body fluids offer novel
biomarker and drug therapy targets. From the neoplasm-
associated traits, 913 proteins were identified in diverse
body fluids encompassing druggable targets. Only 23 out
of these proteins are currently FDA-approved targets (16).
Thus, it is distinctly possible that additional biomarkers
and drug targets can emerge from the database of the
cancer secretome generated in this study.

Using chemoinformatics approaches, 33 of the cancer
secretome proteins, encompassing enzymes and receptors,
were predicted as druggable. Bioactive compounds (<1
uM) targeting these proteins were identified in the
canSAR/ chEMBL databases. These 33 protein targets
provide a drug discovery rationale for cancer. Furthermore,
the discovery of drug-like bioactive compounds targeting
seven of these lead secretome proteins provides an
immediate starting point for novel cancer therapeutics. The
involvement of the neoplasm-associated proteins with
other diseases, such as nicotine addiction, Alzheimer’s
disease, diabetes, cardiac, hematological, metabolic and
respiratory diseases, leprosy and schizophrenia opens-up
novel biomarker and therapeutic opportunities for these
diseases as well.

In summary, the results presented in this study
demonstrate the power of chemogenomics approaches for
rational cancer drug discovery. Mining the cancer
secretome for neoplasm-associated traits is likely to lead
to the discovery of new molecular entities for diagnosis
and therapy. The lead compounds identified in the study
can be rapidly tested in cell culture and pre-clinical models
for efficacy.
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